Lexical Analysis

Regular expressions and Finite
Automata

cs5363

Phases of compilation

Compilers

Read input program - optimization - translate into machine code

front end
N

~

Lexical |
analysis

Characters

v

mid end

~

parsing

Sentences/
statements

Words/strings

Semantic
analysis

— Meaning

cs5363

back end
AL
- I
Code Assembler Linker
gen
-+ translation

Lexical analysis

o The first phase of compilation

Also known as lexer, scanner

Takes a stream of characters and returns tokens (words)
Each token has a “type” and an optional “value”

Called by the parser each time a new token is needed.

IF
LPARAN
. fhn??
if (@ ==Db) c=a; il
<ID “b”>
RPARAN
<ID “c”>
ASSIGN
<ID “a”>

cs5363 3

o Typical tokens of programming languages
Reserved words: class, int, char, bool,...
Identifiers: abc, def, mmm, mine,...

Constant numbers: 123, 123.45, 1.2E3...
Operators and separators: (,), <, <=, +, -, ...

o Goal

recognize token classes, report error if a string does not
match any class

Each token class could be

A single reserved word: CLASS, INT, CHAR,...

A single operator: LE, LT, ADD,...

A single separator: LPARAN, RPARAN, COMMA,...
The group of all identifiers: <ID “a”>, <ID “b”>,...

The group of all integer constant: <INTNUM 1>,...

The group of all floating point numbers <FLOAT 1.0>...

cs5363

Simple recognizers

c € NextChar()
if (c # 'f") then do something
else ¢ € NextChar()
if (c # 'e’) then do something e e
else ¢ € NextChar() @ @
if (c # ‘e’) then do something
else report success

c € NextChar(); 0..9
if (c ='0’) then report success
else if (c < ‘1’ or ¢ > '9’) then do something 1..9

else ¢ € NextChar() @

while (c >='0" and c <="9) 0
c € NextChar()

report success

cs5363 5

Multiple token recognizers

c € NextChar()
if (c # 'f') then if (c # ‘wW’) then do something
else ¢ € NextChar()
if (c # ~h’) then do something
else
else ¢ € NextChar()
if (c #'€’) then if (c # 'i") then do something
else ...
else ¢ € NextChar()
if (c # 'e’) then do something
else report success

o Each recognizer is a finite state machine (finite automata)

Each state remembers what characters have been read and
what characters to expect

Each state corresponds to a distinct program point in the
scanning algorithm

No additional storage (other than the input buffer and the
current input pointer) is required

o Can we automatically generate the scanning algorithm?

Need an language to describe what tokens to recognize

Need to translate token descriptions to a finite automata (
finite state machine)

Need to implement (compile/interpret) the finite automata

cs5363

Describing tokens

o Each token type is a set of strings

CLASS = {"“class”}; LE = {"<="}; ADD = {"+"};
ID = {strings that start with a letter}

INTNUM = {strings composed of only digits}
FLOAT ={ ... }

o Use formal language theory to describe sets of strings

An alphabet 3 is a finite set of all characters/symbols
€.g. {albl"'zlolll"'g}l {+I T * I/I </ > (I)}

A string over 2 is a sequence of characters drawn from 2
e.g. “abc” “begin” “end” “class” "“if a then b”

Empty string: €

A formal language is a set of strings over >
{"class”} {“<+"} {abc, def, ...}, {...-3, -2,-1,0, 1,...}
The C programming language
English

cs5363

Regular expression

o A subset of formal languages
= L(a): the formal language described by «

0 Regular expressions over > (a recursive definition)
= The empty string € isar.e., L(¢) = {¢}

= Foreachse >, sisar.e., L(s) = {s}
= If a and p are regular expressions then

(a) isar.e.,, and L((a)) = L(a) (parentheses)
af is ar.e., and L(ap) = L(a)L(p) (string concatenation)

a|pisar.e., Lla]|p) = L(a) U L(B) (alternatives)

ol isar. e., L(oc) = L(oc) (exponentiation d = \ssssggsss,)
a*isar.e., L(a*) = L(a)* (closure: €, a, aaq, ocococ,l)

cs5363 9

Regular Expression Examples

o Examples
al|b=>{a b}
(a| b)(a]| b)=> {aa, ab, ba, bb}
a* = {¢, a, aa, aaa, aaaa, ...r
aa* = { a, aa, aaa, aaaa, ...}
(a | b)* =» all strings over {a,b}
a (a | b)* = all strings over {a,b} that start with a
a (a | b)* b = all strings start with and end with b

o Character classes (short-hands)

m= [abcd]=a|b|c]|d

wm [@a-z]=a|b]|..|z

w [a-fO-3] =a|b]|..|f|]0]1]|2]3
N

[~a-f] = 2 - [a-f]

cs5363

10

What languages can be defined by
regular expressions?

