
cs5363 1

Instruction Scheduling

cs5363 2

Instruction scheduling

 Reorder operations to reduce running time
 Different operations take different number of cycles

 Referencing values not yet ready causes operation pipeline
to stall

 Processors can issue multiple instructions every cycle
 VLIW processors: can issue one operation per functional

unit in each cycle
 Superscalar processors: tries to issue the next k

instructions if possible

Instruction
Scheduler

Original
code

Reordered
code

cs5363 3

Instruction Scheduling Example

loadAI rarp, @w r1
add r1, r1 r1
loadAI rarp, @x r2
mult r1, r2 r1
loadAi rarp, @y r2
mult r1, r2 r1
loadAI rarp, @z r2
mult r1, r2 r1
storeAI r1 rarp, 0

loadAI rarp, @w r1
loadAI rarp, @x r2
loadAi rarp, @y r3
add r1, r1 r1
mult r1, r2 r1
loadAI rarp, @z r2
mult r1, r3 r1
mult r1, r2 r1
storeAI r1 rarp, 0

start start
1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

 Instruction level parallelism (ILP)
 Independent operations can be evaluated in parallel

 Given enough ILP, a scheduler can hide memory and
functional-unit latency
 Must not violate original semantics of input code

Assumptions: memory load: 3 cycles; mult: 2 cycles; other: 1 cycle

cs5363 4

Dependence Graph
 Dependence/precedence graph G = (N,E)

 Each node n ∈ N is a single operation
 type(n) : type of functional-unit that can execute n
 delay(n): number of cycles required to complete n

 Edge (n1,n2) ∈ N indicates n2 uses result of n1 as operand
 G is acyclic within each basic block

a: loadAI rarp, @w r1
b: add r1, r1 r1
c: loadAI rarp, @x r2
d: mult r1, r2 r1
e: loadAi rarp, @y r2
f: mult r1, r2 r1
g: loadAI rarp, @z r2
h: mult r1, r2 r1
i: storeAI r1 rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 5

Anti Dependences

 e cannot be issued before d even if e does not use result of d
 e overwrites the value of r2 that d uses
 There is an anti-dependence from d to e

 To handle anti-dependences, schedulers can
 Add anti-dependences as new edges in dependence graph; or
 Rename registers to eliminate anti-dependences

 Each definition receives a unique name

a: loadAI rarp, @w r1
b: add r1, r1 r1
c: loadAI rarp, @x r2
d: mult r1, r2 r1
e: loadAi rarp, @y r2
f: mult r1, r2 r1
g: loadAI rarp, @z r2
h: mult r1, r2 r1
i: storeAI r1 rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 6

The scheduling problem
 Given a dependence graph D = (N,E), a schedule S

 maps each node n ∈ N to a cycle number to issue n

 Each schedule S must satisfy three constraints
 Well-formed: for each node n ∈ N, S(n) >= 1;
 there is at least one node n ∈ N such that S(n) = 1
 Correctness: if (n1,n2) ∈ E, then S(n1) + delay(n1) <= S(n2)
 Feasibility:
 for each cycle i >= 1 and each functional-unit type t,
 number of node n where type(n)=t and S(n)=i
 ≤ number of functional-unit t on the target machine

cs5363 7

Quality of Scheduling
 Given a well-formed schedule S that is both correct and

feasible, the length of the schedule is
 L(s) = max(S(n) + delay(n))
 n∈N
 A schedule S is time-optimal if it is the shortest

 For all other schedules Sj (which contain the same set of
operations),

 L(S) <= L(Sj) (S has shorter length than Sj)

cs5363 8

Instruction Scheduling
 Measures of schedule quality

 Execution time
 Demands for registers

 Try to minimize the number of live values at any point
 Number of resulting instructions from combining operations

into VLIW
 Demands for power --- efficiency in using functional units

 Difficulty of instruction scheduling
 Balancing multiple requirements while searching for time-

optimality
 Register pressure, readiness of operands, combining multiple

operations to form a single instruction
 Local instruction scheduling (scheduling on a single basic

block) is NP complete for all but the most simplistic
architectures
 Compilers produce approximate solutions using greedy

heuristics

cs5363 9

Critical Path of Dependence

 Given a dependence graph D
 Each node ni can start only if all other nodes that ni depend on

have finished
 Length of any dependence path n1n2…ni (any path in D) is
 delay(n1)+delay(n2)+…+delay(ni)

