
cs4713 1

Compiler Writing
Qing Yi

class web site: www.cs.utsa.edu/
~qingyi/cs4713

cs4713 2

A little about myself
Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

Research Interests
 Compilers construction

program analysis; optimizations for high-performance computing.
 Programming languages

type systems, object-oriented design.
 Software engineering

automatic structure discovery of software systems; systematic
error-discovery and verification of software.

cs4713 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs4713
 Check it often for slides, handouts and announcements

 Textbook
 Compilers: Principles, Techniques, and Tools

 Second edition
 By Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman, Addison-Wesley.
 Prerequisites

 Basic understanding of computer organization and
algorithms

 Ability to program in C and Java

http://www.cs.utsa.edu/~qingyi/cs4713
http://www.cs.utsa.edu/~qingyi/cs4713

cs4713 4

What we will learn
 Understanding languages and compilers

 How to implement different programming languages?
 How to automatically parse a language?

 Why are some languages harder to process than others?
 How to translate a language into another language?
 How to automatically improve the quality of programs?

 Implementation of compilers
 Scanners and parsers
 Symbol table management
 Simple code optimization
 Code generation

 Critical thinking
 Why are things the way they are? Could they be

different?

cs4713

Class Objectives
 Understand compilers as a means to implement

programming languages
 compilation vs. interpretation
 phases of a compiler

 Understand fundamental theories and algorithms
 regular expressions and context-free grammars
 NFA and DFA
 top-down and bottom-up parsing
 code generation and optimization algorithms

 Practice implementing compilers
 Learn how to implement scanners and parsers
 Learn how to implement significant algorithms

5

cs4713 6

Requirements and grading
 Quizzes in class: 20% (you’re required to attend class)

 I will hand out and collect quiz questions in class
 You pay attention to the lecture and find out solutions
 I will give you time to work on the quiz questions
 You’ll know if you understand class materials

 If not, interrupt me immediately

 Projects and homework: 50% (hands-on experience with
compilers)
 depend on our progress, but will cover lexical analysis, parsing

and code generation.
 Exams: 30%

 Two midterms --- selected from past quiz questions (with
variation, of course)

 The final is not required if you’ve done well on the midterms

cs4713 7

Attendance and quizzes
 Q: I have the textbook and the class notes online, do I

have to attend every class?
 A: Absolutely.

 The lecture will cover more to enhance your overall
understanding of the topics

 The class notes are mostly abstract outlines of things to cover
 Don’t put off learning until the end of the term

 Quizzes and projects count toward 70% of the grade
 The quizzes and solutions are complimentary class notes

 What if I have to miss a class due to unusual situations?
 A: you can come to my office hours and make up missed

quizzes. But you need to give me a good reason. Bad
reasons include:
 I have to prepare the exam of another class
 I have to go to a job fair. They give out very cool stuffs
 I forget to show up. I couldn’t find a parking spot. …

cs4713 8

Self evaluation
 How am I doing? How do I know whether I’m getting an A?
 A: exams matter, but quizzes and projects count toward

70% of the grade
 I can give you feedback on the quizzes and projects --- send

me email, or sign up now.
 You are likely getting an A if you do all of these

 Attend every class and turn in the quiz solutions.
 If your quiz solution show you do not yet understand the material,

come to my office hours and fix it.
 Your projects work well.
 Prepare for the exams.

 You might get a C or even fail the class if you do any of these
 Skip a lot of classes. Do not turn in the quizzes.
 Couldn’t get your projects to work at all, and do not come to my

office hours and ask for help.
 Believe you already know everything and skip preparing for

exams.

cs4713 9

Programming Languages
 Natural languages

 Tools for expressing information
 ideas, knowledge, commands, questions, …
 Facilitate communication between people

 Different natural languages
 English, Chinese, French, German, …

 Programming languages
 Tools for expressing data and algorithms

 Instructing machines what to do
 Facilitate communication between computers and

programmers
 Different programming languages

 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, …

cs4713 10

Levels of Programming Languages

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output

For future reference
 programming language =>high-level language

cs4713 11

Benefits of high-level languages
 Efficiency of programming

 Higher level mechanisms for
 Describing relations between data
 Expressing algorithms and computations

