Intermediate Representation

Abstract syntax tree, control-
flow graph, three-address code

Intermediate Code Generation

- Intermediate language between source and target
- Multiple machines can be targeted
- Attaching a different backend for each machine
- Intel, AMD, IBM machines can all share the same parser for C/C++
- Multiple source languages can be supported
- Attaching a different frontend (parser) for each language
- Eg. C and C++ can share the same backend
- Allow independent code optimizations
- Multiple levels of intermediate representation
\square Supporting the needs of different analyses and optimizations

IR In Compilers

- Internal representation of input program by compilers
- Source code of the input program
- Results of program analysis
- Control-flow graphs, data-flow graphs, dependence graphs
- Symbol tables
- Book-keeping information for translation (eg., types and addresses of variables and subroutines)
- Selecting IR --- depends on the goal of compilation
- Source-to-source translation: close to source language
\square Parse trees and abstract syntax trees
- Translating to machine code: close to machine code
- Linear three-address code
- External format of IR
- Support independent passes over IR

Abstraction Level in IR

- Source-level IR
- High-level constructs are readily available for optimization
- Array access, loops, classes, methods, functions
- Machine-level IR
- Expose low-level instructions for optimization
- Array address calculation, goto branches

Source-level tree

loadI $1=>$ r1
sub rj, r1 = r2
loadI 10 => r3
mult r2, r3 = r r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
add r7, r6 => r8
load r8 => rAij
ILOC code

Parse Tree And AST

- Graphically represent grammatical structure of input program
- Parse tree: tree representation of syntax derivations
- AST: condensed form of parse tree
- Operators and keywords do not appear as leaves
- Chains of single productions are collapsed

Parse trees

Abstract syntax trees

Implementing AST in C

Grammar:
 E :: = E + T | E - T | T T::= (E) | id | num

- Define different kinds of AST nodes
- typedef enum \{PLUS, MINUS, ID, NUM\} ASTNodeTag;
- Define AST node types
typedef struct ASTnode \{
AstNodeTag kind;
union \{ symbol_table_entry* id_entry;
int num_value;
struct ASTnode* opds[2];
\} description;
\};
- Define AST node construction routines
- ASTnode* mkleaf_id(symbol_table_entry* e);
- ASTnode* mkleaf_num(int n);
- ASTnode* mknode_plus(struct ASTnode* opd1, struct ASTNode* opd2);
- ASTnode* mknode_minus(struct ASTnode* opd1, struct ASTNode* opd2);

Implementing AST in Java

Grammar:
 $$
\begin{aligned} & E::=E+T|E-T| T \\ & T::=(E) \mid \text { id | num } \end{aligned}
$$

- Define AST node
abstract class ASTexpression \{
public System.String toString();
\}
class ASTidentifier extends ASTexpression \{ private symbol_table_entry id_entry; ... \}
class ASTvalue extends ASTexpression \{ private int num_value; ... \}
class ASTplus extends ASTexpression \{ private ASTnode opds[2]; ... \}
Class ASTminus extends ASTexpression \{ private ASTnode opds[2]; ... \}
- Define AST node construction routines
- ASTexpression mkleaf_id(symbol_table_entry e)
\{ return new ASTidentifier(e); \}
- ASTexpression mkleaf_num(int n)
\{ return new ASTvalue(n); \}
- ASTexpression mknode_plus(ASTnode opd1, struct ASTNode opd2)
\{ return new ASTplus(opd1, opd2);
- ASTexpression mknode_minus(ASTnode opd1, struct ASTNode opd2)
\{ return new ASTminus(opd1, opd2);

Constructing AST

- Use syntax-directed definitions
- Associate each non-terminal with an AST
\square A pointer to an AST node: E.nptr T.nptr
- Evaluate synthesized attribute bottom-up
- From children ASTs, compute AST of the parent

```
E ::= E1 + T { E.nptr=mknode_plus(E1.nptr,T.nptr); }
E ::= E1 - T { E.nptr=mknode_minus(E1.nptr,T.nptr); }
E ::= T { E.nptr=T.nptr; }
T ::= (E) {T.nptr=E.nptr; }
T ::= id { T.nptr=mkleaf_id(id.entry); }
T::= num { T.nptr=mkleaf_num(num.val); }
```

Exercise: what is the AST for 5 + (15-b)?
What if top-down parsing is used (need to eliminate left-recursion)?

