
cs5363 1

Context-sensitive
Analysis

Attribute Grammar And Type
Checking

cs5363 2

Context-Sensitive Analysis
 To understand the input computation, a

compiler/interpreter need to discover
 The types of values stored in each variable
 The types of argument and return values for each function
 The representation/interpretation of each value
 The memory space allocated for each variable
 The scope and live range of each variable

 Static definition of variables: variable declarations
 Compilers need properties of variables before translation
 Use symbol tables to keep track of variable information

 Context-sensitive analysis
 Determine properties of program constructs

 E.g., CFG cannot enforce all variables are declared before used

cs5363 3

Syntax-Directed Translation
 Compilers translate language constructs

 Need to keep track of relevant information
 Attributes: relevant information associated with a construct

 Attribute grammar (syntax-directed definition)
 Associate a collection of attributes with each grammar symbol
 Define actions to evaluate attribute values during parsing

e ::= n | e+e | e−e | e * e | e / e

Attributes for expressions:
 type of value: int, float, double, char, string,…
 type of construct: variable, constant, operations, …
Attributes for constants: values
Attributes for variables: name, scope
Attributes for operations: arity, operands, operator,…

cs5363 4

Attribute Grammar
 Associate a set of attributes with each grammar symbol
 Associate a set of semantic rules with each production

 Specify how to compute attribute values of symbols
 Systematic evaluation of context information through traversal of

parse tree (or abstract syntax tree)
e ::= n | e+e | e−e | e * e | e / e

e.val=305

e.val=5
e.val=300

e.val=15
5

+

*
e.val=20

15 20

Annotated parse tree for 5+15*20:

e.val = e1.val [/] e2.vale ::= e1 / e2

e.val = e1.val [*] e2.vale ::= e1 * e2

e.val = e1.val [-] e2.vale ::= e1 - e2

e.val = e1.val [+] e2.vale ::= e1 + e2

e.val = n.vale ::= n

Semantic rulesproduction

cs5363 5

e ::= n | e+e | e−e | e * e | e / e

e.val = e1.val [/] e2.vale ::= e1 / e2

e.val = e1.val [*] e2.vale ::= e1 * e2

e.val = e1.val [-] e2.vale ::= e1 - e2

e.val = e1.val [+] e2.vale ::= e1 + e2

e.val = n.vale ::= n

Semantic rulesproduction
e.val=305

e.val=5
e.val=300

e.val=15
5

+

*
e.val=20

15 20

Synthesized Attribute Definition
 An attribute is synthesized if in the parse tree,

 Attributes of parents are determined from those of children
 S-attributed definitions

 Syntax-directed definitions with only synthesized attributes
 Can be evaluated through post-order traversal of parse tree

cs5363 6

Inherited Attribute Definition
 An attribute is inherited if

 The attribute value of a parse-tree node is determined from
attribute values of its parent and siblings

Addtype(id.entry,L.in)L::=id

L1.in := L.in
Addtype(id.entry,L.in)

L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

Semantic rulesProduction

D

T.type=real L.in=real

real
L.in=real

L.in=real

id1

, id3

, id2

D ::= T L
T ::= int | real
L ::= L , id | id

cs5363 7

Dependences In Attribute
Evaluation
 If value of attribute b depends on attribute c,

 Value of b must be evaluated after evaluating value of c
 There is a dependence from c to b

T.type L3.inreal

L2.in

L1.in

id1.entry

id3.entry

id2.entry

D

T.type=real L3.in=real

real
L2.in=real

L1.in=real

id1

, id3

, id2

Dependency graph:Annotated parse tree:

L3.addentry

L2.addentry

L1.addentry

cs5363 8

Evaluation Order Of Attributes
 Topological order of the dependence graph

 Edges go from nodes earlier in the ordering to later nodes
 No cycles are allowed in dependence graph

Input
string

Parse
tree

Dependence
graph

Evaluation order for
Semantic rules

T.type L3.inreal

L2.in

L1.in

id1.entry

id3.entry

id2.entry

L3.addentry

L2.addentry

L1.addentry

4

1

2

3

5
6

7
8

9 10

cs5363 9

Evaluation Of Semantic Rules
 Dynamic methods (compile time)

