
cs4713 1

Compiler Writing
Qing Yi

class web site: www.cs.utsa.edu/
~qingyi/cs4713

cs4713 2

A little about myself
Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

Research Interests
 Compilers construction

program analysis; optimizations for high-performance computing.
 Programming languages

type systems, object-oriented design.
 Software engineering

automatic structure discovery of software systems; systematic
error-discovery and verification of software.

cs4713 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs4713
 Check it often for slides, handouts and announcements

 Textbook
 Compilers: Principles, Techniques, and Tools

 Second edition
 By Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman, Addison-Wesley.
 Prerequisites

 Basic understanding of computer organization and
algorithms

 Ability to program in C and Java

http://www.cs.utsa.edu/~qingyi/cs4713
http://www.cs.utsa.edu/~qingyi/cs4713

cs4713 4

What we will learn
 Understanding languages and compilers

 How to implement different programming languages?
 How to automatically parse a language?

 Why are some languages harder to process than others?
 How to translate a language into another language?
 How to automatically improve the quality of programs?

 Implementation of compilers
 Scanners and parsers
 Symbol table management
 Simple code optimization
 Code generation

 Critical thinking
 Why are things the way they are? Could they be

different?

cs4713

Class Objectives
 Understand compilers as a means to implement

programming languages
 compilation vs. interpretation
 phases of a compiler

 Understand fundamental theories and algorithms
 regular expressions and context-free grammars
 NFA and DFA
 top-down and bottom-up parsing
 code generation and optimization algorithms

 Practice implementing compilers
 Learn how to implement scanners and parsers
 Learn how to implement significant algorithms

5

cs4713 6

Requirements and grading
 Quizzes in class: 20% (you’re required to attend class)

 I will hand out and collect quiz questions in class
 You pay attention to the lecture and find out solutions
 I will give you time to work on the quiz questions
 You’ll know if you understand class materials

 If not, interrupt me immediately

 Projects and homework: 50% (hands-on experience with
compilers)
 depend on our progress, but will cover lexical analysis, parsing

and code generation.
 Exams: 30%

 Two midterms --- selected from past quiz questions (with
variation, of course)

 The final is not required if you’ve done well on the midterms

cs4713 7

Attendance and quizzes
 Q: I have the textbook and the class notes online, do I

have to attend every class?
 A: Absolutely.

 The lecture will cover more to enhance your overall
understanding of the topics

 The class notes are mostly abstract outlines of things to cover
 Don’t put off learning until the end of the term

 Quizzes and projects count toward 70% of the grade
 The quizzes and solutions are complimentary class notes

 What if I have to miss a class due to unusual situations?
 A: you can come to my office hours and make up missed

quizzes. But you need to give me a good reason. Bad
reasons include:
 I have to prepare the exam of another class
 I have to go to a job fair. They give out very cool stuffs
 I forget to show up. I couldn’t find a parking spot. …

cs4713 8

Self evaluation
 How am I doing? How do I know whether I’m getting an A?
 A: exams matter, but quizzes and projects count toward

70% of the grade
 I can give you feedback on the quizzes and projects --- send

me email, or sign up now.
 You are likely getting an A if you do all of these

 Attend every class and turn in the quiz solutions.
 If your quiz solution show you do not yet understand the material,

come to my office hours and fix it.
 Your projects work well.
 Prepare for the exams.

 You might get a C or even fail the class if you do any of these
 Skip a lot of classes. Do not turn in the quizzes.
 Couldn’t get your projects to work at all, and do not come to my

office hours and ask for help.
 Believe you already know everything and skip preparing for

exams.

cs4713 9

Programming Languages
 Natural languages

 Tools for expressing information
 ideas, knowledge, commands, questions, …
 Facilitate communication between people

 Different natural languages
 English, Chinese, French, German, …

 Programming languages
 Tools for expressing data and algorithms

 Instructing machines what to do
 Facilitate communication between computers and

programmers
 Different programming languages

 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, …

cs4713 10

Levels of Programming Languages

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output

For future reference
 programming language =>high-level language

cs4713 11

Benefits of high-level languages
 Efficiency of programming

 Higher level mechanisms for
 Describing relations between data
 Expressing algorithms and computations

