Lexical Analysis

Regular expressions and Finite Automata
Phases of compilation

Compilers

Read input program \rightarrow optimization \rightarrow translate into machine code

front end \rightarrow mid end \rightarrow back end

Lexical analysis \rightarrow parsing \rightarrow Semantic analysis \cdots Codegen \rightarrow Assembler \rightarrow Linker

Characters \downarrow Words/strings \rightarrow Sentences/statements \rightarrow Meaning \cdots translation
Lexical analysis

- The first phase of compilation
 - Also known as lexer, scanner
 - Takes a stream of characters and returns tokens (words)
 - Each token has a “type” and an optional “value”
 - Called by the parser each time a new token is needed.

```plaintext
if (a == b)  c = a;
```

IF
LPARAN
<ID “a”>
EQ
<ID “b”>
RPARAN
<ID “c”>
ASSIGN
<ID “a”>
Lexical analysis

- Typical tokens of programming languages
 - Reserved words: class, int, char, bool,…
 - Identifiers: abc, def, mmm, mine,…
 - Constant numbers: 123, 123.45, 1.2E3…
 - Operators and separators: (,), <, <=, +, -, …

- Goal
 - recognize token classes, report error if a string does not match any class

Each token class could be

- A single reserved word: CLASS, INT, CHAR,…
- A single operator: LE, LT, ADD,…
- A single separator: LPARAN, RPARAN, COMMA,…
- The group of all identifiers: <ID “a”>, <ID “b”>,…
- The group of all integer constant: <INTNUM 1>,…
- The group of all floating point numbers <FLOAT 1.0>…
Simple recognizers

\[
c \leftarrow \text{NextChar()}
\]
if (c ≠ 'f') then do something
else c \leftarrow \text{NextChar()}
 if (c ≠ 'e') then do something
 else c \leftarrow \text{NextChar()}
 if (c ≠ 'e') then do something
 else report success

\[
c \leftarrow \text{NextChar();}
\]
if (c = '0') then report success
else if (c < '1' or c > '9') then do something
 else c \leftarrow \text{NextChar()}
 while (c >= '0' and c <= '9')
 c \leftarrow \text{NextChar()}
 report success
Multiple token recognizers

```plaintext
c ← NextChar()
if (c ≠ ‘f’) then if (c ≠ ‘w’) then do something
   else  c ← NextChar()
         if (c ≠ ‘h’) then do something
               else ....
else c ← NextChar()
   if (c ≠ ‘e’) then if (c ≠ ‘i’) then do something
               else ...
   else c ← NextChar()
         if (c ≠ ‘e’) then do something
               else report success
```

![Diagram of state transitions](image)
What about automation?

- Each recognizer is a finite state machine (finite automata)
 - Each state remembers what characters have been read and what characters to expect
 - Each state corresponds to a distinct program point in the scanning algorithm
 - No additional storage (other than the input buffer and the current input pointer) is required

- Can we automatically generate the scanning algorithm?
 - Need an language to describe what tokens to recognize
 - Need to translate token descriptions to a finite automata (finite state machine)
 - Need to implement (compile/interpret) the finite automata
Describing tokens

- Each token type is a set of strings

| CLASS = {"class"}; LE = {"<="}; ADD = {"+"}; ID = {strings that start with a letter}; INTNUM = {strings composed of only digits}; FLOAT = { ... } |

- Use formal language theory to describe sets of strings

| An alphabet Σ is a finite set of all characters/symbols e.g. $\{a,b,...z,0,1,...9\}, \{+, -, *, /, <, >, (,)\}$ A string over Σ is a sequence of characters drawn from Σ e.g. "abc" "begin" "end" "class" "if a then b" Empty string: ϵ A formal language is a set of strings over Σ $\{"class"\} \ \{"<="\} \ \{abc, def, ...\}, \{...-3, -2,-1,0, 1,...\}$ The C programming language English |
Regular expression

- A subset of formal languages
 - $L(\alpha)$: the formal language described by α

- Regular expressions over Σ (a recursive definition)
 - The empty string ε is a r.e., $L(\varepsilon) = \{\varepsilon\}$
 - For each $s \in \Sigma$, s is a r.e., $L(s) = \{s\}$
 - If α and β are regular expressions then
 - (α) is a r.e., and $L((\alpha)) = L(\alpha)$ (parentheses)
 - $\alpha \beta$ is a r.e., and $L(\alpha \beta) = L(\alpha)L(\beta)$ (string concatenation)
 - $\alpha | \beta$ is a r.e., $L(\alpha | \beta) = L(\alpha) \cup L(\beta)$ (alternatives)
 - α^i is a r.e., $L(\alpha^i) = L(\alpha)^i$ (exponentiation $\underbrace{\alpha \cdots \alpha}_{i}$)
 - α^* is a r.e., $L(\alpha^*) = L(\alpha)^*$ (closure: $\varepsilon, \alpha, \alpha \alpha, \alpha \alpha \alpha, \ldots$)
Regular Expression Examples

- **Examples**
 - $a | b \Rightarrow \{a, b\}$
 - $(a | b) (a | b) \Rightarrow \{aa, ab, ba, bb\}$
 - $a^* \Rightarrow \{\epsilon, a, aa, aaa, aaaa, \ldots\}$
 - $aa^* \Rightarrow \{a, aa, aaa, aaaa, \ldots\}$
 - $(a | b)^* \Rightarrow \text{all strings over \{a,b\}}$
 - $a (a | b)^* \Rightarrow \text{all strings over \{a,b\} that start with a}$
 - $a (a | b)^* b \Rightarrow \text{all strings start with and end with b}$

- **Character classes (short-hands)**
 - $[abcd] = a | b | c | d$
 - $[a-z] = a | b | \ldots | z$
 - $[a-f0-3] = a | b | \ldots | f | 0 | 1 | 2 | 3$
 - $[^a-f] = \Sigma - [a-f]$
What languages can be defined by regular expressions?

letter = A | B | C | ... | Z | a | b | c | ... | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ID = letter (letter | digit)*
NAT = digit digit*
FLOAT = digit* . NAT | NAT . digit*
EXP = NAT (e | E) (+ | - | ε) NAT
INT = NAT | - NAT

- The expressive power of regular expressions
 - Alternatives (|) and loops (*)
 - Each definition can refer to only previous definitions
 - No recursion

- Exercises
 - Strings over \{a,b,c\} that start with a and contain at least 2 c’s
 - How to describe C/C++ comments?
Finite Automata

- Deterministic Finite Automata (DFA)
 - S: A set of states; S_0: start state; F: a set of final states
 - Alphabet Σ: a set of input symbols
 - Transition function $\delta: S \times \Sigma \rightarrow S$ e.g. $\delta(1, a) = 2$

- Language accepted by FA
 - All strings that correspond to a path from the start state s_0 to a final state $f \in F$

![Diagram of DFA](image)

Accepted language: $(a|b)^*abb$

![Diagram of DFA](image)

Accepted language: $a^+ | b^+$
Non-Deterministic Finite Automata (NFA)

- Transition function $\delta: S \times (\Sigma \cap \{\varepsilon\}) \rightarrow 2^S$, where
 - ε represents the empty string
 - Example: $\delta(1, a) = \{2, 3\}$, $\delta(2, \varepsilon) = 4$

Accepted language: $(a|b)^*abb$

Accepted language: $a^+ | b^+$
Implementing DFA

Char \leftarrow NextChar()
state \leftarrow s0
while (char \neq eof and state \neq ERROR)
 state $\leftarrow$$ \delta$ (state, char)
 char \leftarrow NextChar()
if (state \in F) then report acceptance
else report failure

$S = \{s0,s1,s2\}$
$\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
$\delta(s0,0) = s1$
$\delta(s0,1-9) = s2$
$\delta(s2,0-9) = s2$
$F = \{s1,s2\}$
Automatically building scanners

- Regular Expressions/lexical patterns \Rightarrow NFA
- NFA \Rightarrow DFA
- DFA \Rightarrow Lexical Analyzer

DFA interpreter:

Char \leftarrow NextChar()
state \leftarrow s0
While (char \neq eof and state \neq ERROR)
 state \leftarrow δ (state, char)
 char \leftarrow NextChar()
if (state \in F) then report acceptance
Else report failure
Converting RE to NFA

- Thompson’s construction
 - Takes a r.e. r and returns NFA $N(r)$ that accepts $L(r)$

- Recursive rules
 - For each symbol $c \in \Sigma \cap \{\varepsilon\}$, define NFA $N(c)$ as
 - Alternation: if $(r = r_1 \mid r_2)$ build $N(r)$ as
 - Concatenation: if $(r = r_1r_2)$ build $N(r)$ as
 - Repetition: if $(r = r_1^*)$ build $N(r)$ as
RE to NFA examples

\[a^*b^* \]

\[(a|b)^* \]
Converting NFA to DFA

- Each DFA state \(\Leftrightarrow \) a set of equivalent NFA states
- For each NFA state \(s \), compute
 - \(\varepsilon\)-closure(s) = all states reachable from \(s \) via \(\varepsilon \)-transitions

```
add \( \varepsilon\)-closure(s0) to Dstates unmarked
while there is unmarked \( T \) in Dstates do
  mark \( T \);
  for each symbol \( c \) in \( \Sigma \) do begin
    \( U := \varepsilon\)-closure(move(\( T, c \))) ;
    Dtrans[\( T, c \)] := U ;
    if \( U \) is not in Dstates then
      add \( U \) to Dstates unmarked
```
Convert NFA to DFA example

NFA:

\[
\begin{array}{c}
\text{start} \\
0 \\
\text{a}
\end{array}
\quad
\begin{array}{c}
\text{a} \\
1 \\
\text{b}
\end{array}
\quad
\begin{array}{c}
b \\
2 \\
\text{b}
\end{array}
\quad
\begin{array}{c}
\text{3}
\end{array}
\]

Dstates = \{\varepsilon\text{-closure}(s0)\} = \{\{s0\}\};
Dtrans[{s0},a] = \varepsilon\text{-closure}(move({s0}, a)) = \{s0,s1\};
Dtrans[{s0},b] = \varepsilon\text{-closure}(move({s0}, b)) = \{s0\};

Dstates = \{\{s0\} \{s0,s1\}\};
Dtrans[{s0,s1},a] = \varepsilon\text{-closure}(move({s0,s1}, a)) = \{s0,s1\};
Dtrans[{s0,s1},b] = \varepsilon\text{-closure}(move({s0,s1}, b)) = \{s0,s2\};

Dstates = \{\{s0\} \{s0,s1\} \{s0,s2\}\};
Dtrans[{s0,s2},a] = \varepsilon\text{-closure}(move({s0,s2}, a)) = \{s0,s1\};
Dtrans[{s0,s2},b] = \varepsilon\text{-closure}(move({s0,s2}, b)) = \{s0,s3\};

Dstates = \{\{s0\}, \{s0,s1\}, \{s0,s2\}, \{s0,s3\}\};
Dtrans[{s0,s3},a] = \varepsilon\text{-closure}(move({s0,s3}, a)) = \{s0,s1\};
Dtrans[{s0,s3},b] = \varepsilon\text{-closure}(move({s0,s3}, b)) = \{s0\};
Convert NFA to DFA example

DFA:

Dstates = \{\{s0\}, \{s0,s1\}, \{s0,s2\}, \{s0,s3\}\};
Dtrans[\{s0\},a] = \{s0,s1\};
Dtrans[\{s0\},b] = \{s0\};
Dtrans[\{s0,s1\},a] = \{s0,s1\};
Dtrans[\{s0,s1\},b] = \{s0,s2\};
Dtrans[\{s0,s2\},a] = \{s0,s1\};
Dtrans[\{s0,s2\},b] = \{s0,s3\};
Dtrans[\{s0,s3\},a] = \{s0,s1\};
Dtrans[\{s0,s3\},b] = \{s0\};