Context-sensitive
Analysis

Attribute Grammar And Type
Checking

555555

o To understand the input computation, a
compiler/interpreter need to discover

The types of values stored in each variable
The types of argument and return values for each function
The representation/interpretation of each value
The memory space allocated for each variable
The scope and live range of each variable

o Static definition of variables: variable declarations
Compilers need properties of variables before translation
Use symbol tables to keep track of variable information

o Context-sensitive analysis

Determine properties of program constructs
E.g., CFG cannot enforce all variables are declared before used

cs5363

o Compilers translate language constructs
Need to keep track of relevant information
Attributes: relevant information associated with a construct

Attribute grammar (syntax-directed definition)
Associate a collection of attributes with each grammar symbol
Define actions to evaluate attribute values during parsing

e '=n | et+te | e-e |e*e|e/e

Attributes for expressions:
type of value: int, float, double, char, string,...
type of construct: variable, constant, operations, ...
Attributes for constants: values
Attributes for variables: name, scope
Attributes for operations: arity, operands, operator,...

cs5363

O Associate a set of attributes with each grammar symbol

O Associate a set of semantic rules with each production
Specify how to compute attribute values of symbols

O Systematic evaluation of context information through traversal of

parse tree (or abstract syntax tree)
= n | ete | e-e |[e*e|e/e

Annotated parse tree for 5+15*20:

e.val=305

VI

T e.val=300

e.val=5
/3 \

‘ e.val=15 ¢ val=20
>y v

e
production Semantic rules
e::=n e.val = n.val
e:.:=el +e2 |e.val =el.val [+] e2.val
e::i=el-e2 e.val = el.val [-] e2.val
e .:=el *e2 e.val = el.val [*] e2.val
e.:=el/e2 e.val = el.val [/] e2.val

15 20

cs5363

Synthesized Attribute Definition

o An attribute is synthesized if in the parse tree,
= Attributes of parents are determined from those of children
o S-attributed definitions
= Syntax-directed definitions with only synthesized attributes
= Can be evaluated through post-order traversal of parse tree

e ::=n | e+te | e-e |e*e|e/e
e.val=305 production Semantic rules
i W e:l=n e.val = n.val
e.vaI=5+ e.\+/al=300 e::=el+e2 |ewal=el.wvall[+]e2.val
v o N ei=el-e2 e.val = el.val [-] e2.val
e.val=15 e.val=20

5 v ' e:i=el *e2 e.val = el.val [*] e2.val
15 20 e:.:=el/e2 e.val = el.val [/] e2.val

cs5363

Inherited Attribute Definition

o An attribute is inherited if
= The attribute value of a parse-tree node is determined from

attribute values of its parent and siblings

D::=TL

T::=int | real
L::=L,id | id

/D\

T.type=real

real /

L.in=real

,

id1

L.in=real

<N

L.in=real

| "\

id2

id3

Production | Semantic rules

D::=TL L.in:=T.type

T::=int T.Type:=integer

T::=real |T.type:=real

L::=L1,id |L1l.in := L.in
Addtype(id.entry,L.in)

L::=id Addtype(id.entry,L.in)

cs5363

6

Dependences In Attribute
Evaluation

o If value of attribute b depends on attribute c,
= Value of b must be evaluated after evaluating value of c

= There is a dependence from cto b

Annotated parse tree: Dependency graph:

D real — T.type— *L3.in 7>L3.addentry
T
L3.in=real id3.entry

T.type=real _
l / \ L2.In— | 2 addentry

real ALZ}\=rea\I< ’ id3 1 n/ z
.| id2.entr
\ y

L1.in=real l id2 L1.addentry

at T

idl.entry

cs5363

Evaluation Order Of Attributes

o Topological order of the dependence graph
= Edges go from nodes earlier in the ordering to later nodes
= No cycles are allowed in dependence graph

Input
string

Parse
tree

Dependence
graph

hEvaIuation order for

Semantic rules

real —* T.t%pe—’LB.in —>L3.addentry(6)

L2.in

id3.entry

s L2.addentr
Ll.m<® ORI
€D 1.adfentry

id1.entr\®

cs5363

id2.entry

€y

o Dynamic methods (compile time)
Build a parse tree for each input
Build a dependency graph from the parse tree
Obtain evaluation order from a topological order of the
dependency graph
o Rule-based methods (compiler-construction time)

