Instruction Scheduling

555555

Instruction scheduling

Original) Instruction Reordered
code Scheduler code

0 Reorder operations to reduce running time

= Different operations take different number of cycles

Referencing values not yet ready causes operation pipeline
to stall

= Processors can issue multiple instructions every cycle

VLIW processors: can issue one operation per functional
unit in each cycle

Superscalar processors: tries to issue the next k
instructions if possible

cs5363

Assumptions: memory load: 3 cycles; mult: 2 cycles; other: 1 cycle

start

1
4
5
8
9
12
13
16
18

loadAI rarp, @w = rl

add rl, rl = rl
loadAI rarp, @x = r2
mult rl1,r2 =ril
loadAi rarp, @y = r2
mult rl1,r2 =rl
loadAI rarp, @z = r2
mult rl1,r2 =ril
storeAl r1 = rarp, O

start

H ONOUTRA,WNR

o Instruction level parallelism (ILP)
Independent operations can be evaluated in parallel

o Given enough ILP, a scheduler can hide memory and
functional-unit latency

Must not violate original semantics of input code

cs5363

loadAI rarp, @w = rl
loadAI rarp, @x = r2

loadAi rarp, @y = r3
add ri, ri =ril
mult rl1,r2 =rl
loadAI rarp, @z = r2
mult r1, r3 = rl
mult r1,r2 =rl
storeAl r1 = rarp, O

Dependence Graph

o Dependence/precedence graph G = (N,E)

= Each node n € N is a single operation
type(n) : type of functional-unit that can execute n
delay(n): number of cycles required to complete n
= Edge (n1,n2) € N indicates n2 uses result of nl1 as operand

= G is acyclic within each basic block

a: loadAI rarp, @w =2 rl a Dependence graph
b: add ri,ri =>rl b/ C

c: loadAl rarp, @x = r2

d:mult rl1,r2 =rl \‘d/ €

e: loadAi rarp, @y 9 r2 N7

fimult rl,r2 =ril f\ /

g: loadAl rarp, @z = r2 A
h: mult rl,r2 =rl \,
i: storeAl rl = rarp, O

g

cs5363 4

Anti Dependences

a: loadAl rarp, @w = rl

b: add rl, rl = rl
c: loadAl rarp, @x = r2
d:mult rl1,r2 =rl
e: loadAi rarp, @y = r2
fimult rl,r2 =ril
g: loadAl rarp, @z = r2
h: mult r1,r2 = rl

storeAl r1 = rarp, O

Dependence graph

/ c
\ .
N 7
AW

N

O e cannot be issued before d even if e does not use result of d
= e overwrites the value of r2 that d uses
= There is an anti-dependence from d to e
o To handle anti-dependences, schedulers can
= Add anti-dependences as new edges in dependence graph; or
= Rename registers to eliminate anti-dependences
Each definition receives a unique name

cs5363 5

The scheduling problem

o Given a dependence graph D = (N,E), a schedule S
= maps each node n € N to a cycle number to issue n

o Each schedule S must satisfy three constraints

= Well-formed: for each node n €N, S(n) >= 1;

there is at least one node n € N such that S(n) = 1
= Correctness: if (n1,n2) € E, then S(n1) + delay(nl) <= S(n2)
= Feasibility:
for each cycle i >= 1 and each functional-unit type t,
number of node n where type(n)=t and S(n)=i
< number of functional-unit t on the target machine

cs5363 6

Quality of Scheduling

o Given a well-formed schedule S that is both correct and
feasible, the length of the schedule is

L(s) = max(S(n) + delay(n))
neN

O A schedule S is time-optimal if it is the shortest

= For all other schedules Sj (which contain the same set of
operations),

L(S) <=L(S}) (S has shorter length than Sj)

cs5363

Measures of schedule quality
Execution time

Demands for registers
Try to minimize the number of live values at any point

Number of resulting instructions from combining operations
into VLIW

Demands for power --- efficiency in using functional units

Difficulty of instruction scheduling
Balancing multiple requirements while searching for time-
optimality
Register pressure, readiness of operands, combining multiple
operations to form a single instruction
Local instruction scheduling (scheduling on a single basic
block) is NP complete for all but the most simplistic
architectures

