
cs4713 1

Dataflow analysis

Discovering Global Live Ranges
of Variables

cs4713 2

Optimization and analysis
 Requirement for optimizations

 Correctness (safety)
 must preserve the meaning of the input computation

 Profitability
 must improve code quality

 Program analysis
 Statically examines input computation to ensure safety and

profitability of optimizations
 Compile-time reasoning of runtime program behavior

 Undecidable in general due to external program input, complex control flow,
and pointer/array references

 Conservative approximation of program runtime behavior:
 may miss opportunities of applying optimization, but ensure all

optimizations are correct

 Data-flow analysis
 Reason about flow of values on control-flow graphs
 Example: available expression analysis for global redundancy

elimination
 Can be used for program optimization or program understanding

cs4713 3

Control-flow graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

……
 i = 0
 while (i < 50) {
 t1 = b * 2;
 a = a + t1;
 i = i + 1;
 }
….

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs4713 4

Live variable analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers

 Useless-store elimination
 Dead variable don’t need to be stored back to memory

 Uninitialized variable detection
 No variable should be alive at program entry point

cs4713 5

Computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

S1: m := y * z
S2: y := y -z
S3: o := y * z

M

for each basic block n:S1;S2;S3;…;Sk

VarKill := ∅
UEVar(n) := ∅
for i = 1 to k
 suppose Si is “x := y op z”
 if y ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {y}
 if z ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {z}
 VarKill = VarKill ∪ {x}

cs4713 6

Computing live variables
 For each basic block n,

let
 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Goal: evaluate vars
alive on exit from n

 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs4713 7

Algorithm: computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs4713 8

Iterative dataflow algorithm
 Iterative evaluation of result

sets until a fixed point is
reached
 Does the algorithm always

terminate?
 If the result sets are

bounded and grow
monotonically, then yes;
Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer does the
algorithm compute?

 Unique fixed-point solution
 The meet-over-all-paths

solution
 How long does it take the

algorithm to terminate?
 Depends on traversing order

of basic blocks

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

cs4713 9

Traversing order of basic blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a nodes
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs4713 10

More about dataflow analysis
 Sources of imprecision

 Unreachable control flow edges, array and pointer references,
precedure calls

 Other data-flow programs
 Reaching definition analysis

 A definition point d of variable v reaches CFG point p iff there is a
path from d to p along which v is not redefined

 At any CFG point p, what definition points can reach p?
 Very busy expression analysis

 An expression e is very busy at a CFG point p if it is evaluated on
every path leaving p, and evaluating e at p yields the same result.

 At any CFG point p, what expressions are very busy?
 Constant propagation analysis

 A variable-value pair (v,c) is valid at a CFG point p if on every
path from procedure entry to p, variable v has value c

 At any CFG point p, what variables have constants?

