Instruction Scheduling

Instruction scheduling

\square Reorder operations to reduce running time

- Different operations take different number of cycles
\square Referencing values not yet ready causes operation pipeline to stall
- Processors can issue multiple instructions every cycle
\square VLIW processors: can issue one operation per functional unit in each cycle
- Superscalar processors: tries to issue the next k instructions if possible

Instruction Scheduling Example

Assumptions: memory load: 3 cycles; mult: 2 cycles; other: 1 cycle

star		start	
1	loadAI rarp, @w \rightarrow r1	1	loadAI rarp, @
4	add $\mathrm{r} 1, \mathrm{r} 1 \rightarrow \mathrm{r}$ (2	loadAI rarp, @x \rightarrow r2
5	loadAI rarp, @x \rightarrow r2	3	loadAi rarp, @y \rightarrow r3
8	mult $\mathrm{r} 1, \mathrm{r} 2 \rightarrow \mathrm{r} 1$	4	add $\mathrm{r} 1, \mathrm{r} 1 \rightarrow \mathrm{r} 1$
9	loadAi rarp, @y \rightarrow r2	5	mult $\mathrm{r} 1, \mathrm{r} 2 \rightarrow \mathrm{r} 1$
12	mult $\mathrm{r} 1, \mathrm{r} 2 \rightarrow \underset{\mathrm{ra}}{\boldsymbol{r}}$	6	loadAI rarp, @z \rightarrow r2
13	loadAI rarp, @z \rightarrow r2	7	mult $\mathrm{r} 1, \mathrm{r} 3 \rightarrow \mathrm{r} 1$
16	mult $\mathrm{r} 1, \mathrm{r} 2 \xrightarrow{\boldsymbol{r}} \mathrm{r} 1$	9	mult $\mathrm{r} 1, \mathrm{r} 2 \rightarrow \mathrm{r} 1$
18	storeAI r1 $\boldsymbol{\rightarrow}$ rarp, 0	11	storeAI r1 \rightarrow rarp, 0

- Instruction level parallelism (ILP)
- Independent operations can be evaluated in parallel
- Given enough ILP, a scheduler can hide memory and functional-unit latency
- Must not violate original semantics of input code

Dependence Graph

- Dependence/precedence graph $G=(N, E)$
- Each node $n \in N$ is a single operation
- type(n) : type of functional-unit that can execute n
\square delay (n) : number of cycles required to complete n
- Edge $(\mathrm{n} 1, \mathrm{n} 2) \in \mathrm{N}$ indicates n 2 uses result of n 1 as operand
- G is acyclic within each basic block

Anti Dependences

```
a: loadAI rarp, @w -> r1
b: add r1,r1 }->\textrm{r}
c: loadAI rarp, @x }->\mathrm{ r2
d: mult r1,r2 }->\mathrm{ r1
e: loadAi rarp, @y }->\mathrm{ r2
f: mult r1,r2 }->\mathrm{ r1
g: loadAI rarp, @z }->\mathrm{ r2
h: mult r1,r2 }->\mathrm{ r1
i: storeAI r1 }\quad->\mathrm{ rarp, 0
```


- e cannot be issued before d even if e does not use result of d
- e overwrites the value of $r 2$ that d uses
- There is an anti-dependence from d to e
- To handle anti-dependences, schedulers can
- Add anti-dependences as new edges in dependence graph; or
- Rename registers to eliminate anti-dependences
\square Each definition receives a unique name

The scheduling problem

- Given a dependence graph $D=(N, E)$, a schedule S
- maps each node $n \in N$ to a cycle number to issue n
- Each schedule S must satisfy three constraints
- Well-formed: for each node $n \in N, S(n)>=1$;
there is at least one node $n \in N$ such that $S(n)=1$
- Correctness: if $(\mathrm{n} 1, \mathrm{n} 2) \in \mathrm{E}$, then $\mathrm{S}(\mathrm{n} 1)+$ delay $(\mathrm{n} 1)<=\mathrm{S}(\mathrm{n} 2)$
- Feasibility:
for each cycle $i>=1$ and each functional-unit type t, number of node n where type $(n)=t$ and $S(n)=i$
\leq number of functional-unit t on the target machine

Quality of Scheduling

- Given a well-formed schedule S that is both correct and feasible, the length of the schedule is

$$
L(s)=\max _{n \in N}(S(n)+\operatorname{delay}(n))
$$

- A schedule S is time-optimal if it is the shortest
- For all other schedules Sj (which contain the same set of operations),
$\mathbf{L}(\mathbf{S})<=\mathbf{L}(\mathbf{S j}) \quad$ (\mathbf{S} has shorter length than $\mathbf{S j}$)

Instruction Scheduling

- Measures of schedule quality
- Execution time
- Demands for registers
- Try to minimize the number of live values at any point
- Number of resulting instructions from combining operations into VLIW
- Demands for power --- efficiency in using functional units
- Difficulty of instruction scheduling
- Balancing multiple requirements while searching for timeoptimality
- Register pressure, readiness of operands, combining multiple operations to form a single instruction
- Local instruction scheduling (scheduling on a single basic block) is NP complete for all but the most simplistic architectures
- Compilers produce approximate solutions using greedy heuristics

