
cs5363 1

Lexical Analysis
Regular expressions and Finite

Automata

cs5363 2

Phases of compilation
 Compilers

 Read input program optimization translate into machine code

 front end mid end back end

Lexical
analysis

parsing Semantic
analysis

……… Code
gen

Assembler Linker

Characters

Words/strings

Sentences/
statements Meaning……… translation

cs5363 3

Lexical analysis
 The first phase of compilation

 Also known as lexer, scanner
 Takes a stream of characters and returns tokens (words)
 Each token has a “type” and an optional “value”
 Called by the parser each time a new token is needed.

IF
LPARAN
<ID “a”>
EQ
<ID “b”>
RPARAN
<ID “c”>
ASSIGN
<ID “a”>

if (a == b) c = a;

cs5363 4

Lexical analysis
 Typical tokens of programming languages

 Reserved words: class, int, char, bool,…
 Identifiers: abc, def, mmm, mine,…
 Constant numbers: 123, 123.45, 1.2E3…
 Operators and separators: (,), <, <=, +, -, …

 Goal
 recognize token classes, report error if a string does not

match any class

A single reserved word: CLASS, INT, CHAR,…
A single operator: LE, LT, ADD,…
A single separator: LPARAN, RPARAN, COMMA,…
The group of all identifiers: <ID “a”>, <ID “b”>,…
The group of all integer constant: <INTNUM 1>,…
The group of all floating point numbers <FLOAT 1.0>…

Each token class could be

cs5363 5

Simple recognizers
 c NextChar()
 if (c ≠ ‘f’) then do something
 else c NextChar()
 if (c ≠ ‘e’) then do something
 else c NextChar()
 if (c ≠ ‘e’) then do something
 else report success

s0 s1 s2 s3f e e

 c NextChar();
 if (c = ‘0’) then report success
 else if (c < ‘1’ or c > ‘9’) then do something
 else c NextChar()
 while (c >= ‘0’ and c <= ‘9’)
 c NextChar()
 report success

s0

s2

s10

1..9

0..9

cs5363 6

Multiple token recognizers
 c NextChar()
 if (c ≠ ‘f’) then if (c ≠ ‘w’) then do something
 else c NextChar()
 if (c ≠ `h’) then do something
 else ……
 else c NextChar()
 if (c ≠ ‘e’) then if (c ≠ ‘i’) then do something
 else …
 else c NextChar()
 if (c ≠ ‘e’) then do something
 else report success

s0 s1

s2

s4

s3

s5

s6 s7 s8 s9 s10

f
e e

ei

i

w

eh l

cs5363 7

What about automation?
 Each recognizer is a finite state machine (finite automata)

 Each state remembers what characters have been read and
what characters to expect

 Each state corresponds to a distinct program point in the
scanning algorithm

 No additional storage (other than the input buffer and the
current input pointer) is required

 Can we automatically generate the scanning algorithm?
 Need an language to describe what tokens to recognize
 Need to translate token descriptions to a finite automata (

finite state machine)
 Need to implement (compile/interpret) the finite automata

cs5363 8

Describing tokens
 Each token type is a set of strings

 Use formal language theory to describe sets of strings

 CLASS = {“class”}; LE = {“<=”}; ADD = {“+”};
 ID = {strings that start with a letter}
 INTNUM = {strings composed of only digits}
 FLOAT = { … }

An alphabet ∑ is a finite set of all characters/symbols
 e.g. {a,b,…z,0,1,…9}, {+, -, * ,/, <, >, (,)}
A string over ∑ is a sequence of characters drawn from ∑
 e.g. “abc” “begin” “end” “class” “if a then b”
Empty string: ε
A formal language is a set of strings over ∑
 {“class”} {“<+”} {abc, def, …}, {…-3, -2,-1,0, 1,…}
 The C programming language
 English

cs5363 9

Regular expression
 A subset of formal languages

 L(α): the formal language described by α

 Regular expressions over ∑ (a recursive definition)

 The empty string ε is a r.e., L(ε) = {ε}

 For each s ∈ ∑, s is a r.e., L(s) = {s}
 If α and β are regular expressions then

 (α) is a r.e., and L((α)) = L(α) (parentheses)
 αβ is a r.e., and L(αβ) = L(α)L(β) (string concatenation)

 α | β is a r.e., L(α | β) = L(α) ∪ L(β) (alternatives)

 α is a r.e., L(α) = L(α) (exponentiation s = sssssssss)

 α* is a r.e., L(α*) = L(α)* (closure: ε, α, αα, ααα, ……)

i i i

i
i

cs5363 10

Regular Expression Examples
 Examples

a | b {a, b}
(a | b) (a | b) {aa, ab, ba, bb}
a* {ε , a, aa, aaa, aaaa, …}
aa* { a, aa, aaa, aaaa, …}
(a | b)* all strings over {a,b}
a (a | b)* all strings over {a,b} that start with a
a (a | b)* b all strings start with and end with b

 Character classes (short-hands)
 [abcd] = a | b | c | d
 [a-z] = a | b | … | z
 [a-f0-3] = a | b | … | f | 0 | 1 | 2 | 3
 [^a-f] = ∑ - [a-f]

cs5363 11

What languages can be defined by
regular expressions?
letter = A | B | C | … | Z | a | b | c | … | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ID = letter (letter | digit)*
NAT = digit digit*
FLOAT = digit* . NAT | NAT . digit*
EXP = NAT (e | E) (+ | - | ε) NAT
INT = NAT | - NAT
 The expressive power of regular expressions

