
cs5363 1

Context-sensitive
Analysis

Attribute Grammar And Type
Checking

cs5363 2

Context-Sensitive Analysis
 To understand the input computation, a

compiler/interpreter need to discover
 The types of values stored in each variable
 The types of argument and return values for each function
 The representation/interpretation of each value
 The memory space allocated for each variable
 The scope and live range of each variable

 Static definition of variables: variable declarations
 Compilers need properties of variables before translation
 Use symbol tables to keep track of variable information

 Context-sensitive analysis
 Determine properties of program constructs

 E.g., CFG cannot enforce all variables are declared before used

cs5363 3

Syntax-Directed Translation
 Compilers translate language constructs

 Need to keep track of relevant information
 Attributes: relevant information associated with a construct

 Attribute grammar (syntax-directed definition)
 Associate a collection of attributes with each grammar symbol
 Define actions to evaluate attribute values during parsing

e ::= n | e+e | e−e | e * e | e / e

Attributes for expressions:
 type of value: int, float, double, char, string,…
 type of construct: variable, constant, operations, …
Attributes for constants: values
Attributes for variables: name, scope
Attributes for operations: arity, operands, operator,…

cs5363 4

Attribute Grammar
 Associate a set of attributes with each grammar symbol
 Associate a set of semantic rules with each production

 Specify how to compute attribute values of symbols
 Systematic evaluation of context information through traversal of

parse tree (or abstract syntax tree)
e ::= n | e+e | e−e | e * e | e / e

e.val=305

e.val=5
e.val=300

e.val=15
5

+

*
e.val=20

15 20

Annotated parse tree for 5+15*20:

e.val = e1.val [/] e2.vale ::= e1 / e2

e.val = e1.val [*] e2.vale ::= e1 * e2

e.val = e1.val [-] e2.vale ::= e1 - e2

e.val = e1.val [+] e2.vale ::= e1 + e2

e.val = n.vale ::= n

Semantic rulesproduction

cs5363 5

e ::= n | e+e | e−e | e * e | e / e

e.val = e1.val [/] e2.vale ::= e1 / e2

e.val = e1.val [*] e2.vale ::= e1 * e2

e.val = e1.val [-] e2.vale ::= e1 - e2

e.val = e1.val [+] e2.vale ::= e1 + e2

e.val = n.vale ::= n

Semantic rulesproduction
e.val=305

e.val=5
e.val=300

e.val=15
5

+

*
e.val=20

15 20

Synthesized Attribute Definition
 An attribute is synthesized if in the parse tree,

 Attributes of parents are determined from those of children
 S-attributed definitions

 Syntax-directed definitions with only synthesized attributes
 Can be evaluated through post-order traversal of parse tree

cs5363 6

Inherited Attribute Definition
 An attribute is inherited if

 The attribute value of a parse-tree node is determined from
attribute values of its parent and siblings

Addtype(id.entry,L.in)L::=id

L1.in := L.in
Addtype(id.entry,L.in)

L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

Semantic rulesProduction

D

T.type=real L.in=real

real
L.in=real

L.in=real

id1

, id3

, id2

D ::= T L
T ::= int | real
L ::= L , id | id

cs5363 7

Dependences In Attribute
Evaluation
 If value of attribute b depends on attribute c,

 Value of b must be evaluated after evaluating value of c
 There is a dependence from c to b

T.type L3.inreal

L2.in

L1.in

id1.entry

id3.entry

id2.entry

D

T.type=real L3.in=real

real
L2.in=real

L1.in=real

id1

, id3

, id2

Dependency graph:Annotated parse tree:

L3.addentry

L2.addentry

L1.addentry

cs5363 8

Evaluation Order Of Attributes
 Topological order of the dependence graph

 Edges go from nodes earlier in the ordering to later nodes
 No cycles are allowed in dependence graph

Input
string

Parse
tree

Dependence
graph

Evaluation order for
Semantic rules

T.type L3.inreal

L2.in

L1.in

id1.entry

id3.entry

id2.entry

L3.addentry

L2.addentry

L1.addentry

4

1

2

3

5
6

7
8

9 10

cs5363 9

Evaluation Of Semantic Rules
 Dynamic methods (compile time)