 Build a parse tree for each input
 Build a dependency graph from the parse tree
 Obtain evaluation order from a topological order of the

dependency graph

 Rule-based methods (compiler-construction time)
 Predetermine the order of attribute evaluation based on

grammar structure of each production
 Example: semantic rules defined in Yacc

 Oblivious methods (compiler-construction time)
 Evaluation order is independent of semantic rules
 Evaluation order forced by parsing methods
 Restrictive in acceptable attribute definitions

cs5363 10

L-attributed Definitions
 A syntax-directed definition is L-attributed if each inherited

attribute of Xj, 1<=j<=n, on the right side of A::=X1X2…Xn,
depends only on
 the attributes of X1,X2,…,Xj-1 to the left of Xj in the production
 the inherited attributes of A

R.i = A.i
Q.i = R.s
A.s = Q.s

A ::= Q R

L.i = A.i
M.i = L.s
A.s = M.s

A::=L M

Semantic rulesProduction

L-attributed definition

Addtype(id.entry,L.in)L::=id

L1.in := L.in
Addtype(id.entry,L.in)

L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

Semantic rulesProduction
Non L-attributed definition

cs5363 11

Synthesized And Inherited Attributes
 L-attributes may include both synthesized and inherited

attributes

e ::= n e’
e’ ::= +ee’ | *ee’ | ε

e’.syn = e’.inhe’ ::= ε

e’1.inh = e’.inh [*] e.val
e’.syn = e’1.syn

e’ ::= * e e’1

e’1.inh = e’.inh [+] e.val
e’.syn = e’1.syn

e’ ::= + e e’1

e’.inh=n.val;
e.val = e’.syn

e ::= n e’

Semantic rulesproduction

e (val=305)

 n(val=5) e’(inh=5;syn=305)

n.val=15

5

+

* e.val=20
15

20

e(val=300) e’(inh=s
yn=305)

e’(inh=15,
 syn=300)

ε

n.val=20 e’(inh=
syn=20)

ε

e’(inh=
syn=300)

ε

cs5363 12

Translation Schemes
 A translation scheme is a BNF where

 Attributes are associated with grammar symbols and
 Semantic actions are inserted within right sides of productions

 Notation for specifying translation during parsing

E ::= T R
R ::= ‘+’ T {print(‘+’)} R1
 | ε
T ::= num {print(num.val)}

Translation scheme:
E

T R

9 print(‘9’) + T print(‘+’) R

5 print(‘5’) ε

Parse tree for 9+5 with actions

Treat actions as though they are terminal symbols.

cs5363 13

Designing Translation Schemes

 Step2: decide where to evaluate each attribute
 S-attribute of left-hand symbol computed at end of production
 I-attribute of right-hand symbol computed before the symbol
 S-attribute of right-hand symbol referenced after the symbol

D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
T::=real { T.type:=real}
L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

Addtype(id.entry,L.in)L::=id

L1.in := L.in; Addtype(id.entry,L.in)L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

 Step1: decide how to evaluate attributes at each production

cs5363 14

Exercises
 Given the following grammar for a binary number generator

S ::= L L ::= L B | B B ::= 0 | 1
 Compute the value of each resulting number

 E.g., if s => … => 1101, then the value of s is 13
 Compute the contribution of each digit

 E.g., if s => … => 1101, the contribution of the four digits are 8,4,0,1 respectively.
Steps for writing translation schemes

(1) Define a set of attributes for each grammar symbol
(2) Categorize each attribute as synthesized or inherited
(3) For each production, define how to evaluate

(3.1) synthesized attribute of the left-hand symbol
(3.2) inherited attribute of each right-hand symbol

(4) Insert each attribute evaluation inside the production
Inherited attribute==> before the symbol;

 synthesized attribute ==> at end of production

cs5363 15

Top-Down Translation
 In top-down parsing, a parsing function is associated with each

non-terminal
 To support attribute evaluation, add parameters and return values to

each function

 For each non-terminal A, construct a parsing function that
 Has a formal parameter for each inherited attribute of A
 Returns the values of the synthesized attributes of A

 The code associated with each production does the following
 Save the s-attribute of each symbol X into a variable X.s
 Generate an assignment B.s=parseB(B.i1,B.i2,…,B.ik) for each non-

terminal B, where B.i1,…,B.ik are values for the L-attributes of B and
B.s is a variable to store s-attributes of B.