 Error checking and reporting capability
 Machine independence

 Portable programs and libraries
 Maintainability of programs

 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation

cs4713

Benefits of high-level languages
 Efficiency of programming

 Higher level mechanisms for
 Describing relations between data
 Expressing algorithms and computations

 Error checking and reporting capability
 Machine independence

 Portable programs and libraries
 Maintainability of programs

 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation

cs4713 13

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

Implementing programming languages
Compilation

cs4713 14

…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract machine

Implementing programming languages
Interpretation

cs4713

Are these languages compiled or
interpreted (sometimes both)?
 C/C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 …

cs4713 16

Compilers and Interpreters
Translation vs. Interpretation
 Compilers

 Read input program  optimization  translate into
machine code

 Interpreters
 Read input program  interpret the operations

 Questions to think about
 What are the tradeoffs of using compilers and

interpreters?
 What languages are compilers and interpreters written

in?
 What about the first compiler or interpreter?

cs4713 17

Compilers and Interpreters
Efficiency vs. Flexibility
� Compilers

Translation time is separate from run time
� Each target code can run many times
� Heavy weight optimizations are affordable
� Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

� Interpreters
Translation time is included in run time

X Re-interpret each expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
� Have full knowledge of program behavior
� Can dynamically change program behavior

cs4713

Typical Implementation of Languages
Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine independent Code Optimizer

Code Generator

Target
Program

Tokens

Parse tree /
Abstract syntax tree

Attributed AST

Results

Program input

compilers

interpreters

Machine dependent Code Optimizer

cs4713 19

Compiler structure

 Front end --- understand the source program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-

structuring
 Back end --- generate executable for target machine

 Instruction selection and scheduling, register allocation
 Symbol table --- record information about names(variables)

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

compiler

Symbol table

cs4713 20

Compiler Frontend

Lexical
analyzer

IR
generator

Parser
Source
program

token
s

Syntax
tree

IR

Symbol table

 Source program: for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…

 Scanning--- convert input to a stream of words (tokens)
 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 <FOR> <LPAREN> <id,1> <ASSIGN> <int,1> <SEMICOLON> ...

 Symbol table: 1

 Parsing---discover the syntax/structure of sentences
 FOR <LPAREN> exp <SEMICOLON> exp <SEMICOLON> exp

<RPAREN> stmt

“w”

....

cs4713 21

Intermediate representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 w: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

= < = emptyStmt

<id,1> <int,1>
<id,1> <int,100>

<id,1>

<id,1>

*

<int,2>

cs4713 22

More about the front end

 What errors are discovered by
 The lexical analyzer (characters  tokens)
 The syntax analyzer (tokens  AST)
 Context-sensitive analysis (ASTsymbol tables)

 How do you implement AST and symbol table

 int w;
 0 = w;
 for (w = 1; w < 100; w = 2w)
 a = “c” + 3;

typedef struct ASTnode {
 AstNodeTag kind;
 union { symbol_table_entry* id_entry;
 int num_value;
 struct ASTnode* opds[2];
 } description;
};

cs4713 23

Mid end --- improving code quality

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered

 Transformations --- improve target program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelization

cs4713 24

Back end --- code generation
 Memory management

 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in

processors

cs4713 25

Objectives of compilers
 Fundamental principles

 Compilers shall preserve the meaning of the input program ---
it must be correct

 Translation should not alter the original meaning
 Compilers shall do something of value

 They are not just toys

 How to judge the quality of a compiler
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 What kind of compilers do you like?
 Gnome compilers, Sun compilers, Intel compilers, Java

compilers, C/C++ compilers, ……

cs4713

Applications of Compiler
technology
 Implementing high-level programming languages

 Compilation vs. interpretation
 C/C++, Fortran, Java, C#

 Optimizations for computer architectures
 exploiting parallelism, memory hierarchy, and specialized

architectures

 Program Translation
 Binary translation, hardware synthesis, database query,

compiled simulation
 Software productivity tools

 Program analysis to prove correctness or report
errors and to automatically discover code structure

 Type checking, bounds checking, memory
management, ... 26

