
cs5363 1

Instruction Scheduling

cs5363 2

Instruction scheduling

 Reorder operations to reduce running time
 Different operations take different number of cycles

 Referencing values not yet ready causes operation pipeline
to stall

 Processors can issue multiple instructions every cycle
 VLIW processors: can issue one operation per functional

unit in each cycle
 Superscalar processors: tries to issue the next k

instructions if possible

Instruction
Scheduler

Original
code

Reordered
code

cs5363 3

Instruction Scheduling Example

loadAI rarp, @w  r1
add r1, r1  r1
loadAI rarp, @x  r2
mult r1, r2  r1
loadAi rarp, @y  r2
mult r1, r2  r1
loadAI rarp, @z  r2
mult r1, r2  r1
storeAI r1  rarp, 0

loadAI rarp, @w  r1
loadAI rarp, @x  r2
loadAi rarp, @y  r3
add r1, r1  r1
mult r1, r2  r1
loadAI rarp, @z  r2
mult r1, r3  r1
mult r1, r2  r1
storeAI r1  rarp, 0

start start
1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

 Instruction level parallelism (ILP)
 Independent operations can be evaluated in parallel

 Given enough ILP, a scheduler can hide memory and
functional-unit latency
 Must not violate original semantics of input code

Assumptions: memory load: 3 cycles; mult: 2 cycles; other: 1 cycle

cs5363 4

Dependence Graph
 Dependence/precedence graph G = (N,E)

 Each node n ∈ N is a single operation
 type(n) : type of functional-unit that can execute n
 delay(n): number of cycles required to complete n

 Edge (n1,n2) ∈ N indicates n2 uses result of n1 as operand
 G is acyclic within each basic block

a: loadAI rarp, @w  r1
b: add r1, r1  r1
c: loadAI rarp, @x  r2
d: mult r1, r2  r1
e: loadAi rarp, @y  r2
f: mult r1, r2  r1
g: loadAI rarp, @z  r2
h: mult r1, r2  r1
i: storeAI r1  rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 5

Anti Dependences

 e cannot be issued before d even if e does not use result of d
 e overwrites the value of r2 that d uses
 There is an anti-dependence from d to e

 To handle anti-dependences, schedulers can
 Add anti-dependences as new edges in dependence graph; or
 Rename registers to eliminate anti-dependences

 Each definition receives a unique name

a: loadAI rarp, @w  r1
b: add r1, r1  r1
c: loadAI rarp, @x  r2
d: mult r1, r2  r1
e: loadAi rarp, @y  r2
f: mult r1, r2  r1
g: loadAI rarp, @z  r2
h: mult r1, r2  r1
i: storeAI r1  rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 6

The scheduling problem
 Given a dependence graph D = (N,E), a schedule S

 maps each node n ∈ N to a cycle number to issue n

 Each schedule S must satisfy three constraints
 Well-formed: for each node n ∈ N, S(n) >= 1;
 there is at least one node n ∈ N such that S(n) = 1
 Correctness: if (n1,n2) ∈ E, then S(n1) + delay(n1) <= S(n2)
 Feasibility:
 for each cycle i >= 1 and each functional-unit type t,
 number of node n where type(n)=t and S(n)=i
 ≤ number of functional-unit t on the target machine

cs5363 7

Quality of Scheduling
 Given a well-formed schedule S that is both correct and

feasible, the length of the schedule is
 L(s) = max(S(n) + delay(n))
 n∈N
 A schedule S is time-optimal if it is the shortest

 For all other schedules Sj (which contain the same set of
operations),

 L(S) <= L(Sj) (S has shorter length than Sj)

cs5363 8

Instruction Scheduling
 Measures of schedule quality

 Execution time
 Demands for registers

 Try to minimize the number of live values at any point
 Number of resulting instructions from combining operations

into VLIW
 Demands for power --- efficiency in using functional units

 Difficulty of instruction scheduling
 Balancing multiple requirements while searching for time-

optimality
 Register pressure, readiness of operands, combining multiple

operations to form a single instruction
 Local instruction scheduling (scheduling on a single basic

block) is NP complete for all but the most simplistic
architectures
 Compilers produce approximate solutions using greedy

heuristics

cs5363 9

Critical Path of Dependence

 Given a dependence graph D
 Each node ni can start only if all other nodes that ni depend on

have finished
 Length of any dependence path n1n2…ni (any path in D) is
 delay(n1)+delay(n2)+…+delay(ni)