 Copy the code for each action, replacing references to attributes by
the corresponding variables

cs5363 16

Top-Down Translation Example
void parseD()
 { Type t = parseT(); }
 parseL(t);
 }
Type parseT
 { switch (currentToken()) {
 case INT: return TYPE_INT;
 case REAL: return TYPE_REAL;
 }
 }
void parseL(Type in)
 {
 SymEntry e = parseID();
 AddType(e, in);
 if (currentToken() == COMMA) {
 parseTerminal(COMMA);
 parseL(in)
 }
}

D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
 | real { T.type:=real}
L::=id {AddType(id.en,L.in)}
 | id {AddType(id.en,L.in)} ,
{L1.in=L.in} L1

cs5363 17

Bottom-up Evaluation Of
Attributes
 Synthesized attributes: consistent with bottom-up reduction

 Keep attribute values of grammar symbols in stack
 Evaluate attribute values at each reduction

 Inherited attribute: use attributes already stored in stack
 Each inherited attribute evaluation is treated as a dummy

grammar symbol
 Evaluation results pushed into stack for later use

(s0X1s1X2s2…Xmsm, aiai+1…an$, v1v2…vm)
Configuration of LR parser:

Right-sentential form: X1X2…Xmaiai+1…an$
Automata states: s0s1s2…sm

Grammar symbols in stack: X1X2…Xm
Synthesized attribute values of Xi  vi

states inputs values

cs5363 18

Bottom-Up Translation In Yacc
D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
T::=real { T.type:=real}
L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

D : T {$$ = $1; } L
T : INT { $$ = integer; } | REAL { $$ = real; }
L : L COMMA ID { Addtype($3, $0); }
 | ID { Addtype($1,$0); }

cs5363 19

Types in Programming
 A type is a collection of computable values

 Represent concepts from problem domain
 Accounts, banks, employees, students

 Represent different implementation of values
 Integers, strings, floating points, lists, records, tuples …
 Must know the type of a variable before allocating space

 Languages use types to
 Support organization of concepts (programmability)
 Support consistent interpretation of values (error checking)

 Compile-time and run-time type checking
 Prevent meaningless computation

3 + true - “Bill”

 Support efficient translation (by compilers)
 Short integers require fewer bits
 Access record component by a known offset
 Use integer units for integer operations

cs5363 20

Values and Types
 Basic types: types of atomic values

 int, bool, character, real, symbol
 Values of different types

 have different layouts
 have different operations

 Explicit vs. implicit type conversion of values

 Compound types: types of compound values
 List, record, array, tuple, struct, ref, pointer
 Built from type constructors

 int arr[100]  arr: array(int,100)
 (3, 4, “abc”) : int * int * string
 int *x  x : pointer(int)
 int f(int x) { return x + 5}  f : intint

cs5363 21

Variables, Scopes, and Binding
 Values and objects (atomic and compound values)

 Created -> bound to variables -> destructed
 Their storages could be allocated differently

 Static allocation: used to initialize global variables
 Stack allocation: used to initialize local variables of

functions/subroutines
 Heap allocation: dynamically allocated/deleted and used to

initialize pointer variables

 Variables: used as placeholders for values
 Lifetime: from creation to destruction of its value
 Scope: the block where it is declared (and can be accessed)
 Binding time: when is a variable bound to its value/storage?

 Binding variable to value: cannot be modified (functional
programming)

 Binding variable to storage: can be modified (imperative
programming)

cs5363 22

Managing Storage Using Blocks
 Blocks: regions with local variable declarations

 Blocks are nested but not partially overlapped
 What about jumping into the middle of a block?

 Storage management
 Enter block: allocate space for variables (must know their types)
 Exits block: some or all space may be deallocated

 Local variables: declared inside the current block
 Global variables: declared in a enclosing block

 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters
 Input parameters

 Allocated and initialized before entering function body
 De-allocated after exiting function body

 Return parameters
 Address remembered before entering function body
 Value set after exiting function body

cs5363 23

The Type System
 A language supports each type by

 Providing ways to introduce values of the type
 Literal integers: 1 23 -3290
 Literal floating point numbers: 3.5 0.12
 Arrays, pointers, structs, classes: type constructors

 Providing ways to operate on values of the type
 Evaluation rules, equality, introduction and elimination operations

 Every type comes with a set of operations
 Each operation defined on specific types of operands and

return a specific type of value
 A type error occurs if operation applied outside its domain

 The interfaces of operators are their types (i.e. function types)
 Type declarations

 Provide ways to declare types of variables
 Provide ways to introduce new types (user-defined types)

cs5363 24

Type Declarations
 Goal: provide ways to introduce new types

 These types are called user-defined types

 Transparent declarations
 Introduce a synonym for another type
 Examples in C

 typedef struct { int a, b; } mystruct;
 typedef mystruct yourstruct;

 Opaque declarations
 Introduce a new type
 Examples in C

 struct XYZ { int a, b,c; };
 Any other examples?

cs5363 25

Type Equivalence
 When are two types considered equal?
 struct s {int a,b; }=struct t {int a,b; } ?

