Intermediate
Representation

Abstract syntax tree, control-
flow graph, three-address code

555555

o Intermediate language between source and
target

o Multiple machines can be targeted

Attaching a different backend for each machine

Intel, AMD, IBM machines can all share the same parser
for C/C++

o Multiple source languages can be supported
Attaching a different frontend (parser) for each language
Eg. C and C++ can share the same backend

o Allow independent code optimizations

Multiple levels of intermediate representation

Supporting the needs of different analyses and
optimizations

cs5363 2

o Internal representation of input program by compilers
Source code of the input program

Results of program analysis
Control-flow graphs, data-flow graphs, dependence graphs

Symbol tables

Book-keeping information for translation (eg., types and addresses
of variables and subroutines)

o Selecting IR --- depends on the goal of compilation

Source-to-source translation: close to source language
Parse trees and abstract syntax trees

Translating to machine code: close to machine code
Linear three-address code

o External format of IR
Support independent passes over IR

cs5363 3

o Source-level IR
High-level constructs are readily available for optimization
Array access, loops, classes, methods, functions

0o Machine-level IR

Expose low-level instructions for optimization
Array address calculation, goto branches

loadI1l =>rl1
@ sub rj, r1 =>r2
loadI 10 =>r3
/ \ mult r2, r3 =>r4
sub ri, r1 =>rb5
@ G @ add r4,r5 =>r6
loadl @A =>r7

add r7,r6 =>1r8
load r8 => rAij

ILOC code

Source-level tree

cs5363

Parse Tree And AST

o Graphically represent grammatical structure of input program
= Parse tree: tree representation of syntax derivations

= AST: condensed form of parse tree

Operators and keywords do not appear as leaves
Chains of single productions are collapsed

Parse trees

Abstract syntax trees

AN

B THEN S1 ELSE S2

— v

f + ‘T
5

IF

cs5363

If-then-else

B S1 S2

3/+\

Implementing AST in C

Grammar: EHZ=E+T|E-T]|T
T:=(E) | id | num

o Define different kinds of AST nodes
m typedef enum {PLUS, MINUS, ID, NUM} ASTNodeTag;
o Define AST node types
typedef struct ASTnode {
AstNodeTag kind;
union { symbol_table_entry* id_entry;
int num_value;
struct ASTnode* opds[2];
} description;

+

o Define AST node construction routines

ASTnode* mkleaf_id(symbol_table_entry* e);

ASTnode* mkleaf_num(int n);

ASTnode* mknode_plus(struct ASTnode* opd1, struct ASTNode* opd2);
ASTnode* mknode_minus(struct ASTnode* opd1, struct ASTNode* opd2);

cs5363 6

Implementing AST in Java

Grammar:

E+T|E-T|T
(E) | id | num

E:
T ::

o Define AST node

abstract class ASTexpression {
public System.String toString();

¥

class ASTidentifier extends ASTexpression { private symbol_table_entry id_entry; ... }
class ASTvalue extends ASTexpression { private int num_value; ... }

class ASTplus extends ASTexpression { private ASTnode opds[2]; ... }

Class ASTminus extends ASTexpression { private ASTnode opds[2]; ... }

o Define AST node construction routines

= ASTexpression mkleaf_id(symbol_table_entry e)
{ return new ASTidentifier(e); }

= ASTexpression mkleaf_num(int n)
{ return new ASTvalue(n); }

m ASTexpression mknode_plus(ASTnode opdl1, struct ASTNode opd2)
{ return new ASTplus(opdl, opd2);

m ASTexpression mknode_minus(ASTnode opd1l, struct ASTNode opd2)
{ return new ASTminus(gg%l, opd2);

0 Use syntax-directed definitions
Associate each non-terminal with an AST
A pointer to an AST node: E.nptr T.nptr

Evaluate synthesized attribute bottom-up
From children ASTs, compute AST of the parent

E::=E1+T { E.nptr=mknode_plus(El.nptr,T.nptr); }
E::=E1-T { E.nptr=mknode_minus(El.nptr, T.nptr); }
E::=T { E.nptr=T.nptr; }

T ::= (E) {T.nptr=E.nptr; }

T::=id { T.nptr=mkleaf_id(id.entry); }

T ::= num { T.nptr=mkleaf_num(num.val); }

Exercise: what is the AST for 5 + (15-b)?
What if top-down parsing is used
(need to eliminate left-recursion)?

cs5363

Bottom-up parsing: evaluate attribute at each reduction

1. reduce 5to T1 using T::=num;
Parse tree for 5+(15-b) T1.nptr = leaf(5)

2. reduce T1 to E1 using E::=T:

El.nptr = Tl.nptr = leaf(5)
/ ¢5\A 3. reduce 15 to T2 using T::=num:
E1 _|_ T2.nptr=leaf(15)
/ 4. reduce T2 to E2 using E::=T
E2.nptr=T2.nptr = leaf(15)
T1) 5. reduce b to T3 using T::=num:
/ / L T3.nptr=leaf(b)
6. reduce E2-T3 to E3 using E::=E-T:
5 / l E3.nptr=node(*-’,leaf(15),leaf(b))
7. reduce (E3) to T4 using T::=(E):
T2 b T4.nptr=node(*-',leaf(15),leaf(b))
! 8. reduce E1+T4 to E5 using E::=E+T:
15 ES5.nptr=node(*+’,leaf(5),

node('-’,leaf(15),leaf(b)))
9

cs5363

o Symbol tables

Record information about names defined in programs
Types of variables and functions
Additional properties (eg., static, global, scope)