Compilers produce approximate solutions using greedy
heuristics

cs5363

Critical Path of Dependence

a: loadAI rarp, @w =2 rl a Dependence graph
b: add ri, ri =rl b/ C

c: loadAl rarp, @x = r2

d:mult rl1,r2 =rl \d/ €

e: loadAi rarp, @y & r2 N7

fimult rl,r2 =ril f\ /

g
g: loadAl rarp, @z = r2 h

h: mult r1,r2 = rl \,
I: storeAlrl = rarp, O

o Given a dependence graph D

= Each node ni can start only if all other nodes that ni depend on
have finished

= Length of any dependence path n1n2...ni (any path in D) is
delay(nl)+delay(n2)+...4+delay(ni)

o Critical path: the longest path in the dependence graph

= should schedule nodes on critical path as early as possible

cs5363 9

o A greedy heuristic to scheduling operations in a
single basic block
The most dominating approach since 1970s
Find reasonable scheduling and adapts easily to different
processor architectures
o List scheduling steps
Build a dependence graph

Assign priorities to each operation n
Eg., the length of longest latency path from n to end

Iteratively select an operation and schedule it
Keep a ready list of operations with operands available

cs5363 10

Example:

a: loadAl rarp, @w = rl
b: add rl, rl = 12
c: loadAI rarp, @x = r3
d:mult r2,r3 =r4
e: loadAi rarp, @y = r5
fimult r4,r5 = r6
g: loadAl rarp, @z = r7
h: mult r6, r7 = r8
i: storeAl r8 = rarp, O

19/
\

a 13 Dependence graph

C12

e10

g

\/)8
\hS
i3

Cycle :=1
Ready := leaves of D
Active := U

While (Ready U Active # @)

if Ready # & then
remove top priority i from Ready
S(i) := Cycle
add i to Active
Cycle ++
for each i € Active
if S(i) + delay(i) <= Cycle then
remove i from Active
for each successor jofiin D
Mark edge (i,j) ready
if all edges to j are ready
then add j to Ready

cs5363

Example: list scheduling

cycle | Ready | active |integer | memory
1 ceg a a

2 eg C C

3 g e e

4 g b b

5 g d d

6 g g

Vs f f

8

9 h h

=
= | O

cs5363

start

H ONOUDRWNRE

loadAI rarp, @w = rl
loadAI rarp, @x = r2
loadAi rarp, @y = r3
add rili, r1 =ri
mult rl1,r2 =ril
loadAI rarp, @z = r2
mult r1, r3 = rl
mult rl1,r2 =rl
storeAl r1 = rarp, O

12

0 Asymptotic complexity
O(NlogN + E) assuming D=(N,E)
Assume for each n € N, delay(n) is a small
constant

o When making each scheduling decision
Scan Ready list to find the top-priority op

O(logN) if using priority queue

Scan Active list to modify Ready list

Separate ops in Active list according to their
complete cycles

Each edge must be marked as ready once: O(E)

cs5363 13

o How good is the solution?
Optimal if a single op is ready at any point

If multiple ops are ready,

Results depend on assignment of priority ranking
Not stable in tie breaking of same-ranking operations

o Complications

Wait time at basic block boundaries
Wait for all ops in the previous basic block to complete

Improvement: trace scheduling (across block boundaries)
o Scheduling functional units in VLIW instructions

Must allocate operations on specific functional units
0 Uncertainty of memory operations

Memory access may take different number of cycles
depending on whether it is in the cache

cs5363

14

Scheduling Larger Regions

O

O

Superlocal scheduling
m Work on one EBB at a time

Three EBBs: AB, ACD, ACE

Block A appears in two EBBs

= Moving operations to A may
lengthen other EBBs

» May need compensation code in
less frequently run EBBs

Make other EBBs even longer

More aggressive superlocal
scheduling

= Clone blocks to create longer
EBBs

= Apply loop unrolling

cs5363

p:=c+d
r:=c+d

Ala=>5

n:=a+b

—
g:=a+b

C

r:=c+d

/

i

e:=b+18
s:=a+b
u:=e+f

e:=a+17/
El t:=c+d
u:=e+f

T~

—

v:=a+b
w:=c+d
X:=e+f

15

Trace Scheduling

O Start with execution counts for control-flow edges
= Obtained by profiling with representative data

O A “trace” is a maximal length acyclic path through the CFG

= Pick the “hot” path to optimize

= At the cost of possibly lengthening less frequently executed paths
0 Trace Scheduling Entire CFG

= Pick & schedule hot path

= Insert compensation code

= Remove hot path from CFG

= Repeat the process until CFG is empty

cs5363 16

o Instruction scheduling

Reordering of instructions to enhance fine-
grained parallelism within CPU

Dependence based approach

0O List scheduling

Heuristic to scheduling operations in a single
basic block

0o Trace scheduling

Extending list scheduling to go beyond single
basic blocks

cs5363

17

