
cs4713 1

Dataflow analysis

Discovering Global Live Ranges
of Variables

cs4713 2

Optimization and analysis
 Requirement for optimizations

 Correctness (safety)
 must preserve the meaning of the input computation

 Profitability
 must improve code quality

 Program analysis
 Statically examines input computation to ensure safety and

profitability of optimizations
 Compile-time reasoning of runtime program behavior

 Undecidable in general due to external program input, complex control flow,
and pointer/array references

 Conservative approximation of program runtime behavior:
 may miss opportunities of applying optimization, but ensure all

optimizations are correct

 Data-flow analysis
 Reason about flow of values on control-flow graphs
 Example: available expression analysis for global redundancy

elimination
 Can be used for program optimization or program understanding

cs4713 3

Control-flow graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

……
 i = 0
 while (i < 50) {
 t1 = b * 2;
 a = a + t1;
 i = i + 1;
 }
….

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs4713 4

Live variable analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers

 Useless-store elimination
 Dead variable don’t need to be stored back to memory

 Uninitialized variable detection
 No variable should be alive at program entry point

cs4713 5

Computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

S1: m := y * z
S2: y := y -z
S3: o := y * z

M

for each basic block n:S1;S2;S3;…;Sk

VarKill := ∅
UEVar(n) := ∅
for i = 1 to k
 suppose Si is “x := y op z”
 if y ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {y}
 if z ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {z}
 VarKill = VarKill ∪ {x}

cs4713 6

Computing live variables
 For each basic block n,

let
 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Goal: evaluate vars
alive on exit from n

 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs4713 7

Algorithm: computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs4713 8

Iterative dataflow algorithm
 Iterative evaluation of result

sets until a fixed point is
reached
 Does the algorithm always

terminate?
 If the result sets are

bounded and grow
monotonically, then yes;
Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer does the
algorithm compute?

 Unique fixed-point solution
 The meet-over-all-paths

solution
 How long does it take the

algorithm to terminate?
 Depends on traversing order

of basic blocks

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

cs4713 9

Traversing order of basic blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a nodes
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs4713 10

More about dataflow analysis
 Sources of imprecision

 Unreachable control flow edges, array and pointer references,
precedure calls

 Other data-flow programs
 Reaching definition analysis

 A definition point d of variable v reaches CFG point p iff there is a
path from d to p along which v is not redefined

 At any CFG point p, what definition points can reach p?
 Very busy expression analysis

 An expression e is very busy at a CFG point p if it is evaluated on
every path leaving p, and evaluating e at p yields the same result.

 At any CFG point p, what expressions are very busy?
 Constant propagation analysis

 A variable-value pair (v,c) is valid at a CFG point p if on every
path from procedure entry to p, variable v has value c

 At any CFG point p, what variables have constants?