Example: AST for 5+(15-b)

Bottom-up parsing: evaluate attribute at each reduction

Parse tree for 5+(15-b)

1. reduce 5 to T 1 using $\mathrm{T}::=$ num: T1.nptr $=$ leaf(5)
2. reduce T 1 to E 1 using $\mathrm{E}::=\mathrm{T}$:

E1.nptr = T1.nptr $=\operatorname{leaf}(5)$
3. reduce 15 to T 2 using $\mathrm{T}::=$ num:

T2.nptr=leaf(15)
4. reduce T 2 to E 2 using $\mathrm{E}::=\mathrm{T}$:

E2.nptr=T2.nptr $=$ leaf(15)
5. reduce b to T 3 using $\mathrm{T}::=$ num:

T3.nptr=leaf(b)
6. reduce E2-T3 to E3 using E::=E-T:

E3.nptr=node('-',leaf(15),leaf(b))
7. reduce (E3) to T 4 using $\mathrm{T}::=(\mathrm{E})$:

T4.nptr=node('-',leaf(15),leaf(b))
8. reduce $\mathrm{E} 1+\mathrm{T} 4$ to E 5 using $\mathrm{E}::=\mathrm{E}+\mathrm{T}$:

E5.nptr=node('+',leaf(5), node('-',leaf(15),leaf(b)))

Symbol tables

- Symbol tables
- Record information about names defined in programs
\square Types of variables and functions
\square Additional properties (eg., static, global, scope)
- Contain information about context of program fragment
\square Can use different symbol tables for different purposes
\square Naming conflicts
- The same name may represent different things in different places
\square Use separate symbol tables for names in different scopes
\square Multiple layers of symbol tables for nested scopes
- Implementation of symbol tables
- Map names to additional information (types,values,etc.)
- Efficient implementation: using hash tables

Implementing symbol tables

- Interface
- Lookup(name)
- Returns the record for name if one exists in the table; otherwise, indicates that name is not found
- Insert(name, record)
\square Stores the information in record in the table for name.
- Symbol tables in nested scopes
- StartNewScope()
- Increment the current scope level and creates a new symbol table
- ExitScope()
- Changes the current-level symbol table pointer so that it points to the symbol table of surrounding scope
- Use a global symbol table pointer to keep track of the current scope

Linear IR

- Low level IL before final code generation
- A linear sequence of low-level instructions
- Implemented as a collection (table or list) of tuples
- Similar to assembly code for an abstract machine
- Explicit conditional branches and goto jumps
\square Reflect instruction sets of the target machine
- Stack-machine code and three-address code

Stack-machine code two-address code

Push 2 Push y Multiply Push x subtract	MOV 2 => t1 MOV y $=>$ t2 MULT t2 $=>$ t1 MOV $x=>t 4$ SUB $t 1=>$ t4

three-address code

$$
\begin{aligned}
& \mathrm{t} 1:=2 \\
& \mathrm{t} 2:=\mathrm{y} \\
& \mathrm{t} 3:=\mathrm{t} 1 * \mathrm{t} 2 \\
& \mathrm{t} 4:=\mathrm{x} \\
& \mathrm{t} 5:=\mathrm{t} 4-\mathrm{t} 3
\end{aligned}
$$

Linear IR for $\mathbf{x - 2 * y}$

Stack-machine code

- Also called one-address code
- Assumes an operand stack
- Take operands from top of stack; push results onto the stack
- Need special operations such as
- Swapping two operands on top of the stack
- Compact in space, simple to generate and execute
- Most operands do not need names
- Results are transitory unless explicitly moved to memory
- Used as IR for Smalltalk and Java

Stack-machine code for $x-2 * y$

Push 2
Push y
Multiply
Push x
subtract

Three address code

- Each instruction contains at most two operands and one result.
- Typical forms include
- Arithmetic operations: x := y op z | $x:=o p y$
- Data movement: $x:=y[z]$ | $x[z]:=y ~ \mid x:=y$
- Control flow: if y op z goto x | goto x
- Function call: param x | return y | call foo
- Each instruction maps to at most a few machine instructions
- Additional constraints depend on target machine instructions
- Eg., for $x:=y$ op z and $x:=o p y$
all operands must be in registers \rightarrow all operands must be temporaries?
- Reasonably compact, while allowing reuse of names and values