Predetermine the order of attribute evaluation based on
grammar structure of each production

Example: semantic rules defined in Yacc

o Oblivious methods (compiler-construction time)
Evaluation order is independent of semantic rules
Evaluation order forced by parsing methods
Restrictive in acceptable attribute definitions

cs5363

o A syntax-directed definition is L-attributed if each inherited
attribute of Xj, 1<=j<=n, on the right side of A::=X1X2...Xn,

depends only on

the attributes of X1,X2,...,Xj-1 to the left of Xj in the production
the inherited attributes of A

L-attributed definition

Non L-attributed definition

Production | Semantic rules : :
S TL N Tt Production Semantic rules
L= in:=T.type
: —— 1P A:i=LM | Li=A.
T::=iInt T.Type:=integer M.i=L.s
T::=real T.type:=real A.s = M.s
L::=L1,id |L1l.in := L.in A::=QR R.i=A.
Addtype(id.entry,L.in) Q.i = R.s
L::=id Addtype(id.entry,L.in) A.s = Q.s

cs5363

10

Synthesized And Inherited Attributes

O L-attributes may include both synthesized and inherited

attributes
e :i= ne'
e (val=305
/(\) e’ .:= +ee’ | *ee' | ¢
n(val=5) e'(inh=5;syn=305) | production Semantic rules
$ / ¢ \, . p — , — .
+t e(val=300) €'(inh=s |e::=ne e’.inh=n.val;
5 o \ yn=305) e.val = e’.syn
n.val=15 e’(inh=15, € |e':i=+ee’l |e'l.inh =¢e’.inh [+] e.val
1+5 o 53’”=300) e e’.syn = e’l.syn
* e.val=20 e’(|n_h3=00 e’ ::= *ee’l |e'l.inh = €’.inh [*] e.val
o > NE .) e’.syn = e’l.syn
n.val=20 e’(inh= - ; —
\ syn=20) € |e'ii=¢ e’.syn = e’.inh
20 X

€ cs5363 11

Translation Schemes

O A translation scheme is a BNF where
= Attributes are associated with grammar symbols and
= Semantic actions are inserted within right sides of productions

o Notation for specifying translation during parsing

] Parse tree for 945 with actions
Translation scheme:
E

E:=TR T

R := '+’ T {print("+')} R1 T R.
I g / * A/A/ \

0
T ::= num {print(hum.val)}| 9 print(‘9’) +/T print(*+’) R
P
5 print(’5’) ¢

Treat actions as though they are terminal symbols.

cs5363 12

0 Stepl: decide how to evaluate attributes at each production

D::=TL L.in:=T.type

T::=int T.Type:=integer

T::=real T.type:=real

L::=L1,id L1.in := L.in; Addtype(id.entry,L.in)
L::=id Addtype(id.entry,L.in)

0 Step2: decide where to evaluate each attribute
S-attribute of left-hand symbol computed at end of production
[-attribute of right-hand symbol computed before the symbol
S-attribute of right-hand symbol referenced after the symbol

D::=T { L.in:=T.type} L

T::=int {T.Type:=integer}

T::=real { T.type:=real}

L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

cs5363 13

Exercises

O Given the following grammar for a binary number generator
S:=L L:=LBIB B:=01I1
0 Compute the value of each resulting number
= E.g.,ifs=>...=>1101, then the value of siis 13

O Compute the contribution of each digit
= E.g.,ifs=>...=>1101, the contribution of the four digits are 8,4,0,1 respectively.
Steps for writing translation schemes
(1) Define a set of attributes for each grammar symbol
(2) Categorize each attribute as synthesized or inherited
(3) For each production, define how to evaluate
(3.1) synthesized attribute of the left-hand symbol
(3.2) inherited attribute of each right-hand symbol
(4) Insert each attribute evaluation inside the production
Inherited attribute==> before the symbol;
synthesized attribute ==> at end of production

cs5363 14

In top-down parsing, a parsing function is associated with each
non-terminal

To support attribute evaluation, add parameters and return values to
each function

For each non-terminal A, construct a parsing function that
Has a formal parameter for each inherited attribute of A
Returns the values of the synthesized attributes of A

The code associated with each production does the following
Save the s-attribute of each symbol X into a variable X.s

Generate an assignment B.s=parseB(B.i1,B.i2,...,B.ik) for each non-
terminal B, where B.il,...,B.ik are values for the L-attributes of B and
B.s is a variable to store s-attributes of B.