 Build a parse tree for each input
 Build a dependency graph from the parse tree
 Obtain evaluation order from a topological order of the

dependency graph

 Rule-based methods (compiler-construction time)
 Predetermine the order of attribute evaluation based on

grammar structure of each production
 Example: semantic rules defined in Yacc

 Oblivious methods (compiler-construction time)
 Evaluation order is independent of semantic rules
 Evaluation order forced by parsing methods
 Restrictive in acceptable attribute definitions

cs5363 10

L-attributed Definitions
 A syntax-directed definition is L-attributed if each inherited

attribute of Xj, 1<=j<=n, on the right side of A::=X1X2…Xn,
depends only on
 the attributes of X1,X2,…,Xj-1 to the left of Xj in the production
 the inherited attributes of A

R.i = A.i
Q.i = R.s
A.s = Q.s

A ::= Q R

L.i = A.i
M.i = L.s
A.s = M.s

A::=L M

Semantic rulesProduction

L-attributed definition

Addtype(id.entry,L.in)L::=id

L1.in := L.in
Addtype(id.entry,L.in)

L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

Semantic rulesProduction
Non L-attributed definition

cs5363 11

Synthesized And Inherited Attributes
 L-attributes may include both synthesized and inherited

attributes

e ::= n e’
e’ ::= +ee’ | *ee’ | ε

e’.syn = e’.inhe’ ::= ε

e’1.inh = e’.inh [*] e.val
e’.syn = e’1.syn

e’ ::= * e e’1

e’1.inh = e’.inh [+] e.val
e’.syn = e’1.syn

e’ ::= + e e’1

e’.inh=n.val;
e.val = e’.syn

e ::= n e’

Semantic rulesproduction

e (val=305)

 n(val=5) e’(inh=5;syn=305)

n.val=15

5

+

* e.val=20
15

20

e(val=300) e’(inh=s
yn=305)

e’(inh=15,
 syn=300)

ε

n.val=20 e’(inh=
syn=20)

ε

e’(inh=
syn=300)

ε

cs5363 12

Translation Schemes
 A translation scheme is a BNF where

 Attributes are associated with grammar symbols and
 Semantic actions are inserted within right sides of productions

 Notation for specifying translation during parsing

E ::= T R
R ::= ‘+’ T {print(‘+’)} R1
 | ε
T ::= num {print(num.val)}

Translation scheme:
E

T R

9 print(‘9’) + T print(‘+’) R

5 print(‘5’) ε

Parse tree for 9+5 with actions

Treat actions as though they are terminal symbols.

cs5363 13

Designing Translation Schemes

 Step2: decide where to evaluate each attribute
 S-attribute of left-hand symbol computed at end of production
 I-attribute of right-hand symbol computed before the symbol
 S-attribute of right-hand symbol referenced after the symbol

D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
T::=real { T.type:=real}
L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

Addtype(id.entry,L.in)L::=id

L1.in := L.in; Addtype(id.entry,L.in)L::=L1 ,id

T.type:=realT::=real

T.Type:=integerT::= int

L.in:=T.typeD::=T L

 Step1: decide how to evaluate attributes at each production

cs5363 14

Exercises
 Given the following grammar for a binary number generator

S ::= L L ::= L B | B B ::= 0 | 1
 Compute the value of each resulting number

 E.g., if s => … => 1101, then the value of s is 13
 Compute the contribution of each digit

 E.g., if s => … => 1101, the contribution of the four digits are 8,4,0,1 respectively.
Steps for writing translation schemes

(1) Define a set of attributes for each grammar symbol
(2) Categorize each attribute as synthesized or inherited
(3) For each production, define how to evaluate

(3.1) synthesized attribute of the left-hand symbol
(3.2) inherited attribute of each right-hand symbol

(4) Insert each attribute evaluation inside the production
Inherited attribute==> before the symbol;

 synthesized attribute ==> at end of production

cs5363 15

Top-Down Translation
 In top-down parsing, a parsing function is associated with each

non-terminal
 To support attribute evaluation, add parameters and return values to

each function

 For each non-terminal A, construct a parsing function that
 Has a formal parameter for each inherited attribute of A
 Returns the values of the synthesized attributes of A

 The code associated with each production does the following
 Save the s-attribute of each symbol X into a variable X.s
 Generate an assignment B.s=parseB(B.i1,B.i2,…,B.ik) for each non-

terminal B, where B.i1,…,B.ik are values for the L-attributes of B and
B.s is a variable to store s-attributes of B.