 Critical path: the longest path in the dependence graph
 should schedule nodes on critical path as early as possible

a: loadAI rarp, @w r1
b: add r1, r1 r1
c: loadAI rarp, @x r2
d: mult r1, r2 r1
e: loadAi rarp, @y r2
f: mult r1, r2 r1
g: loadAI rarp, @z r2
h: mult r1, r2 r1
i: storeAI r1 rarp, 0

a

b
c

d e

f g

h
i

Dependence graph

cs5363 10

List Scheduling
 A greedy heuristic to scheduling operations in a

single basic block
 The most dominating approach since 1970s
 Find reasonable scheduling and adapts easily to different

processor architectures

 List scheduling steps
 Build a dependence graph
 Assign priorities to each operation n

 Eg., the length of longest latency path from n to end

 Iteratively select an operation and schedule it
 Keep a ready list of operations with operands available

cs5363 11

List scheduling algorithm
Cycle := 1
Ready := leaves of D
Active := ∅
While (Ready ∪ Active ≠ ∅)
 if Ready ≠ ∅ then
 remove top priority i from Ready
 S(i) := Cycle
 add i to Active
 Cycle ++
 for each i ∈ Active
 if S(i) + delay(i) <= Cycle then
 remove i from Active
 for each successor j of i in D
 Mark edge (i,j) ready
 if all edges to j are ready
 then add j to Ready

a: loadAI rarp, @w r1
b: add r1, r1 r2
c: loadAI rarp, @x r3
d: mult r2, r3 r4
e: loadAi rarp, @y r5
f: mult r4, r5 r6
g: loadAI rarp, @z r7
h: mult r6, r7 r8
i: storeAI r8 rarp, 0

Example:

a

b
c

d e

f g

h
i

Dependence graph

3
5

8
7

10
9

1210
13

cs5363 12

Example: list scheduling

hh9

10

ii11

8

ff7

gg6

ddg5

bbg4

eeg3

cceg2

aaceg1

memoryintegeractiveReadycycle

loadAI rarp, @w r1
loadAI rarp, @x r2
loadAi rarp, @y r3
add r11, r1 r1
mult r1, r2 r1
loadAI rarp, @z r2
mult r1, r3 r1
mult r1, r2 r1
storeAI r1 rarp, 0

start
1
2
3
4
5
6
7
9
11

cs5363 13

Complexity of List Scheduling
 Asymptotic complexity

 O(NlogN + E) assuming D=(N,E)
 Assume for each n ∈ N, delay(n) is a small

constant

 When making each scheduling decision
 Scan Ready list to find the top-priority op

 O(logN) if using priority queue

 Scan Active list to modify Ready list
 Separate ops in Active list according to their

complete cycles
 Each edge must be marked as ready once: O(E)

cs5363 14

The list-scheduling algorithm
 How good is the solution?

 Optimal if a single op is ready at any point
 If multiple ops are ready,

 Results depend on assignment of priority ranking
 Not stable in tie breaking of same-ranking operations

 Complications
 Wait time at basic block boundaries

 Wait for all ops in the previous basic block to complete
 Improvement: trace scheduling (across block boundaries)

 Scheduling functional units in VLIW instructions
 Must allocate operations on specific functional units

 Uncertainty of memory operations
 Memory access may take different number of cycles

 depending on whether it is in the cache

cs5363 15

Scheduling Larger Regions
 Superlocal scheduling

 Work on one EBB at a time
 Three EBBs: AB, ACD, ACE
 Block A appears in two EBBs

 Moving operations to A may
lengthen other EBBs

 May need compensation code in
less frequently run EBBs

 Make other EBBs even longer

 More aggressive superlocal
scheduling
 Clone blocks to create longer

EBBs
 Apply loop unrolling

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

B

cs5363 16

Trace Scheduling
 Start with execution counts for control-flow edges

 Obtained by profiling with representative data
 A “trace” is a maximal length acyclic path through the CFG

 Pick the “hot” path to optimize
 At the cost of possibly lengthening less frequently executed paths

 Trace Scheduling Entire CFG
 Pick & schedule hot path
 Insert compensation code
 Remove hot path from CFG
 Repeat the process until CFG is empty

cs5363 17

Summary
 Instruction scheduling

 Reordering of instructions to enhance fine-
grained parallelism within CPU

 Dependence based approach

 List scheduling
 Heuristic to scheduling operations in a single

basic block

 Trace scheduling
 Extending list scheduling to go beyond single

basic blocks