Copy the code for each action, replacing references to attributes by
the corresponding variables

cs5363

15

void parseD()
{ Type t = parseT(); }
parselL(t);
}
Type parseT
{ switch (currentToken()) {
case INT: return TYPE_INT;
case REAL: return TYPE_REAL;
}
}
void parseL(Type in)
{
SymEntry e = parselD();
AddType(e, in);
if (currentToken() == COMMA) {
parseTerminal(COMMA);
parselL(in)

}

cs5363

D::=T { L.in:=T.type} L
T::=int {T.Type:=integer}
| real { T.type:=real}
L::=id {AddType(id.en,L.in)}
| id {AddType(id.en,L.in)},
{L1l.in=L.in} L1

16

0 Synthesized attributes: consistent with bottom-up reduction
Keep attribute values of grammar symbols in stack
Evaluate attribute values at each reduction

o Inherited attribute: use attributes already stored in stack

Each inherited attribute evaluation is treated as a dummy
grammar symbol

Evaluation results pushed into stack for later use

Configuration of LR parser:

(soX1s1X2s2...XmSm, aidi+1...an$, ViVv2...Vm)

states inputs values
Right-sentential form: XiX2...XmaiQi+1...an$
Automata states: sos1s2...Sm
Grammar symbols in stack: X1X2...Xm
Synthesized attribute values of Xi 2 vi

cs5363 17

Bottom-Up Translation In Yacc

D::=T { L.in:=T.type} L

T::=int {T.Type:=integer}

T::=real { T.type:=real}

L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

4

D:T {$$=9%1; }L
T:INT { $$ = integer; } | REAL { $$ = real; }
L: LCOMMA ID { Addtype($3, $0); }

| ID { Addtype($1,$0); }

cs5363

18

o A type is a collection of computable values
Represent concepts from problem domain
Accounts, banks, employees, students
Represent different implementation of values
Integers, strings, floating points, lists, records, tuples ...
Must know the type of a variable before allocating space

O Languages use types to
Support organization of concepts (programmability)
Support consistent interpretation of values (error checking)

Compile-time and run-time type checking

Prevent meaningless computation
3 + true - “Bill”

Support efficient translation (by compilers)
Short integers require fewer bits
Access record component by a known offset
Use integer units for integer operations

cs5363

19

Values and Types

O Basic types: types of atomic values
= int, bool, character, real, symbol

= Values of different types
have different layouts
have different operations

= Explicit vs. implicit type conversion of values

o Compound types: types of compound values
= List, record, array, tuple, struct, ref, pointer

= Built from type constructors
int arr[100] =» arr: array(int,100)
(3, 4, "abc”) : int * int * string
int *x = x : pointer(int)
int f(int x) {returnx + 5} = f: int2>int

cs5363

20

o Values and objects (atomic and compound values)
Created -> bound to variables -> destructed
Their storages could be allocated differently

Static allocation: used to initialize global variables

Stack allocation: used to initialize local variables of
functions/subroutines

Heap allocation: dynamically allocated/deleted and used to
initialize pointer variables

o Variables: used as placeholders for values
Lifetime: from creation to destruction of its value
Scope: the block where it is declared (and can be accessed)

Binding time: when is a variable bound to its value/storage?

Binding variable to value: cannot be modified (functional
programming)

Binding variable to storage: can be modified (imperative
programming)

cs5363

21

Managing Storage Using Blocks

0 Blocks: regions with local variable declarations

= Blocks are nested but not partially overlapped
What about jumping into the middle of a block?