 Copy the code for each action, replacing references to attributes by
the corresponding variables

cs5363 16

Top-Down Translation Example
void parseD()
 { Type t = parseT(); }
 parseL(t);
 }
Type parseT
 { switch (currentToken()) {
 case INT: return TYPE_INT;
 case REAL: return TYPE_REAL;
 }
 }
void parseL(Type in)
 {
 SymEntry e = parseID();
 AddType(e, in);
 if (currentToken() == COMMA) {
 parseTerminal(COMMA);
 parseL(in)
 }
}

D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
 | real { T.type:=real}
L::=id {AddType(id.en,L.in)}
 | id {AddType(id.en,L.in)} ,
{L1.in=L.in} L1

cs5363 17

Bottom-up Evaluation Of
Attributes
 Synthesized attributes: consistent with bottom-up reduction

 Keep attribute values of grammar symbols in stack
 Evaluate attribute values at each reduction

 Inherited attribute: use attributes already stored in stack
 Each inherited attribute evaluation is treated as a dummy

grammar symbol
 Evaluation results pushed into stack for later use

(s0X1s1X2s2…Xmsm, aiai+1…an$, v1v2…vm)
Configuration of LR parser:

Right-sentential form: X1X2…Xmaiai+1…an$
Automata states: s0s1s2…sm

Grammar symbols in stack: X1X2…Xm
Synthesized attribute values of Xi vi

states inputs values

cs5363 18

Bottom-Up Translation In Yacc
D::=T { L.in:=T.type} L
T::= int {T.Type:=integer}
T::=real { T.type:=real}
L::= {L1.in := L.in} L1,id {Addtype(id.entry,L.in) }
L::=id {Addtype(id.entry,L.in)}

D : T {$$ = $1; } L
T : INT { $$ = integer; } | REAL { $$ = real; }
L : L COMMA ID { Addtype($3, $0); }
 | ID { Addtype($1,$0); }

cs5363 19

Types in Programming
 A type is a collection of computable values

 Represent concepts from problem domain
 Accounts, banks, employees, students

 Represent different implementation of values
 Integers, strings, floating points, lists, records, tuples …
 Must know the type of a variable before allocating space

 Languages use types to
 Support organization of concepts (programmability)
 Support consistent interpretation of values (error checking)

 Compile-time and run-time type checking
 Prevent meaningless computation

3 + true - “Bill”

 Support efficient translation (by compilers)
 Short integers require fewer bits
 Access record component by a known offset
 Use integer units for integer operations

cs5363 20

Values and Types
 Basic types: types of atomic values

 int, bool, character, real, symbol
 Values of different types

 have different layouts
 have different operations

 Explicit vs. implicit type conversion of values

 Compound types: types of compound values
 List, record, array, tuple, struct, ref, pointer
 Built from type constructors

 int arr[100] arr: array(int,100)
 (3, 4, “abc”) : int * int * string
 int *x x : pointer(int)
 int f(int x) { return x + 5} f : intint

cs5363 21

Variables, Scopes, and Binding
 Values and objects (atomic and compound values)

 Created -> bound to variables -> destructed
 Their storages could be allocated differently

 Static allocation: used to initialize global variables
 Stack allocation: used to initialize local variables of

functions/subroutines
 Heap allocation: dynamically allocated/deleted and used to

initialize pointer variables

 Variables: used as placeholders for values
 Lifetime: from creation to destruction of its value
 Scope: the block where it is declared (and can be accessed)
 Binding time: when is a variable bound to its value/storage?

 Binding variable to value: cannot be modified (functional
programming)

 Binding variable to storage: can be modified (imperative
programming)

cs5363 22

Managing Storage Using Blocks
 Blocks: regions with local variable declarations

 Blocks are nested but not partially overlapped
 What about jumping into the middle of a block?

 Storage management
 Enter block: allocate space for variables (must know their types)
 Exits block: some or all space may be deallocated

 Local variables: declared inside the current block
 Global variables: declared in a enclosing block

 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters
 Input parameters

 Allocated and initialized before entering function body
 De-allocated after exiting function body

 Return parameters
 Address remembered before entering function body
 Value set after exiting function body

cs5363 23

The Type System
 A language supports each type by

 Providing ways to introduce values of the type
 Literal integers: 1 23 -3290
 Literal floating point numbers: 3.5 0.12
 Arrays, pointers, structs, classes: type constructors

 Providing ways to operate on values of the type
 Evaluation rules, equality, introduction and elimination operations