 Structural equivalence: yes
 s and t are the same basic type or
 s and t are built using the same compound type

constructor with the same components

 Name equivalence: no
 S and t are different names
 Names uniquely define compound type expressions

 In C, name equivalence for records/structs, structural
equivalence for all other types

cs5363 26

Polymorphism
 A function is polymorphic if it can operate on different types

 Interpreted languages
 Support arbitrary polymorphic functions
 Type information stored together with each value

 Compiled languages
 Need to know storage size for each input value
 Each expression (including functions) can only only a single type

 Subtype polymorphism: subset relations between types
 Example in C: a union type includes all of its base types
 Example in C++/Java, Truck is a subclass of Car

 Parametric polymorphism:
 Operate on types parameterized with type variables

 e.g., C++ templates, Java generics

 Ad hoc polymorphism: operator overloading
 A single function name given different types and implementations

 + : int->int; + : real->real

cs5363 27

Type Error
 When a value is misinterpreted or misused

with unintended semantics, a type error
occurs
 May cause hardware error

function call x() where x is not a function
 may cause jump to instruction that does not contain

a legal op code

 May simply return incorrect value
 int_add(3, 4.5)

 not a hardware error
 bit pattern of 4.5 can be interpreted as an integer
 just as much an error as x() above

cs5363 28

Type-Safety Of Languages
 Type-safe: report error instead of segmentation faults

 BCPL family, including C and C++
 Not safe: casts, pointer arithmetic, …

 Algol family, Pascal, Ada
 Almost safe
 Dangling pointers:

 Pointers to locations that have been deallocated
 No language with explicit de-allocation of memory is fully type-

safe

 Type-safe languages with garbage collection
 Lisp, ML, Smalltalk, Java
 Dynamically typed: Lisp, Smalltalk
 Statically typed: ML, JAVA

cs5363 29

Type Checking
 Goal: discover and report type errors

 Type system specify the proper usage of each operator
 Reject expressions that cannot be typed according to rules
 Explicit vs. implicit type conversion

 Can be done at compile-time or run-time, or both

 Run-time (dynamic) type checking
 Check type safety before evaluating each operation

 Store type information together with each value in memory
 In POET, before evaluating (car x), interpreter checks x

is a non-empty list

 Compile-time (static) type checking
 Each variable/expression must have a single type
 E.g., int f(float x) declares that f can be invoked only

with float-type expressions

cs5363 30

Static vs Dynamic Type Checking
 Both prevent type errors
 Run-time checking: check before each operation

 Pros: flexibility and safety
 Variables/expressions could have arbitrary types
 Can detect all type errors (language is type safe)

 Cons: slow down execution, and error detection may be too late
 Compile-time checking

 Pros: efficiency (no runtime overhead) and early error detection
 Cons: flexibility and safety

 Every variable/function can have only a single type
 Cannot detect some type errors, e.g., accessing arrays out-of-bound,

dangling pointers

 Combination of compile and runtime checking
 Example: Java (array bound check at runtime)

cs5363 31

Type Inference
 Static type checking in C/C++/Java

 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmer has to declare the types of all variables
 Compilers evaluate the types of expressions and check

agreement

 Type inference: extension to static type checking
 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmers are not required to declare types for variables
 Compilers figure out agreeable types of all expressions

 Solving constraints based on how expressions are used

cs5363 32

Compile Time Type Checking
 Types of variables

 Each variable must have a single type
 It can hold only values of this type

 Types of expressions
 Every expression must have a single type

 It maps input values to a return value
 It can return only values of this type

 Type system
 Rules for deciding types of expressions

 These rules specify the proper usage of each operator
 Accept only expressions that can be typed according to

rules
 Explicit vs. implicit type conversion

cs5363 33

Type Environment
 Symbol table

 Record information about names defined in programs
 Types of variables and functions
 Additional properties (eg., scope of variable)

