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A little about myself
Qing Yi 
 Ph.D. Rice University, USA. 
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

Research Interests 
 Compilers construction 

program analysis; optimizations for high-performance computing. 
 Programming languages 

type systems, object-oriented design. 
 Software engineering 

automatic structure discovery of software systems; systematic 
error-discovery and verification of software. 



cs4713 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs4713
 Check it often for slides, handouts and announcements

 Textbook 
 Compilers: Principles, Techniques, and Tools

 Second edition
 By Alfred V. Aho, Monica S. Lam, Ravi Sethi, and 

Jeffrey D. Ullman, Addison-Wesley.
 Prerequisites

 Basic understanding of computer organization and 
algorithms

 Ability to program in C and Java

http://www.cs.utsa.edu/~qingyi/cs4713
http://www.cs.utsa.edu/~qingyi/cs4713
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What we will learn
 Understanding languages and compilers

 How to implement different programming languages?
 How to automatically parse a language?

 Why are some languages harder to process than others?
 How to translate a language into another language?
 How to automatically improve the quality of programs?

 Implementation of compilers
 Scanners and parsers
 Symbol table management
 Simple code optimization
 Code generation

 Critical thinking
 Why are things the way they are? Could they be 

different?
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Class Objectives
 Understand compilers as a means to implement 

programming languages
 compilation vs. interpretation
 phases of a compiler

 Understand fundamental theories and algorithms
 regular expressions and context-free grammars
 NFA and DFA
 top-down and bottom-up parsing
 code generation and optimization algorithms

 Practice implementing compilers
 Learn how to implement scanners and parsers
 Learn how to implement significant algorithms

5
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Requirements and grading
 Quizzes in class: 20% (you’re required to attend class)

 I will hand out and collect quiz questions in class
 You pay attention to the lecture and find out solutions 
 I will give you time to work on the quiz questions
 You’ll know if you understand class materials

 If not, interrupt me immediately

 Projects and homework: 50%  (hands-on experience with 
compilers)
 depend on our progress, but will cover lexical analysis, parsing 

and code generation.
 Exams: 30%

 Two midterms --- selected from past quiz questions (with 
variation, of course)

 The final is not required if you’ve done well on the midterms
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Attendance and quizzes
 Q: I have the textbook and the class notes online, do I 

have to attend every class?
 A: Absolutely. 

 The lecture will cover more to enhance your overall 
understanding of the topics

 The class notes are mostly abstract outlines of things to cover
 Don’t put off learning until the end of the term

 Quizzes and projects count toward 70% of the grade
 The quizzes and solutions are complimentary class notes

 What if I have to miss a class due to unusual situations?
 A: you can come to my office hours and make up missed 

quizzes. But you need to give me a good reason. Bad 
reasons include:
 I have to prepare the exam of another class
 I have to go to a job fair. They give out very cool stuffs
 I forget to show up. I couldn’t find a parking spot. …
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Self  evaluation
 How am I doing? How do I know whether I’m getting an A?
 A: exams matter, but quizzes and projects count toward 

70% of the grade
 I can give you feedback on the quizzes and projects --- send 

me email, or sign up now.
 You are likely getting an A if you do all of these

 Attend every class and turn in the quiz solutions.
 If your quiz solution show you do not yet understand the material, 

come to my office hours and fix it.
 Your projects work well.
 Prepare for the exams.

 You might get a C or even fail the class if you do any of these
 Skip a lot of classes. Do not turn in the quizzes.
 Couldn’t get your projects to work at all, and do not come to my 

office hours and ask for help.
 Believe you already know everything and skip preparing for 

exams.
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Programming Languages 
 Natural languages

 Tools for expressing information
 ideas, knowledge, commands, questions, …
 Facilitate communication between people

 Different natural languages
 English, Chinese, French, German, …

 Programming languages 
 Tools for expressing data and algorithms 

 Instructing machines what to do
 Facilitate communication between computers and 

programmers
 Different programming languages

 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, … 
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Levels of  Programming Languages

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b; 
…………….