 Every type comes with a set of operations
 Each operation defined on specific types of operands and

return a specific type of value
 A type error occurs if operation applied outside its domain

 The interfaces of operators are their types (i.e. function types)
 Type declarations

 Provide ways to declare types of variables
 Provide ways to introduce new types (user-defined types)

cs5363 24

Type Declarations
 Goal: provide ways to introduce new types

 These types are called user-defined types

 Transparent declarations
 Introduce a synonym for another type
 Examples in C

 typedef struct { int a, b; } mystruct;
 typedef mystruct yourstruct;

 Opaque declarations
 Introduce a new type
 Examples in C

 struct XYZ { int a, b,c; };
 Any other examples?

cs5363 25

Type Equivalence
 When are two types considered equal?
 struct s {int a,b; }=struct t {int a,b; } ?

 Structural equivalence: yes
 s and t are the same basic type or
 s and t are built using the same compound type

constructor with the same components

 Name equivalence: no
 S and t are different names
 Names uniquely define compound type expressions

 In C, name equivalence for records/structs, structural
equivalence for all other types

cs5363 26

Polymorphism
 A function is polymorphic if it can operate on different types

 Interpreted languages
 Support arbitrary polymorphic functions
 Type information stored together with each value

 Compiled languages
 Need to know storage size for each input value
 Each expression (including functions) can only only a single type

 Subtype polymorphism: subset relations between types
 Example in C: a union type includes all of its base types
 Example in C++/Java, Truck is a subclass of Car

 Parametric polymorphism:
 Operate on types parameterized with type variables

 e.g., C++ templates, Java generics

 Ad hoc polymorphism: operator overloading
 A single function name given different types and implementations

 + : int->int; + : real->real

cs5363 27

Type Error
 When a value is misinterpreted or misused

with unintended semantics, a type error
occurs
 May cause hardware error

function call x() where x is not a function
 may cause jump to instruction that does not contain

a legal op code

 May simply return incorrect value
 int_add(3, 4.5)

 not a hardware error
 bit pattern of 4.5 can be interpreted as an integer
 just as much an error as x() above

cs5363 28

Type-Safety Of Languages
 Type-safe: report error instead of segmentation faults

 BCPL family, including C and C++
 Not safe: casts, pointer arithmetic, …

 Algol family, Pascal, Ada
 Almost safe
 Dangling pointers:

 Pointers to locations that have been deallocated
 No language with explicit de-allocation of memory is fully type-

safe

 Type-safe languages with garbage collection
 Lisp, ML, Smalltalk, Java
 Dynamically typed: Lisp, Smalltalk
 Statically typed: ML, JAVA

cs5363 29

Type Checking
 Goal: discover and report type errors

 Type system specify the proper usage of each operator
 Reject expressions that cannot be typed according to rules
 Explicit vs. implicit type conversion

 Can be done at compile-time or run-time, or both

 Run-time (dynamic) type checking
 Check type safety before evaluating each operation

 Store type information together with each value in memory
 In POET, before evaluating (car x), interpreter checks x

is a non-empty list

 Compile-time (static) type checking
 Each variable/expression must have a single type
 E.g., int f(float x) declares that f can be invoked only

with float-type expressions

cs5363 30

Static vs Dynamic Type Checking
 Both prevent type errors
 Run-time checking: check before each operation

 Pros: flexibility and safety
 Variables/expressions could have arbitrary types
 Can detect all type errors (language is type safe)

 Cons: slow down execution, and error detection may be too late
 Compile-time checking

 Pros: efficiency (no runtime overhead) and early error detection
 Cons: flexibility and safety

 Every variable/function can have only a single type
 Cannot detect some type errors, e.g., accessing arrays out-of-bound,

dangling pointers

 Combination of compile and runtime checking
 Example: Java (array bound check at runtime)

cs5363 31

Type Inference
 Static type checking in C/C++/Java

 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmer has to declare the types of all variables
 Compilers evaluate the types of expressions and check

agreement

 Type inference: extension to static type checking
 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmers are not required to declare types for variables
 Compilers figure out agreeable types of all expressions

 Solving constraints based on how expressions are used

cs5363 32

Compile Time Type Checking
 Types of variables

 Each variable must have a single type
 It can hold only values of this type

 Types of expressions
 Every expression must have a single type

 It maps input values to a return value
 It can return only values of this type

 Type system
 Rules for deciding types of expressions

 These rules specify the proper usage of each operator
 Accept only expressions that can be typed according to

rules
 Explicit vs. implicit type conversion

cs5363 33

Type Environment
 Symbol table

 Record information about names defined in programs
 Types of variables and functions
 Additional properties (eg., scope of variable)