 Contain information about context of program fragment

 Name conflicts
 The same name may represent different things in different

places
 Separate symbol tables for names in different scopes
 Multiple layers of symbol definitions for nested scopes

 Implementation of symbol tables
 Hash table from strings (names) to properties (types)

cs5363 34

Evaluating Types Of Expressions
P ::= D ; E
D ::= D ; D | id : T
T ::= char | integer
E ::= literal | num | id | E mod E

P ::= D ; E
D ::= D ; D | id : T { addtype(id.entry, T.type); }
T ::= char { T.type = char; } | integer { T.type = integer ;}
E ::= literal { E.type = char;} | num { E.type = num;}
 | id { E.type = lookupType(id.entry); }
 | E1 mod E2 {if (E1.type == integer && E2.type==integer)
 E.type = integer; else E.type = type_error;}

cs5363 35

Type Checking With Coercion
 Implicit type conversion

 When type mismatch happens, compilers can automatically
convert inconsistent types into required types

 2 + 3.5: convert 2 to 2.0 before adding 2.0 with 3.5

E ::= ICONST { E.type = integer;}
E ::= FCONST { E.type = real; }
E ::= id { E.type = lookup(id.entry); }
E ::= E1 op E2 { if (E1.type==integer and E2.type==integer)
 E.type = integer;
 else if (E1.type==integer and E2.type==real)
 E.type=real;
 else if (E1.type==real and E2.type==integer)
 E.type=real;
 else if (E1.type==real and E2.type==real)
 E.type=real;
 }

cs5363 36

Example: Types For Arrays
P ::= D ; E
D ::= D ; D | id : T
T ::= char | integer | T [num]
E ::= literal | num | id | E mod E | E[E]

P ::= D ; E
D ::= D ; D | id : T { addtype(id.entry, T.type); }
T ::= char { T.type = char; } | integer { T.type = integer ;}
 | T1[num] { T.type = array(num.val, T1.type);}
E ::= literal { E.type = char;} | num { E.type = num;}
 | id { E.type = lookupType(id.entry); }
 | E1 mod E2 {if (E1.type == integer && E2.type==integer)
 E.type = integer; else E.type = type_error;}
 | E1[E2] { if (E2.type == integer && E1.type==array(s,t))
 E.type = t; else E.type = type_error; }

cs5363 37

Exercise:Type Checking For Arrays
P ::= P S | S
S ::= T D “;” | E “;”
T ::= float | integer
D ::= id | D[inum]
E ::= fnum | inum | id | E+E | E[E]

cs5363 38

Example:
Type checking For Statements

P ::= D ; S
D ::= D ; D | id : T
T ::= char | integer
S ::= id `=’ E ; | {S S} | if (E) S | while (E) S
E ::= literal | num | id | E mod E

S ::= id ‘=’ E ; { if (E.type!=type_error &&
 Equiv(lookup_type(id.entry),E.type))
 S.type = void;
 else S.type = type_error; }
 | ‘{’ S1 S2 ‘}’ { if (S1.type == void) S.type = S2.type;
 else S.type = type_error; }
 | if ‘(’ E ‘)’ S1 { if (E.type == integer) S.type=S1.type;
 else S.type=type_error; }
 | while ‘(’ E ‘)’ S1 { if (E.type == integer) S.type=S1.type;
 else S.type=type_error; }

cs5363 39

Example:
Type Checking With Function Calls

P ::= D ; E
D ::= D ; D | id : T | T id (Tlist)
Tlist ::= T, Tlist | T
T ::= char | integer | T [num]
E ::= literal | num | id | E mod E | E[E] | E(Elist)
Elist ::= E, Elist | E

……
D ::= T1 id (Tlist) { addtype(id.entry, fun(T1.type,Tlist.type)); }
Tlist ::= T, Tlist1 { Tlist.type = tuple(T1.type, Tlist1.type); }
 | T { Tlist.type = T.type }
E ::= E1 (Elist) { if (E1.type == fun(r, p) && p ==Elist.type)
 E.type = r ; else E.type = type_error; }
Elist ::= E, Elist1 { Elist.type = tuple(E1.type, Elist1.type); }
 | E { Elist.type = E.type; }