O Storage management
= Enter block: allocate space for variables (must know their types)
= Exits block: some or all space may be deallocated
O Local variables: declared inside the current block
o Global variables: declared in a enclosing block
= Already allocated before entering current Block
= Remain allocated after exiting current block
O Function parameters

= Input parameters

Allocated and initialized before entering function body
De-allocated after exiting function body

= Return parameters

Address remembered before entering function body
Value set after exiting function body

cs5363 22

o A language supports each type by

Providing ways to introduce values of the type
Literal integers: 1 23 -3290
Literal floating point numbers: 3.5 0.12
Arrays, pointers, structs, classes: type constructors

Providing ways to operate on values of the type
Evaluation rules, equality, introduction and elimination operations
o Every type comes with a set of operations

Each operation defined on specific types of operands and
return a specific type of value

A type error occurs if operation applied outside its domain
The interfaces of operators are their types (i.e. function types)
o Type declarations
Provide ways to declare types of variables
Provide ways to introduce new types (user-defined types)

cs5363 23

Type Declarations

o Goal: provide ways to introduce new types
= These types are called user-defined types

o Transparent declarations
= Introduce a synonym for another type
= Examples in C
typedef struct { int a, b; } mystruct;
typedef mystruct yourstruct;
o Opaque declarations
= Introduce a new type

= Examples in C
struct XYZ { int a, b,c; };
= Any other examples?

cs5363

24

Type Equivalence

o When are two types considered equal?
struct s {int a,b; }=struct t {int a,b; } ?
= Structural equivalence: yes

s and t are the same basic type or

s and t are built using the same compound type
constructor with the same components

= Name equivalence: no
S and t are different names
Names uniquely define compound type expressions

= In C, name equivalence for records/structs, structural
equivalence for all other types

cs5363

25

O

O

O

A function is polymorphic if it can operate on different types

Interpreted languages
Support arbitrary polymorphic functions
Type information stored together with each value

Compiled languages
Need to know storage size for each input value
Each expression (including functions) can only only a single type
Subtype polymorphism: subset relations between types
Example in C: a union type includes all of its base types
Example in C++/Java, Truck is a subclass of Car

Parametric polymorphism:

Operate on types parameterized with type variables
e.g., C++ templates, Java generics

Ad hoc polymorphism: operator overloading

A single function name given different types and implementations

+ : int->int; + : real->real
cs5363 26

o When a value is misinterpreted or misused
with unintended semantics, a type error
occurs

May cause hardware error

function call x() where x is not a function

may cause jump to instruction that does not contain
a legal op code

May simply return incorrect value
int_add(3, 4.5)
not a hardware error

bit pattern of 4.5 can be interpreted as an integer
just as much an error as x() above

cs5363 27

Type-Safety Of Languages

o Type-safe: report error instead of segmentation faults

o BCPL family, including C and C++
= Not safe: casts, pointer arithmetic, ...

o Algol family, Pascal, Ada
= Almost safe

= Dangling pointers:
Pointers to locations that have been deallocated

No language with explicit de-allocation of memory is fully type-
safe

o Type-safe languages with garbage collection
= Lisp, ML, Smalltalk, Java
= Dynamically typed: Lisp, Smalltalk
= Statically typed: ML, JAVA

cs5363 28

o Goal: discover and report type errors

Type system specify the proper usage of each operator
Reject expressions that cannot be typed according to rules
Explicit vs. implicit type conversion

Can be done at compile-time or run-time, or both

o Run-time (dynamic) type checking
Check type safety before evaluating each operation

Store type information together with each value in memory

In POET, before evaluating (car x), interpreter checks x
is @ non-empty list

o Compile-time (static) type checking
Each variable/expression must have a single type

E.g., int f(float x) declares that f can be invoked only
with float-type expressions

cs5363 29

Static vs Dynamic Type Checking

o Both prevent type errors

o Run-time checking: check before each operation

m Pros: flexibility and safety
Variables/expressions could have arbitrary types
Can detect all type errors (language is type safe)
= Cons: slow down execution, and error detection may be too late

o Compile-time checking
= Pros: efficiency (no runtime overhead) and early error detection

= Cons: flexibility and safety
Every variable/function can have only a single type

Cannot detect some type errors, e.g., accessing arrays out-of-bound,
dangling pointers

o Combination of compile and runtime checking
= Example: Java (array bound check at runtime)

cs5363 30

Type Inference

o Static type checking in C/C++/Java
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};
= Programmer has to declare the types of all variables

= Compilers evaluate the types of expressions and check
agreement

o Type inference: extension to static type checking
}F{f(l x) { return x+1; };
€ gOrty) { return f(y+1)*2;3};
= Programmers are not required to declare types for variables