High-level
 (human-level)
programming 
languages

Low-level 
(machine-level)
programming 
languages

Program input

Program output

For future reference 
 programming language =>high-level language
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Benefits of  high-level languages
 Efficiency of programming

 Higher level mechanisms for
 Describing relations between data 
 Expressing algorithms and computations

 Error checking and reporting capability
 Machine independence

 Portable programs and libraries
 Maintainability of programs

 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation
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………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b; 
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

Implementing programming languages
Compilation
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…………....
c = a * a;
b = c + b; 
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract machine

Implementing programming languages
Interpretation
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Are these languages compiled or 
interpreted (sometimes both)?
 C/C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 …
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Compilers and Interpreters
Translation vs. Interpretation
 Compilers

 Read input program  optimization  translate into 
machine code

 Interpreters
 Read input program  interpret the operations

 Questions to think about
 What are the tradeoffs of using compilers and 

interpreters?  
 What languages are compilers and interpreters written 

in? 
 What about the first compiler or interpreter?
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Compilers and Interpreters
Efficiency vs. Flexibility
� Compilers

Translation time is separate from run time
� Each target code can run many times 
� Heavy weight optimizations are affordable
� Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

� Interpreters
Translation time is included in run time

X Re-interpret each expression at run time 
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
� Have full knowledge of program behavior
� Can dynamically change program behavior
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Typical Implementation of  Languages 
Source 
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code 
Generator

Machine independent Code Optimizer

Code Generator

Target 
Program

Tokens

Parse tree /
Abstract syntax tree

Attributed AST

Results

Program input

compilers

interpreters

Machine dependent Code Optimizer
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Compiler structure

 Front end --- understand the source program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-

structuring
 Back end --- generate executable for target machine

 Instruction selection and scheduling, register allocation
 Symbol table --- record information about names(variables)

Front end Back endoptimizer
(Mid end)

Source 
program

IR IR Target 
program

compiler

Symbol table 
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Compiler Frontend

Lexical 
analyzer

IR 
generator

Parser
Source 
program

token
s

Syntax
tree

IR

Symbol table 

 Source program:     for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…

 Scanning--- convert input to a stream of words (tokens)
 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 <FOR> <LPAREN> <id,1> <ASSIGN> <int,1> <SEMICOLON> ...

    Symbol table: 1 

 Parsing---discover the syntax/structure of sentences
 FOR <LPAREN> exp <SEMICOLON> exp <SEMICOLON> exp 

<RPAREN> stmt 

“w” .... ....

.... .... ....
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Intermediate representation
 Source program
      for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 w: local variable, has type “int”, allocated to register 
 At least one symbol table for each scope

forStmt

= < = emptyStmt

<id,1> <int,1>
<id,1> <int,100>

<id,1>

<id,1>

*

<int,2>
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More about the front end

 What errors are discovered by
 The lexical analyzer (characters  tokens)
 The  syntax analyzer (tokens  AST)
 Context-sensitive analysis (ASTsymbol tables)

 How do you implement AST and symbol table

  int w;   
  0 = w; 
  for (w = 1; w < 100; w = 2w)
 a = “c” + 3;

typedef struct ASTnode { 
    AstNodeTag kind;
    union { symbol_table_entry* id_entry;
                int  num_value;
                struct ASTnode* opds[2];
              } description;
};  



cs4713 23

Mid end --- improving code quality

int j = 0, k;
while (j < 500) {
     j = j + 1;
     k = j * 8;
     a[k] = 0;
 }

int k = 0;
while (k < 4000) {
     k = k + 8;
     a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered

 Transformations --- improve target program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelization
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Back end --- code generation
 Memory management

 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine 
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in 

processors
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Objectives of  compilers
 Fundamental principles

 Compilers shall preserve the meaning of the input program --- 
it must be correct

 Translation should not alter the original meaning
 Compilers shall do something of value

 They are not just toys

  How to judge the quality of a compiler
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 What kind of compilers do you like?
 Gnome compilers, Sun compilers, Intel compilers, Java 

compilers, C/C++ compilers, ……
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Applications of  Compiler 
technology
 Implementing high-level programming languages

 Compilation vs. interpretation
 C/C++, Fortran, Java, C#

 Optimizations for computer architectures
 exploiting parallelism, memory hierarchy, and specialized 

architectures

 Program Translation
 Binary translation, hardware synthesis, database query, 

compiled simulation
 Software productivity tools

 Program analysis to prove correctness or report 
errors and to automatically discover code structure

 Type checking, bounds checking, memory 
management, ... 26