Contain information about context of program fragment
Can use different symbol tables for different purposes

o Naming conflicts

The same name may represent different things in
different places

Use separate symbol tables for names in different scopes
Multiple layers of symbol tables for nested scopes
o Implementation of symbol tables
Map names to additional information (types,values,etc.)
Efficient implementation: using hash tables

cs5363 10

Implementing symbol tables

O Interface

= Lookup(name)

Returns the record for name if one exists in the table; otherwise,
indicates that name is not found

= Insert(name, record)
Stores the information in record in the table for name.
o Symbol tables in nested scopes
= StartNewScope()
Increment the current scope level and creates a new symbol table

= EXxitScope()

Changes the current-level symbol table pointer so that it points to
the symbol table of surrounding scope

o Use a global symbol table pointer to keep track of the
current scope

cs5363 11

o Low level IL before final code generation
A linear sequence of low-level instructions
Implemented as a collection (table or list) of tuples

o Similar to assembly code for an abstract machine
Explicit conditional branches and goto jumps

o Reflect instruction sets of the target machine
Stack-machine code and three-address code

Stack-machine code two-address code three-address code
Push 2 MOV 2 =>t1 t1:=2
Push y MOVyYy =>t2 t2 1=y
Multiply MULT t2 => t1 t3 := t1*t2
Push Xx MOV x =>t4 t4 :1=Xx
subtract SUB t1 =>t4 t5 := t4-t3

Linear IRforx -2 ¥y

cs5363 12

Stack-machine code

o Also called one-address code
= Assumes an operand stack
= Take operands from top of stack; push results onto the stack
= Need special operations such as
Swapping two operands on top of the stack
o Compact in space, simple to generate and execute
= Most operands do not need names
= Results are transitory unless explicitly moved to memory

O Used as IR for Smalltalk and Java

Push 2

_ . Pushy
Stack-machine code for x — 2 ¥y Multiply

Push X
subtract

cs5363

Each instruction contains at most two operands and one result.
Typical forms include

Arithmetic operations: x:=yopz | X:=o0py

Data movement: x:=y[z] | X[z]:=y | X:i=y

Control flow: ify op z gotox | goto x

Function call: param x | returny | call foo
Each instruction maps to at most a few machine instructions
Additional constraints depend on target machine instructions

Eg., forx :(=yopzandx:=opy

all operands must be in registers = all operands must be temporaries?
Reasonably compact, while allowing reuse of names and values

tl1 :=2
Three-address code for x -2 *y |(t2:=y

t3 := t1*t2

t4 :=Xx

t5 := t4-t3

cs5363 14

o Store all instructions in a quadruple table
Every instruction has four fields: op, argl, arg2, result
The label of instructions = index of instruction in table

Three-address code Quadruple entries

tl :=-cC op argl arg2 result

Eg : l_DC* “ (0) | Uminus C t1

itpare| [fMu b e

3 = t5 (2) Uminus C t3
(3) |Mult b t3 t4
(4) | Plus t2 t4 t5
(5) |Assign t5 a

Alternative: store all the instructions in a singly/doubly linked list
What is the tradeoff? 5363 15

o Variables are placeholders for values

Every variable must have a location to store its value
Register, stack, heap, static storage

Values need to be loaded into registers before operation

X and y are in registers X and y are in memory
t1:=2 t1:=2
Three-address code 2 := t1*y t2:=y
forx-2*y: t3 := x-t2 t3 := t1*t2
t4 :=x
t5 := t4-t3

Which variables can be
kept in registers?

Which variables must be
stored in memory?

void A(int b, int *p)
{
inta, d;
a=3; d=foo(a); *p =b+d;

}

cs5363

16

Appendix: Control-flow graph

o Graphical representation of runtime control-flow paths
= Nodes of graph: basic blocks (straight-line computations)
= Edges of graph: flows of control

o Useful for collecting information about computation

= Detect loops, remove redundant computations, register
allocation, instruction scheduling...

o Alternative CFG: Each node contains a single statement

while (i < 50) {

tl=Db* 2;

a=a+tl t1 -
=i+ 1; 3
b i =

cs5363

17

Appendix: Dependence graph

o Graphical representation of reordering constraints between
statements

= Each node n is a single operation/statement

= Edge (n1,n2) indicates n2 uses result of n1
The order of evaluating n1,n2 cannot be reversed

= Graph is acyclic within each basic block; is cyclic if loops exist
0 Used in reordering transformations
= Instruction scheduling, loop transformations
o Construction
= For each pair of statements, evaluate ordering constraint

' rl

' rl

s (o Mo ¢ i o Wi o W & o1

rrl
r2 :
rrl
P r2
rl :
P r2

W
ri +rl
X
rl1 *r2
Yy
rl *r2
Z
r1 *r2

return rl

v

b
\d

cs5363

a Dependence graph
C

<

R
e
.

18

Appendix:
Static Single-Assignment

o A variable can hold multiple values throughout its lifetime
= Mapping multiple values to a name can hide opportunities of
optimization
o Static single-assignment form (SSA)
= Each variable is defined by a single operation in the code
= Each use of variable refers to a single definition
= Use J-functions to merge definitions from different control-flow paths

. x0 = ...
§ f y0 := ..
= if (xO < 100) goto loop
wr:(ll:e=(>;<+ 1100) SSA: goto next
loop: x1 := J(x0,x2)
y:i=y+X yl := &(y0,y2)
x2:=x1+1
y2 1=yl + x2
if (x2 < 100) goto loop
next: x3 := J(x0,x2)
y3 := 9(y0,y2)

cs5363 19