 Critical path: the longest path in the dependence graph
 should schedule nodes on critical path as early as possible

a: loadAI rarp, @w  r1
b: add r1, r1  r1
c: loadAI rarp, @x  r2
d: mult r1, r2  r1
e: loadAi rarp, @y  r2
f: mult r1, r2  r1
g: loadAI rarp, @z  r2
h: mult r1, r2  r1
i: storeAI r1  rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 10

List Scheduling
 A greedy heuristic to scheduling operations in a

single basic block
 The most dominating approach since 1970s
 Find reasonable scheduling and adapts easily to different

processor architectures

 List scheduling steps
 Build a dependence graph
 Assign priorities to each operation n

 Eg., the length of longest latency path from n to end

 Iteratively select an operation and schedule it
 Keep a ready list of operations with operands available

cs5363 11

List scheduling algorithm
Cycle := 1
Ready := leaves of D
Active := ∅
While (Ready ∪ Active ≠ ∅)
 if Ready ≠ ∅ then
 remove top priority i from Ready
 S(i) := Cycle
 add i to Active
 Cycle ++
 for each i ∈ Active
 if S(i) + delay(i) <= Cycle then
 remove i from Active
 for each successor j of i in D
 Mark edge (i,j) ready
 if all edges to j are ready
 then add j to Ready

a: loadAI rarp, @w  r1
b: add r1, r1  r2
c: loadAI rarp, @x  r3
d: mult r2, r3  r4
e: loadAi rarp, @y  r5
f: mult r4, r5  r6
g: loadAI rarp, @z  r7
h: mult r6, r7  r8
i: storeAI r8  rarp, 0

Example:

a

b
c

d e

f g

h
i

Dependence graph

3
5

8
7

10
9

1210
13

cs5363 12

Example: list scheduling

hh9

10

ii11

8

ff7

gg6

ddg5

bbg4

eeg3

cceg2

aaceg1

memoryintegeractiveReadycycle

loadAI rarp, @w  r1
loadAI rarp, @x  r2
loadAi rarp, @y  r3
add r11, r1  r1
mult r1, r2  r1
loadAI rarp, @z  r2
mult r1, r3  r1
mult r1, r2  r1
storeAI r1  rarp, 0

start
1
2
3
4
5
6
7
9
11

cs5363 13

Complexity of List Scheduling
 Asymptotic complexity

 O(NlogN + E) assuming D=(N,E)
 Assume for each n ∈ N, delay(n) is a small

constant

 When making each scheduling decision
 Scan Ready list to find the top-priority op

 O(logN) if using priority queue

 Scan Active list to modify Ready list
 Separate ops in Active list according to their

complete cycles
 Each edge must be marked as ready once: O(E)

cs5363 14

The list-scheduling algorithm
 How good is the solution?

 Optimal if a single op is ready at any point
 If multiple ops are ready,

 Results depend on assignment of priority ranking
 Not stable in tie breaking of same-ranking operations

 Complications
 Wait time at basic block boundaries

 Wait for all ops in the previous basic block to complete
 Improvement: trace scheduling (across block boundaries)

 Scheduling functional units in VLIW instructions
 Must allocate operations on specific functional units

 Uncertainty of memory operations
 Memory access may take different number of cycles

 depending on whether it is in the cache

cs5363 15

Scheduling Larger Regions
 Superlocal scheduling

 Work on one EBB at a time
 Three EBBs: AB, ACD, ACE
 Block A appears in two EBBs

 Moving operations to A may
lengthen other EBBs

 May need compensation code in
less frequently run EBBs

 Make other EBBs even longer

 More aggressive superlocal
scheduling
 Clone blocks to create longer

EBBs
 Apply loop unrolling

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

B

cs5363 16

Trace Scheduling
 Start with execution counts for control-flow edges

 Obtained by profiling with representative data
 A “trace” is a maximal length acyclic path through the CFG

 Pick the “hot” path to optimize
 At the cost of possibly lengthening less frequently executed paths

 Trace Scheduling Entire CFG
 Pick & schedule hot path
 Insert compensation code
 Remove hot path from CFG
 Repeat the process until CFG is empty

cs5363 17

Summary
 Instruction scheduling

 Reordering of instructions to enhance fine-
grained parallelism within CPU

 Dependence based approach

 List scheduling
 Heuristic to scheduling operations in a single

basic block

 Trace scheduling
 Extending list scheduling to go beyond single

basic blocks