 Contain information about context of program fragment

 Name conflicts
 The same name may represent different things in different

places
 Separate symbol tables for names in different scopes
 Multiple layers of symbol definitions for nested scopes

 Implementation of symbol tables
 Hash table from strings (names) to properties (types)

cs5363 34

Evaluating Types Of Expressions
P ::= D ; E
D ::= D ; D | id : T
T ::= char | integer
E ::= literal | num | id | E mod E

P ::= D ; E
D ::= D ; D | id : T { addtype(id.entry, T.type); }
T ::= char { T.type = char; } | integer { T.type = integer ;}
E ::= literal { E.type = char;} | num { E.type = num;}
 | id { E.type = lookupType(id.entry); }
 | E1 mod E2 {if (E1.type == integer && E2.type==integer)
 E.type = integer; else E.type = type_error;}

cs5363 35

Type Checking With Coercion
 Implicit type conversion

 When type mismatch happens, compilers can automatically
convert inconsistent types into required types

 2 + 3.5: convert 2 to 2.0 before adding 2.0 with 3.5

E ::= ICONST { E.type = integer;}
E ::= FCONST { E.type = real; }
E ::= id { E.type = lookup(id.entry); }
E ::= E1 op E2 { if (E1.type==integer and E2.type==integer)
 E.type = integer;
 else if (E1.type==integer and E2.type==real)
 E.type=real;
 else if (E1.type==real and E2.type==integer)
 E.type=real;
 else if (E1.type==real and E2.type==real)
 E.type=real;
 }

cs5363 36

Example: Types For Arrays
P ::= D ; E
D ::= D ; D | id : T
T ::= char | integer | T [num]
E ::= literal | num | id | E mod E | E[E]

P ::= D ; E
D ::= D ; D | id : T { addtype(id.entry, T.type); }
T ::= char { T.type = char; } | integer { T.type = integer ;}
 | T1[num] { T.type = array(num.val, T1.type);}
E ::= literal { E.type = char;} | num { E.type = num;}
 | id { E.type = lookupType(id.entry); }
 | E1 mod E2 {if (E1.type == integer && E2.type==integer)
 E.type = integer; else E.type = type_error;}
 | E1[E2] { if (E2.type == integer && E1.type==array(s,t))
 E.type = t; else E.type = type_error; }

cs5363 37

Exercise:Type Checking For Arrays
P ::= P S | S
S ::= T D “;” | E “;”
T ::= float | integer
D ::= id | D[inum]
E ::= fnum | inum | id | E+E | E[E]

cs5363 38

Example:
Type checking For Statements

P ::= D ; S
D ::= D ; D | id : T
T ::= char | integer
S ::= id `=’ E ; | {S S} | if (E) S | while (E) S
E ::= literal | num | id | E mod E

S ::= id ‘=’ E ; { if (E.type!=type_error &&
 Equiv(lookup_type(id.entry),E.type))
 S.type = void;
 else S.type = type_error; }
 | ‘{’ S1 S2 ‘}’ { if (S1.type == void) S.type = S2.type;
 else S.type = type_error; }
 | if ‘(’ E ‘)’ S1 { if (E.type == integer) S.type=S1.type;
 else S.type=type_error; }
 | while ‘(’ E ‘)’ S1 { if (E.type == integer) S.type=S1.type;
 else S.type=type_error; }

cs5363 39

Example:
Type Checking With Function Calls

P ::= D ; E
D ::= D ; D | id : T | T id (Tlist)
Tlist ::= T, Tlist | T
T ::= char | integer | T [num]
E ::= literal | num | id | E mod E | E[E] | E(Elist)
Elist ::= E, Elist | E

……
D ::= T1 id (Tlist) { addtype(id.entry, fun(T1.type,Tlist.type)); }
Tlist ::= T, Tlist1 { Tlist.type = tuple(T1.type, Tlist1.type); }
 | T { Tlist.type = T.type }
E ::= E1 (Elist) { if (E1.type == fun(r, p) && p ==Elist.type)
 E.type = r ; else E.type = type_error; }
Elist ::= E, Elist1 { Elist.type = tuple(E1.type, Elist1.type); }
 | E { Elist.type = E.type; }