 Error checking and reporting capability
 Machine independence

 Portable programs and libraries
 Maintainability of programs

 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation

cs4713

Benefits of high-level languages
 Efficiency of programming

 Higher level mechanisms for
 Describing relations between data
 Expressing algorithms and computations

 Error checking and reporting capability
 Machine independence

 Portable programs and libraries
 Maintainability of programs

 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation

cs4713 13

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

Implementing programming languages
Compilation

cs4713 14

…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract machine

Implementing programming languages
Interpretation

cs4713

Are these languages compiled or
interpreted (sometimes both)?
 C/C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 …

cs4713 16

Compilers and Interpreters
Translation vs. Interpretation
 Compilers

 Read input program optimization translate into
machine code

 Interpreters
 Read input program interpret the operations

 Questions to think about
 What are the tradeoffs of using compilers and

interpreters?
 What languages are compilers and interpreters written

in?
 What about the first compiler or interpreter?

cs4713 17

Compilers and Interpreters
Efficiency vs. Flexibility
� Compilers

Translation time is separate from run time
� Each target code can run many times
� Heavy weight optimizations are affordable
� Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

� Interpreters
Translation time is included in run time

X Re-interpret each expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
� Have full knowledge of program behavior
� Can dynamically change program behavior

cs4713

Typical Implementation of Languages
Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Machine independent Code Optimizer

Code Generator

Target
Program

Tokens

Parse tree /
Abstract syntax tree

Attributed AST

Results

Program input

compilers

interpreters

Machine dependent Code Optimizer

cs4713 19

Compiler structure

 Front end --- understand the source program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-

structuring
 Back end --- generate executable for target machine

 Instruction selection and scheduling, register allocation
 Symbol table --- record information about names(variables)

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

compiler

Symbol table

cs4713 20

Compiler Frontend

Lexical
analyzer

IR
generator

Parser
Source
program

token
s

Syntax
tree

IR

Symbol table

 Source program: for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…

 Scanning--- convert input to a stream of words (tokens)
 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 <FOR> <LPAREN> <id,1> <ASSIGN> <int,1> <SEMICOLON> ...

 Symbol table: 1

 Parsing---discover the syntax/structure of sentences
 FOR <LPAREN> exp <SEMICOLON> exp <SEMICOLON> exp

<RPAREN> stmt

“w”

....

cs4713 21

Intermediate representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 w: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

= < = emptyStmt

<id,1> <int,1>
<id,1> <int,100>

<id,1>

<id,1>

*

<int,2>

cs4713 22

More about the front end

 What errors are discovered by
 The lexical analyzer (characters tokens)
 The syntax analyzer (tokens AST)
 Context-sensitive analysis (ASTsymbol tables)

 How do you implement AST and symbol table

 int w;
 0 = w;
 for (w = 1; w < 100; w = 2w)
 a = “c” + 3;

typedef struct ASTnode {
 AstNodeTag kind;
 union { symbol_table_entry* id_entry;
 int num_value;
 struct ASTnode* opds[2];
 } description;
};

cs4713 23

Mid end --- improving code quality

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered

 Transformations --- improve target program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelization

cs4713 24

Back end --- code generation
 Memory management

 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in

processors

cs4713 25

Objectives of compilers
 Fundamental principles

 Compilers shall preserve the meaning of the input program ---
it must be correct

 Translation should not alter the original meaning
 Compilers shall do something of value

 They are not just toys

 How to judge the quality of a compiler
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 What kind of compilers do you like?
 Gnome compilers, Sun compilers, Intel compilers, Java

compilers, C/C++ compilers, ……

cs4713

Applications of Compiler
technology
 Implementing high-level programming languages

 Compilation vs. interpretation
 C/C++, Fortran, Java, C#

 Optimizations for computer architectures
 exploiting parallelism, memory hierarchy, and specialized

architectures

 Program Translation
 Binary translation, hardware synthesis, database query,

compiled simulation
 Software productivity tools

 Program analysis to prove correctness or report
errors and to automatically discover code structure

 Type checking, bounds checking, memory
management, ... 26