y4

letter=A|B|C]|..|Z | ... |
819

|
digt=0]1|2]|3]|4]|5
ID = letter (letter | digit)*
NAT = digit digit*
FLOAT = digit* . NAT | NAT . digit*
EXP =NAT (e | E) (+ | - | €) NAT
INT = NAT | - NAT
o0 The expressive power of regular expressions

= Alternatives (|) and loops (*)

= Each definition can refer to only previous definitions
= No recursion
O EXxercises

m Strings over {a,b,c} that start with a and contain at least 2 c’s
m How to describe C/C++ comments?

alb]c
16171

cs5363 11

Finite Automata

0 Deterministic Finite Automata (DFA)
m S: A set of states; SO: start state; F: a set of final states
= Alphabet > : a set of input symbols
= Transition function d : Sx2=2S e.g.6(1,a) =2

o Language accepted by FA

= All strings that correspond to a path from the start state sO to
a final state f e F

a
Q Accepted language:
start,) b a+ | b+

cs5363 12

Non-Deterministic Finite Automata
(NFA)

o Transition function 6: S x (2 N {€})=> 21S, where
= € represents the empty string
m Example: 6§ (1,a) ={{2,3},06(2,¢€) =4

b_,

b
LN)
8/'® Accepted language:
start a+ | b+
€ b b
\@_.

cs5363 13

Accepted language:
(a|b)*abb

start 0

Implementing DFA

Char € NextChar()
state < sO
while (char # eof and state # ERROR)
state <6 (state, char)
char € NextChar()
if (state € F) then report acceptance
else report failure

S = {s0,s1,s2}

S = £0,1,2.3,4,5,6,7,8,9} . 9
6(s0,0) = s1 i> -
8(s0,1-9) = s2 @
5(s2,0-9) = s2 0

F={s1,s2}

cs5363 14

Automatically building scanners

o Regular Expressions/lexical patterns = NFA

o NFA = DFA
o DFA =» Lexical Analyzer scanner
DFA interpreter: [Input
Char ¢ NextChar() . | buffer
state < s0
While (char # eof and state # ERROR) § \\\\
state <& (state, char) | DFA
Char é NeXtChar() i interpreter
if (state € F) then report acceptance |
Else report failure
Lexical | Scanner [, DFA
patterns generator || | transition
.| table

cs5363 15

Converting RE to NFA

o Thompson'’s construction
= Takes a r.e. r and returns NFA N(r) that accepts L(r)

o Recursive rules
= For each symbol c € 3 N{¢}, define NFA N(c) as c :

= Alternation: if (r = r1 | r2) build N(r) W\ e
'
O
\e@“\@@”é@

= Concatenation: if (r = ri1r2) build N(r) as

€ O
= Repetition: if (r = r1*) build N(r) as ——
>

cs5363 8

RE to NFA examples

a*b*
start £ £
€ € a € € b e €
0 € L@C@j@
(alb)*

€

R

cs5363

Converting NFA to DFA

o Each DFA state <=> a set of equivalent NFA states
o For each NFA state s, compute

m E-closure(s) = all states reachable from s via €-transitions

add e-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
mark T;
for each symbol cin > do begin
U := e-closure(move(T, ¢));
Dtrans([T, c] := U;
if U is not in Dstates then
add U to Dstates unmarked

cs5363

18

d
%
b

Dstates = {€-closure(s0)} = { {sO} };
Dtrans[{s0},a] = €-closure(move({s0}, a)

) = {s0,s1};
Dtrans[{s0},b] = € -closure(move({s0}, b))

{s0};

Dstates = {{s0} {s0,s1} };
Dtrans[{s0,s1},a] = €-closure(move({s0,s1}, a)) = {s0,s1};
Dtrans[{s0,s1},b] = € -closure(move({s0,s1}, b)) = {s0,s2};

Dstates = {{s0} {s0,s1} {s0,s2} };
Dtrans[{s0,s2},a] = € -closure(move({s0,s2}, a)) = {s0,s1};
Dtrans[{s0,s2},b] = € -closure(move({s0,s2}, b)) = {s0,s3};

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0,s3},a] = € -closure(move({s0,s3}, a)) = {s0,s1};
Dtrans[{s0,s3},b] = € -closure(move({s0,s3}, b)) = {s0};

cs5363

19

Convert NFA to DFA example

b

DFA:

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0},a] = {s0,s1};

Dtrans[{s0},b] = {sO0};

Dtrans[{s0,s1},a] = {s0,s1};
Dtrans[{s0,s1},b] = {s0,s2};
Dtrans[{s0,s2},a] = {s0,s1};
Dtrans[{s0,s2},b] = {s0,s3};
Dtrans[{s0,s3},a] = {s0,s1};
Dtrans[{s0,s3},b] = {s0};

cs5363

20