Three-address code for $x-2 * y$

$$
\begin{aligned}
& \text { t1 }:=2 \\
& \text { t2 }:=y \\
& \text { t3 }:=\mathrm{t} 1 * \mathrm{t} 2 \\
& \mathrm{t} 4:=\mathrm{x} \\
& \mathrm{t} 5:=\mathrm{t} 4-\mathrm{t} 3
\end{aligned}
$$

Storing Three-Address Code

- Store all instructions in a quadruple table
- Every instruction has four fields: op, arg1, arg2, result
- The label of instructions \rightarrow index of instruction in table

Three-address code
Quadruple entries

$$
\begin{aligned}
\mathrm{t} 1 & :=-\mathrm{c} \\
\mathrm{t} 2 & :=\mathrm{b} * \mathrm{t} 1 \\
\mathrm{t} 3 & :=-\mathrm{c} \\
\mathrm{t} 4 & :=\mathrm{b} * \mathrm{t} 3 \\
\mathrm{t} 5 & :=\mathrm{t} 2+\mathrm{t} 4 \\
\mathrm{a} & :=\mathrm{t} 5
\end{aligned}
$$

	op	arg1	arg2	result
(0)	Uminus	c		t1
(1)	Mult	b	t1	t2
(2)	Uminus	c		t3
(3)	Mult	b	t3	t4
(4)	Plus	t2	t4	t5
(5)	Assign	t5		a

Alternative: store all the instructions in a singly/doubly linked list

Mapping Storages To Variables

- Variables are placeholders for values
- Every variable must have a location to store its value - Register, stack, heap, static storage
- Values need to be loaded into registers before operation x and y are in registers x and y are in memory

Three-address code for $x-2 * y$:

$$
\begin{aligned}
& \text { t1 }:=2 \\
& \text { t2 }:=\text { t1 } * y \\
& \text { t3 }:=\text { x-t2 }
\end{aligned}
$$

```
t1:= 2
t2:= y
t3:= t1*t2
t4:= x
t5:= t4-t3
```

Which variables can be kept in registers? Which variables must be stored in memory?

```
void A(int b, int *p)
{
    int a, d;
    a = 3; d = foo(a); *p =b+d;
}
```


Appendix: Control-flow graph

- Graphical representation of runtime control-flow paths
- Nodes of graph: basic blocks (straight-line computations)
- Edges of graph: flows of control
- Useful for collecting information about computation
- Detect loops, remove redundant computations, register allocation, instruction scheduling...
- Alternative CFG: Each node contains a single statement

Appendix: Dependence graph

- Graphical representation of reordering constraints between statements
- Each node n is a single operation/statement
- Edge ($\mathrm{n} 1, \mathrm{n} 2$) indicates n 2 uses result of n 1
- The order of evaluating n1,n2 cannot be reversed
- Graph is acyclic within each basic block; is cyclic if loops exist
- Used in reordering transformations
- Instruction scheduling, loop transformations
- Construction
- For each pair of statements, evaluate ordering constraint
a: $r 1:=w$
b: $r 1:=r 1+r 1$
c: r2 $:=x$
d: $r 1:=r 1 * r 2$
e: $r 2:=y$
f: $r 1:=r 1 * r 2$
g: $r 2:=z$
h: $r 1:=r 1 * r 2$
i: return $r 1$

Appendix:

Static Single-Assignment

- A variable can hold multiple values throughout its lifetime
- Mapping multiple values to a name can hide opportunities of optimization
- Static single-assignment form (SSA)
- Each variable is defined by a single operation in the code
- Each use of variable refers to a single definition
- Use \varnothing-functions to merge definitions from different control-flow paths

$$
\begin{gathered}
x:=\ldots \\
y:=\ldots \\
\text { while }(x<100) \\
x:=x+1 \\
y:=y+x
\end{gathered}
$$

	$x 0:=\ldots$
	$y 0:=\ldots$
	if $(x 0<100)$ goto loop
	goto next
loop:	$x 1:=\varnothing(x 0, x 2)$
	$y 1:=\varnothing(y 0, y 2)$
	$x 2:=x 1+1$
	$y 2:=y 1+x 2$
	if $(x 2<100)$ goto loop
next:	$x 3:=\varnothing(x 0, x 2)$
	$y 3:=\varnothing(y 0, y 2)$

