
cs5363 1

Intermediate
Representation

Abstract syntax tree, control-
flow graph, three-address code

cs5363 2

Intermediate Code Generation
 Intermediate language between source and

target
 Multiple machines can be targeted

 Attaching a different backend for each machine
 Intel, AMD, IBM machines can all share the same parser

for C/C++

 Multiple source languages can be supported
 Attaching a different frontend (parser) for each language
 Eg. C and C++ can share the same backend

 Allow independent code optimizations
 Multiple levels of intermediate representation

 Supporting the needs of different analyses and
optimizations

cs5363 3

IR In Compilers
 Internal representation of input program by compilers

 Source code of the input program
 Results of program analysis

 Control-flow graphs, data-flow graphs, dependence graphs
 Symbol tables

 Book-keeping information for translation (eg., types and addresses
of variables and subroutines)

 Selecting IR --- depends on the goal of compilation
 Source-to-source translation: close to source language

 Parse trees and abstract syntax trees
 Translating to machine code: close to machine code

 Linear three-address code

 External format of IR
 Support independent passes over IR

cs5363 4

Abstraction Level in IR
 Source-level IR

 High-level constructs are readily available for optimization
 Array access, loops, classes, methods, functions

 Machine-level IR
 Expose low-level instructions for optimization

 Array address calculation, goto branches

Subscript

A i j

loadI 1 => r1
sub rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
add r7, r6 => r8
load r8 => rAij

Source-level tree
ILOC code

cs5363 5

Parse Tree And AST
 Graphically represent grammatical structure of input program

 Parse tree: tree representation of syntax derivations
 AST: condensed form of parse tree

 Operators and keywords do not appear as leaves
 Chains of single productions are collapsed

If-then-else

B S1 S2

S

IF B THEN S1 ELSE S2

E

E + T

5T

3

+

3 5

Parse trees Abstract syntax trees

cs5363 6

Implementing AST in C

 Define different kinds of AST nodes
 typedef enum {PLUS, MINUS, ID, NUM} ASTNodeTag;

 Define AST node types
typedef struct ASTnode {
 AstNodeTag kind;
 union { symbol_table_entry* id_entry;
 int num_value;
 struct ASTnode* opds[2];
 } description;
};

 Define AST node construction routines
 ASTnode* mkleaf_id(symbol_table_entry* e);
 ASTnode* mkleaf_num(int n);
 ASTnode* mknode_plus(struct ASTnode* opd1, struct ASTNode* opd2);
 ASTnode* mknode_minus(struct ASTnode* opd1, struct ASTNode* opd2);

E ::= E + T | E – T | T
T ::= (E) | id | num

Grammar:

cs5363 7

Implementing AST in Java

 Define AST node
abstract class ASTexpression {
 public System.String toString();
}
class ASTidentifier extends ASTexpression { private symbol_table_entry id_entry; … }
class ASTvalue extends ASTexpression { private int num_value; … }
class ASTplus extends ASTexpression { private ASTnode opds[2]; … }
Class ASTminus extends ASTexpression { private ASTnode opds[2]; ... }

 Define AST node construction routines
 ASTexpression mkleaf_id(symbol_table_entry e)
 { return new ASTidentifier(e); }
 ASTexpression mkleaf_num(int n)
 { return new ASTvalue(n); }
 ASTexpression mknode_plus(ASTnode opd1, struct ASTNode opd2)
 { return new ASTplus(opd1, opd2);
 ASTexpression mknode_minus(ASTnode opd1, struct ASTNode opd2)
 { return new ASTminus(opd1, opd2);

E ::= E + T | E – T | T
T ::= (E) | id | num

Grammar:

cs5363 8

Constructing AST
 Use syntax-directed definitions

 Associate each non-terminal with an AST
 A pointer to an AST node: E.nptr T.nptr

 Evaluate synthesized attribute bottom-up
 From children ASTs, compute AST of the parent

E ::= E1 + T { E.nptr=mknode_plus(E1.nptr,T.nptr); }
E ::= E1 – T { E.nptr=mknode_minus(E1.nptr,T.nptr); }
E ::= T { E.nptr=T.nptr; }
T ::= (E) {T.nptr=E.nptr; }
T ::= id { T.nptr=mkleaf_id(id.entry); }
T ::= num { T.nptr=mkleaf_num(num.val); }

Exercise: what is the AST for 5 + (15-b)?
 What if top-down parsing is used
 (need to eliminate left-recursion)?

cs5363 9

Example: AST for 5+(15-b)

 1. reduce 5 to T1 using T::=num:
 T1.nptr = leaf(5)
 2. reduce T1 to E1 using E::=T:
 E1.nptr = T1.nptr = leaf(5)
 3. reduce 15 to T2 using T::=num:
 T2.nptr=leaf(15)
 4. reduce T2 to E2 using E::=T:
 E2.nptr=T2.nptr = leaf(15)
 5. reduce b to T3 using T::=num:
 T3.nptr=leaf(b)
 6. reduce E2-T3 to E3 using E::=E-T:
 E3.nptr=node(‘-’,leaf(15),leaf(b))
 7. reduce (E3) to T4 using T::=(E):
 T4.nptr=node(‘-’,leaf(15),leaf(b))
 8. reduce E1+T4 to E5 using E::=E+T:
 E5.nptr=node(‘+’,leaf(5),
 node(‘-’,leaf(15),leaf(b)))

Parse tree for 5+(15-b)

E5

E1 + T4

(E3)

E2 - T3

bT2

15

T1

5

Bottom-up parsing: evaluate attribute at each reduction

cs5363 10

Symbol tables
 Symbol tables

 Record information about names defined in programs
 Types of variables and functions
 Additional properties (eg., static, global, scope)

 Contain information about context of program fragment
 Can use different symbol tables for different purposes

 Naming conflicts
 The same name may represent different things in

different places
 Use separate symbol tables for names in different scopes
 Multiple layers of symbol tables for nested scopes

 Implementation of symbol tables
 Map names to additional information (types,values,etc.)
 Efficient implementation: using hash tables

cs5363 11

Implementing symbol tables
 Interface

 Lookup(name)
 Returns the record for name if one exists in the table; otherwise,

indicates that name is not found

 Insert(name, record)
 Stores the information in record in the table for name.