Critical Path of Dependence

```
a: loadAI rarp, @w -> r1
b: add r1,r1 }->\textrm{r}
c: loadAI rarp, @x }->\mathrm{ r2
d: mult r1,r2 }->\mathrm{ r1
e: loadAi rarp, @y }->\mathrm{ r2
f: mult r1,r2 }->\mathrm{ r1
g: loadAI rarp, @z }->\mathrm{ r2
h: mult r1,r2 }->\mathrm{ r1
i: storeAI r1 }\quad->\mathrm{ rarp, 0
```


- Given a dependence graph D
- Each node ni can start only if all other nodes that ni depend on have finished
- Length of any dependence path n1n2...ni (any path in D) is delay(n1)+delay(n2)+...+delay(ni)
- Critical path: the longest path in the dependence graph
- should schedule nodes on critical path as early as possible

List Scheduling

\square A greedy heuristic to scheduling operations in a single basic block

- The most dominating approach since 1970s
- Find reasonable scheduling and adapts easily to different processor architectures
- List scheduling steps
- Build a dependence graph
- Assign priorities to each operation n
\square Eg., the length of longest latency path from n to end
- Iteratively select an operation and schedule it
\square Keep a ready list of operations with operands available

List scheduling algorithm

Example:

```
a: loadAI rarp, @w -> r1
b}\mathrm{ : add }\textrm{r}1,\textrm{r}1\quad->\textrm{r}
c: loadAI rarp, @x }->\mathrm{ r3
d: mult r2,r3 }->\mathrm{ r4
e: loadAi rarp, @y }->\mathrm{ r5
f: mult r4, r5 }->\mathrm{ r6
g: loadAI rarp, @z -> r7
h: mult r6, r7 }->\mathrm{ r8
i: storeAI r8 }\quad->\mathrm{ rarp, 0
```

a 13 Dependence graph 10

Cycle : = 1
Ready := leaves of D
Active := \varnothing
While (Ready \cup Active $\neq \varnothing$)
if Ready $\neq \varnothing$ then
remove top priority i from Ready
S(i) := Cycle
add i to Active
Cycle ++
for each $\mathrm{i} \in$ Active
if $S(\mathrm{i})+\operatorname{delay}(\mathrm{i})<=$ Cycle then remove i from Active for each successor j of i in D Mark edge (i, j) ready if all edges to j are ready then add j to Ready

Example: list scheduling

cycle	Ready	active	integer	memory	start	
1	ceg	a		a		
2	eg	C		C	2	loadAI rarp, @x \rightarrow r2
3	g	e		e	3	loadAi rarp, @y \rightarrow r3
4	g	b	b		5	$\text { add } \quad r 11, r 1 \quad \rightarrow r 1$
5	g	d	d		6	loadAI rarp, @z \rightarrow r2
6		g		g	9	mult $\mathrm{r} 1, \mathrm{r} 3 \rightarrow \mathrm{r} 1$ mult $\mathrm{r} 1, \mathrm{r} 2 \rightarrow \mathrm{r} 1$
7		f	f		11	storeAI r1 $\quad \rightarrow$ rarp, 0
8						
9		h	h			
10						
11		i	i			
				c55363		12

Complexity of List Scheduling

- Asymptotic complexity
$\square O(N \log N+E)$ assuming $D=(N, E)$
- Assume for each $n \in N$, delay(n) is a small constant
\square When making each scheduling decision
- Scan Ready list to find the top-priority op
$\square \mathrm{O}(\log \mathrm{N})$ if using priority queue
- Scan Active list to modify Ready list
\square Separate ops in Active list according to their complete cycles
\square Each edge must be marked as ready once: O(E)

The list-scheduling algorithm

- How good is the solution?
- Optimal if a single op is ready at any point
- If multiple ops are ready,
\square Results depend on assignment of priority ranking
- Not stable in tie breaking of same-ranking operations
- Complications
- Wait time at basic block boundaries
- Wait for all ops in the previous basic block to complete
- Improvement: trace scheduling (across block boundaries)
- Scheduling functional units in VLIW instructions
- Must allocate operations on specific functional units
- Uncertainty of memory operations
- Memory access may take different number of cycles
- depending on whether it is in the cache

Scheduling Larger Regions

- Superlocal scheduling
- Work on one EBB at a time
- Three EBBs: AB, ACD, ACE
- Block A appears in two EBBs
- Moving operations to A may lengthen other EBBs
- May need compensation code in less frequently run EBBs
- Make other EBBs even longer
- More aggressive superlocal scheduling
- Clone blocks to create longer EBBs
- Apply loop unrolling

Trace Scheduling

- Start with execution counts for control-flow edges
- Obtained by profiling with representative data
- A "trace" is a maximal length acyclic path through the CFG
- Pick the "hot" path to optimize
- At the cost of possibly lengthening less frequently executed paths
- Trace Scheduling Entire CFG
- Pick \& schedule hot path
- Insert compensation code
- Remove hot path from CFG
- Repeat the process until CFG is empty

Summary

\square Instruction scheduling

- Reordering of instructions to enhance finegrained parallelism within CPU
- Dependence based approach
\square List scheduling
- Heuristic to scheduling operations in a single basic block
- Trace scheduling
- Extending list scheduling to go beyond single basic blocks