= Compilers figure out agreeable types of all expressions
Solving constraints based on how expressions are used

cs5363

31

Compile Time Type Checking

o Types of variables

= Each variable must have a single type
It can hold only values of this type

o Types of expressions

= Every expression must have a single type
It maps input values to a return value
It can return only values of this type

O Type system

= Rules for deciding types of expressions
These rules specify the proper usage of each operator

= Accept only expressions that can be typed according to
rules

= Explicit vs. implicit type conversion

cs5363

32

Type Environment

o Symbol table

= Record information about names defined in programs
Types of variables and functions
Additional properties (eg., scope of variable)

= Contain information about context of program fragment
o Name conflicts

= The same name may represent different things in different
places

Separate symbol tables for names in different scopes
Multiple layers of symbol definitions for nested scopes

o Implementation of symbol tables
= Hash table from strings (names) to properties (types)

cs5363 33

m=-0Q v

P::=D; E
D::=D;D|id:T
T ::= char | integer
E::=literal | num | id | E mod E
=D, E
:=D;D | id: T {addtype(id.entry, T.type); }

| id { E.type = lookupType(id.entry); }
| E1 mod E2 {if (El.type ==
E.type = integer; else E.type = type_error;}

integer && E2.type=

char { T.type = char; } | integer { T.type = integer ;}
::= literal { E.type = char;} | num { E.type = nhum;}

=integer)

cs5363

34

o Implicit type conversion

When type mismatch happens, compilers can automatically
convert inconsistent types into required types

2 + 3.5: convert 2 to 2.0 before adding 2.0 with 3.5

ICONST <{ E.type = integer;}
FCONST { E.type = real; }
id { E.type = lookup(id.entry); }
Elop E2 {if (El.type==integer and E2.type==integer)
E.type = integer;
else if (El.type==integer and E2.type==real)

E.type=real;

else if (El.type==real and E2.type==integer)
E.type=real;

else if (El.type==real and E2.type==real)
E.type=real;

}

cs5363 35

Example: Types For Arrays

P::=D; E

D::=D;D|id:T

T::=char | integer | T[num]

E::=literal | num | id | E mod E | E[E]
P::=D; E
D::=D;D | id:T {addtype(id.entry, T.type); }
T

::= char { T.type = char; } | integer { T.type = integer;}
| Ti1[num] { T.type = array(num.val, T1l.type);}

E ::= literal { E.type = char;} | num { E.type = num;}

| id { E.type = lookupType(id.entry); }

| E1 mod E2 {if (E1l.type == integer && E2.type==integer)
E.type = integer; else E.type = type_error;}

| EI[E2] { if (E2.type == integer && El.type==array(s,t))
E.type = t; else E.type = type_error; }

cs5363 36

Exercise:Type Checking For Arrays

P:

S:
T:
D:
E:

=PS | S

T D , I E \\;II

float | integer

id | D[inum]

fnum | inum | id | E+E | E[E]

cs5363

37

UU

;S
;Did:T

har | integer

|d ="E; | {SS}|if(E)S | while (E) S
literal | num | id | E mod E

mwn-9 o
'|i '|i '|i 0o

S ::

=id'="E; {if (E.type!l=type_error &&
Equiv(lookup_type(id.entry),E.type))
S.type = void;
else S.type = type_error; }

| '{"S1S2"'} { if (S1.type == void) S.type = S2.type;
else S.type = type_error; }

| if ‘(" E')’ S1 { if (E.type == integer) S.type=S1.type;
else S.type=type_error; }

| while ‘(" E ')’ S1 { if (E.type == integer) S.type=S1.type;

else S.type=type_error; }

cs5363

38

P::=D; E
D::=D;D|id:T | Tid (Tlist)
list : =T Tlist | T

:= char | integer | T[num]

_ﬂ

eral | num | id | E mod E | E[E] | E(Elist)

T
T -
E:
Ellst = E, Elist | E

D ::

= T1 id (Tlist) { addtype(id.entry, fun(T1l.type,Tlist.type)); }

Tlist ::= T, Tlistl { Tlist.type = tuple(T1l.type, Tlistl.type); }

| T { Tlist.type = T.type }

E::=E1 (Elist) {if (El.type == fun(r, p) && p ==Elist.type)

E.type = r; else E.type = type_error; }

Elist ::= E, Elistl { Elist.type = tuple(El.type, Elistl.type); }

| E { Elist.type = E.type; }

cs5363 39