 Symbol tables in nested scopes
 StartNewScope()

 Increment the current scope level and creates a new symbol table

 ExitScope()
 Changes the current-level symbol table pointer so that it points to

the symbol table of surrounding scope

 Use a global symbol table pointer to keep track of the
current scope

cs5363 12

Linear IR
 Low level IL before final code generation

 A linear sequence of low-level instructions
 Implemented as a collection (table or list) of tuples

 Similar to assembly code for an abstract machine
 Explicit conditional branches and goto jumps

 Reflect instruction sets of the target machine
 Stack-machine code and three-address code

Push 2
Push y
Multiply
Push x
subtract

Linear IR for x – 2 * y

MOV 2 => t1
MOV y => t2
MULT t2 => t1
MOV x => t4
SUB t1 => t4

Stack-machine code two-address code three-address code

t1 := 2
t2 := y
t3 := t1*t2
t4 := x
t5 := t4-t3

cs5363 13

Stack-machine code
 Also called one-address code

 Assumes an operand stack
 Take operands from top of stack; push results onto the stack
 Need special operations such as

 Swapping two operands on top of the stack

 Compact in space, simple to generate and execute
 Most operands do not need names
 Results are transitory unless explicitly moved to memory

 Used as IR for Smalltalk and Java

Push 2
Push y
Multiply
Push x
subtract

Stack-machine code for x – 2 * y

cs5363 14

Three address code
 Each instruction contains at most two operands and one result.
 Typical forms include

 Arithmetic operations: x := y op z | x := op y
 Data movement: x := y [z] | x[z] := y | x := y
 Control flow: if y op z goto x | goto x
 Function call: param x | return y | call foo

 Each instruction maps to at most a few machine instructions
 Additional constraints depend on target machine instructions

 Eg., for x := y op z and x := op y
 all operands must be in registers all operands must be temporaries?

 Reasonably compact, while allowing reuse of names and values

t1 := 2
t2 := y
t3 := t1*t2
t4 := x
t5 := t4-t3

Three-address code for x – 2 * y

cs5363 15

Storing Three-Address Code

at5Assign(5)

t5t4t2Plus(4)

t4t3bMult(3)

t3cUminus(2)

t2t1bMult(1)

t1cUminus(0)

resultarg2arg1opt1 := - c
t2 := b * t1
t3 := -c
t4 := b * t3
t5 := t2 + t4
a := t5

Three-address code

 Store all instructions in a quadruple table
 Every instruction has four fields: op, arg1, arg2, result
 The label of instructions index of instruction in table

Quadruple entries

Alternative: store all the instructions in a singly/doubly linked list
 What is the tradeoff?

cs5363 16

Mapping Storages To Variables
 Variables are placeholders for values

 Every variable must have a location to store its value
 Register, stack, heap, static storage

 Values need to be loaded into registers before operation

t1 := 2
t2 := y
t3 := t1*t2
t4 := x
t5 := t4-t3

Three-address code
for x – 2 * y:

t1 := 2
t2 := t1*y
t3 := x-t2

x and y are in registers x and y are in memory

Which variables can be
kept in registers?
Which variables must be
stored in memory?

void A(int b, int *p)
{
 int a, d;
 a = 3; d = foo(a); *p =b+d;
}

cs5363 17

Appendix: Control-flow graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

……
 i = 0
 while (i < 50) {
 t1 = b * 2;
 a = a + t1;
 i = i + 1;
 }
….

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs5363 18

Appendix: Dependence graph
 Graphical representation of reordering constraints between

statements
 Each node n is a single operation/statement
 Edge (n1,n2) indicates n2 uses result of n1

 The order of evaluating n1,n2 cannot be reversed
 Graph is acyclic within each basic block; is cyclic if loops exist

 Used in reordering transformations
 Instruction scheduling, loop transformations

 Construction
 For each pair of statements, evaluate ordering constraint

a: r1 := w
b: r1 := r1 + r1
c: r2 := x
d: r1 := r1 * r2
e: r2 := y
f: r1 := r1 * r2
g: r2 := z
h: r1 := r1 * r2
i: return r1

a

b
c

d e

f g

h
i

Dependence graph

cs5363 19

Appendix:
Static Single-Assignment
 A variable can hold multiple values throughout its lifetime

 Mapping multiple values to a name can hide opportunities of
optimization

 Static single-assignment form (SSA)
 Each variable is defined by a single operation in the code
 Each use of variable refers to a single definition
 Use ∅-functions to merge definitions from different control-flow paths

x := …
y := …
while (x < 100)
 x := x + 1
 y := y + x

 x0 := …
 y0 := …
 if (x0 < 100) goto loop
 goto next
loop: x1 := ∅(x0,x2)
 y1 := ∅(y0,y2)
 x2 := x1 + 1
 y2 := y1 + x2
 if (x2 < 100) goto loop
next: x3 := ∅(x0,x2)
 y3 := ∅(y0,y2)

SSA:

