Lexical Analysis

Regular expressions and Finite Automata

Compilers

Read input program \rightarrow optimization \rightarrow translate into machine code

Lexical analysis

The first phase of compilation

- Also known as lexer, scanner
- Takes a stream of characters and returns tokens (words)
- Each token has a "type" and an optional "value"
- Called by the parser each time a new token is needed.

Lexical analysis

Typical tokens of programming languages

- Reserved words: class, int, char, bool,...
- Identifiers: abc, def, mmm, mine,...
- Constant numbers: 123, 123.45, 1.2E3...
- Operators and separators: (,), <, <=, +, -, ...</p>
- Goal
 - recognize token classes, report error if a string does not match any class

Each token class could be

A single reserved word: **CLASS, INT, CHAR,...**

A single operator: **LE, LT, ADD,...**

A single separator: LPARAN, RPARAN, COMMA,...

The group of all identifiers: **<ID "a">, <ID "b">,...**

The group of all integer constant: **<INTNUM 1>,...**

The group of all floating point numbers **<FLOAT 1.0>...**

Simple recognizers

 $c \leftarrow NextChar()$ if (c \ne `f') then do something else c \le NextChar() if (c \ne `e') then do something else c \le NextChar() if (c \ne `e') then do something else report success

 $c \leftarrow NextChar();$ if (c = `0') then report success else if (c < `1' or c > `9') then do something else c \leftarrow NextChar() while (c >= `0' and c <= `9') c \leftarrow NextChar() report success

Multiple token recognizers

What about automation?

• Each recognizer is a finite state machine (finite automata)

- Each state remembers what characters have been read and what characters to expect
- Each state corresponds to a distinct program point in the scanning algorithm
- No additional storage (other than the input buffer and the current input pointer) is required
- Can we automatically generate the scanning algorithm?
 - Need an language to describe what tokens to recognize
 - Need to translate token descriptions to a finite automata (finite state machine)
 - Need to implement (compile/interpret) the finite automata

Describing tokens

Each token type is a set of strings

 $\label{eq:class} \begin{array}{l} \text{CLASS} = \{ \text{``class''} \}; \ \text{LE} = \{ \text{``<=''} \}; \ \text{ADD} = \{ \text{``+''} \}; \\ \text{ID} = \{ \text{strings that start with a letter} \} \\ \text{INTNUM} = \{ \text{strings composed of only digits} \} \\ \text{FLOAT} = \{ \ \dots \ \} \end{array}$

Use formal language theory to describe sets of strings

```
An alphabet Σ is a finite set of all characters/symbols
e.g. {a,b,...z,0,1,...9}, {+, -, * ,/, <, >, (, )}
A string over Σ is a sequence of characters drawn from Σ
e.g. "abc" "begin" "end" "class" "if a then b"
Empty string: ε
A formal language is a set of strings over Σ
{"class"} {"<+"} {abc, def, ...}, {...-3, -2,-1,0, 1,...}</li>
The C programming language
English
```

Regular expression

- A subset of formal languages
 - L(α): the formal language described by α
- **\square** Regular expressions over Σ (a recursive definition)
 - The empty string ε is a r.e., $L(\varepsilon) = \{\varepsilon\}$
 - For each $s \in \Sigma$, s is a r.e., $L(s) = \{s\}$
 - If α and β are regular expressions then
 (α) is a r.e., and L((α)) = L(α) (parentheses)
 αβ is a r.e., and L(αβ) = L(α)L(β) (string concatenation)
 α | β is a r.e., L(α | β) = L(α) ∪ L(β) (alternatives)
 αⁱ is a r.e., L(α | β) = L(α) (exponentiation sⁱ = ssssssss)
 α^{*} is a r.e., L(α^{*}) = L(α)^{*} (closure: ε, α, αα, ααα,)

Regular Expression Examples

Examples

a | b \rightarrow {a, b} (a | b) (a | b) \rightarrow {aa, ab, ba, bb} a* \rightarrow { ϵ , a, aa, aaa, aaa, aaaa, ...} aa* \rightarrow { a, aa, aaa, aaaa, ...} (a | b)* \rightarrow all strings over {a,b} a (a | b)* \rightarrow all strings over {a,b} that start with a a (a | b)* b \rightarrow all strings start with and end with b

Character classes (short-hands)

- [a-f0-3] = a | b | ... | f | 0 | 1 | 2 | 3
- [^a-f] = Σ [a-f]

What languages can be defined by regular expressions?

```
letter = A | B | C | ... | Z | a | b | c | ... | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
ID = letter (letter | digit)*
```

```
NAT = digit digit*
```

```
FLOAT = digit* . NAT | NAT . digit*
```

```
EXP = NAT (e | E) (+ | - | \epsilon) NAT
```

INT = NAT | - NAT

The expressive power of regular expressions

- Alternatives (|) and loops (*)
- Each definition can refer to only previous definitions
- No recursion
- Exercises
 - Strings over {a,b,c} that start with a and contain at least 2 c's
 - How to describe C/C++ comments?

Finite Automata

- Deterministic Finite Automata (DFA)
 - S: A set of states; S0: start state; F: a set of final states
 - Alphabet Σ : a set of input symbols
 - Transition function δ : S x $\Sigma \rightarrow$ S e.g. δ (1, a) = 2
- Language accepted by FA
 - All strings that correspond to a path from the start state s0 to a final state $f \in \mathsf{F}$

Non-Deterministic Finite Automata (NFA)

- **D** Transition function δ : S x ($\Sigma \cap \{\epsilon\}$) \rightarrow 2^S, where
 - E represents the empty string
 - Example: $\delta(1, a) = \{2,3\}, \delta(2, \epsilon) = 4$

Implementing DFA

Char ← NextChar()
state ← s0
while (char ≠ eof and state ≠ ERROR)
 state ←δ (state, char)
 char ← NextChar()
if (state ∈ F) then report acceptance
else report failure

$$S = \{s0, s1, s2\}$$

$$\Sigma = \{0, 1, 2.3, 4, 5, 6, 7, 8, 9\}$$

$$\delta(s0, 0) = s1$$

$$\delta(s0, 1-9) = s2$$

$$\delta(s2, 0-9) = s2$$

$$F = \{s1, s2\}$$

Automatically building scanners

- □ Regular Expressions/lexical patterns → NFA
- NFA → DFA
- □ DFA → Lexical Analyzer

Char ← NextChar()
state ← s0
While (char ≠ eof and state ≠ ERROR)
 state ←δ (state, char)
 char ← NextChar()
if (state ∈ F) then report acceptance
Else report failure

scanner

Converting RE to NFA

- Thompson's construction
 - Takes a r.e. r and returns NFA N(r) that accepts L(r)
- Recursive rules
 - For each symbol $c \in \Sigma \cap \{\epsilon\}$, define NFA N(c) as
 - Alternation: if (r = r1 | r2) build N(r) as
 - Concatenation: if (r = r1r2) build N(r) as

N(r1)

_N(r1)

3

3

_N(r2)

3

3

RE to NFA examples

(a|b)*

Converting NFA to DFA

- Each DFA state <=> a set of equivalent NFA states
- For each NFA state s, compute
 - E-closure(s) = all states reachable from s via E-transitions

```
add ɛ-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
mark T;
for each symbol c in ∑ do begin
U := ɛ-closure(move(T, c));
Dtrans[T, c] := U;
if U is not in Dstates then
add U to Dstates unmarked
```

Convert NFA to DFA example

Dstates = $\{ \mathcal{E} - closure(s0) \} = \{ \{s0\} \};$ Dtrans[$\{s0\},a$] = $\mathcal{E} - closure(\mathbf{move}(\{s0\}, a)) = \{s0,s1\};$ Dtrans[$\{s0\},b$] = $\mathcal{E} - closure(\mathbf{move}(\{s0\}, b)) = \{s0\};$

Dstates = $\{\{s0\} \{s0,s1\}\};$ Dtrans[$\{s0,s1\},a$] = \mathcal{E} -closure(move($\{s0,s1\},a$)) = $\{s0,s1\};$ Dtrans[$\{s0,s1\},b$] = \mathcal{E} -closure(move($\{s0,s1\},b$)) = $\{s0,s2\};$

Dstates = {{s0} {s0,s1} {s0,s2} }; Dtrans[{s0,s2},a] = \mathcal{E} -closure(**move**({s0,s2}, a)) = {s0,s1}; Dtrans[{s0,s2},b] = \mathcal{E} -closure(**move**({s0,s2}, b)) = {s0,s3};

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}}; Dtrans[{s0,s3},a] = \mathcal{E} -closure(**move**({s0,s3}, a)) = {s0,s1}; Dtrans[{s0,s3},b] = \mathcal{E} -closure(**move**({s0,s3}, b)) = {s0};

Convert NFA to DFA example