 Alternatives (|) and loops (*)
 Each definition can refer to only previous definitions
 No recursion

 Exercises
 Strings over {a,b,c} that start with a and contain at least 2 c’s
 How to describe C/C++ comments?

cs5363 12

Finite Automata
 Deterministic Finite Automata (DFA)

 S: A set of states; S0: start state; F: a set of final states
 Alphabet ∑ : a set of input symbols
 Transition function δ : S x ∑ S e.g. δ (1, a) = 2

 Language accepted by FA
 All strings that correspond to a path from the start state s0 to

a final state f ∈ F

0 1 2 3start

b

a

a b b
Accepted language:
(a|b)*abb

start
0

1a

4
b

a

b
Accepted language:
a+ | b+

a
a

b

cs5363 13

Non-Deterministic Finite Automata
(NFA)
 Transition function δ: S x (∑ ∩ {ε}) 2^S, where

 ε represents the empty string

 Example: δ (1, a) = {2,3}, δ (2, ε) = 4

0 1 2 3start

b

a b b

Accepted language:
(a|b)*abb

start
0

1 2
a

3 4
b

a

b

ε

ε

Accepted language:
a+ | b+

a

cs5363 14

Implementing DFA
Char NextChar()
state s0
while (char ≠ eof and state ≠ ERROR)
 state δ (state, char)
 char NextChar()
if (state ∈ F) then report acceptance
else report failure

s0

s2

s10

1..9

0..9
S = {s0,s1,s2}
∑ = {0,1,2.3,4,5,6,7,8,9}
δ(s0,0) = s1
δ(s0,1-9) = s2
δ(s2,0-9) = s2
F = {s1,s2}

cs5363 15

Automatically building scanners
 Regular Expressions/lexical patterns NFA
 NFA DFA
 DFA Lexical Analyzer

Char NextChar()
state s0
While (char ≠ eof and state ≠ ERROR)
 state δ (state, char)
 char NextChar()
if (state ∈ F) then report acceptance
Else report failure

DFA interpreter:

Scanner
generator

Lexical
patterns

Input
buffer

DFA
interpreter

DFA
transition
table

scanner

cs5363 16

Converting RE to NFA
 Thompson’s construction

 Takes a r.e. r and returns NFA N(r) that accepts L(r)

 Recursive rules
 For each symbol c ∈ ∑ ∩{ε}, define NFA N(c) as

 Alternation: if (r = r1 | r2) build N(r) as

 Concatenation: if (r = r1r2) build N(r) as

 Repetition: if (r = r1*) build N(r) as

c

N(r1)

N(r2)

ε

ε

ε

ε

N(r1) ε N(r2) ε

ε N(r1) ε
_

ε

ε

ε

cs5363 17

RE to NFA examples
a*b*

a0 12 3ε _ b4 56 7ε ε

ε

8 _

start

ε ε 9

(a|b)*

a0 1

b2 3

4
ε

ε
5

ε

ε

ε

ε 7
6 ε

start

ε

_ ε

ε

εε

cs5363 18

Converting NFA to DFA
 Each DFA state <=> a set of equivalent NFA states
 For each NFA state s, compute

 ε-closure(s) = all states reachable from s via ε-transitions

add ε-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
 mark T;
 for each symbol c in ∑ do begin
 U := ε-closure(move(T, c));
 Dtrans[T, c] := U;
 if U is not in Dstates then
 add U to Dstates unmarked

cs5363 19

Convert NFA to DFA example
0 1 2 3start

a

b

a b b
NFA:

Dstates = {ε-closure(s0)} = { {s0} };
Dtrans[{s0},a] = ε-closure(move({s0}, a)) = {s0,s1};
Dtrans[{s0},b] = ε -closure(move({s0}, b)) = {s0};

Dstates = {{s0} {s0,s1} };
Dtrans[{s0,s1},a] = ε-closure(move({s0,s1}, a)) = {s0,s1};
Dtrans[{s0,s1},b] = ε -closure(move({s0,s1}, b)) = {s0,s2};

Dstates = {{s0} {s0,s1} {s0,s2} };
Dtrans[{s0,s2},a] = ε -closure(move({s0,s2}, a)) = {s0,s1};
Dtrans[{s0,s2},b] = ε -closure(move({s0,s2}, b)) = {s0,s3};

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0,s3},a] = ε -closure(move({s0,s3}, a)) = {s0,s1};
Dtrans[{s0,s3},b] = ε -closure(move({s0,s3}, b)) = {s0};

cs5363 20

Convert NFA to DFA example

0 0,1 0,2 0,3start

b

a

a b b

a a

b

DFA:

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0},a] = {s0,s1};
Dtrans[{s0},b] = {s0};
Dtrans[{s0,s1},a] = {s0,s1};
Dtrans[{s0,s1},b] = {s0,s2};
Dtrans[{s0,s2},a] = {s0,s1};
Dtrans[{s0,s2},b] = {s0,s3};
Dtrans[{s0,s3},a] = {s0,s1};
Dtrans[{s0,s3},b] = {s0};

