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Lexical Analysis
Regular expressions and Finite

Automata
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Phases of compilation
                       Compilers

    Read input program  optimization  translate into machine code

          front end        mid end         back end

Lexical
analysis

parsing Semantic
analysis

……… Code
gen

Assembler Linker

Characters

Words/strings

Sentences/
statements Meaning……… translation
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Lexical analysis
 The first phase of compilation

 Also known as lexer, scanner
 Takes a stream of characters and returns tokens (words)
 Each token has a “type” and an optional “value”
 Called by the parser each time a new token is needed.

IF
LPARAN
<ID “a”>
EQ
<ID “b”>
RPARAN
<ID “c”>
ASSIGN
<ID “a”>

if (a == b)  c = a;
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Lexical analysis
 Typical tokens of programming languages

 Reserved words: class, int, char, bool,…
 Identifiers:  abc, def, mmm, mine,…
 Constant numbers: 123, 123.45, 1.2E3…
 Operators and separators: (, ), <, <=, +, -, …

 Goal
 recognize token classes, report error if a string does not

match any class

A single reserved word: CLASS, INT, CHAR,…
A single operator: LE, LT, ADD,…
A single separator: LPARAN, RPARAN, COMMA,…
The group of all identifiers: <ID “a”>, <ID “b”>,… 
The group of all integer constant: <INTNUM 1>,… 
The group of all floating point numbers <FLOAT 1.0>…

Each token class could be 
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Simple recognizers
 c  NextChar()
 if (c ≠ ‘f’) then do something
 else c  NextChar()
        if (c ≠ ‘e’) then do something 
        else c  NextChar()
               if (c ≠ ‘e’) then do something 
               else report success

s0 s1 s2 s3f e e

 c  NextChar(); 
 if (c = ‘0’) then report success
 else if (c < ‘1’ or c > ‘9’) then do something
        else c  NextChar()
               while (c >= ‘0’ and c <= ‘9’)
                     c  NextChar()
               report success

s0

s2

s10

1..9

0..9
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Multiple token recognizers
 c  NextChar()
 if (c ≠ ‘f’) then if (c ≠ ‘w’) then do something
                       else  c  NextChar()
                               if (c ≠ `h’) then do something
                               else ……
 else c  NextChar()
        if (c ≠ ‘e’) then if (c ≠ ‘i’) then do something
                               else …
        else c  NextChar()
               if (c ≠ ‘e’) then do something
              else report success

s0 s1

s2

s4

s3

s5

s6 s7 s8 s9 s10

f
e e

ei

i

w

eh l
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What about automation?
 Each recognizer is a finite state machine (finite automata)

 Each state remembers what characters have been read and
what characters to expect

 Each state corresponds to a distinct program point in the
scanning algorithm

 No additional storage (other than the input buffer and the
current input pointer) is required

 Can we automatically generate the scanning algorithm?
 Need an language to describe what tokens to recognize
 Need to translate token descriptions to a finite automata (

finite state machine)
 Need to implement (compile/interpret) the finite automata
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Describing tokens
 Each token type is a set of strings

 Use formal language theory to describe sets of strings

 CLASS = {“class”}; LE = {“<=”};  ADD = {“+”};
 ID = {strings that start with a letter}  
 INTNUM = {strings composed of only digits}
 FLOAT = { … }

An alphabet ∑ is a finite set of all characters/symbols
     e.g.   {a,b,…z,0,1,…9}, {+, -, * ,/, <, >, (, )}
A string over ∑ is a sequence of characters drawn from ∑
     e.g.  “abc”  “begin” “end” “class” “if a then b”
Empty string: ε
A formal language is a set of strings over ∑
    {“class”}  {“<+”}  {abc, def, …}, {…-3, -2,-1,0, 1,…}
    The C programming language
    English
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Regular expression
 A subset of formal languages

 L(α): the formal language  described by α

 Regular expressions over ∑ (a recursive definition)

 The empty string ε is a r.e., L(ε) = {ε}

 For each s ∈ ∑, s is a r.e., L(s) = {s}
 If α and β are regular expressions then

 (α) is a r.e., and L((α)) = L(α)    (parentheses)
  αβ is a r.e., and L(αβ) = L(α)L(β)   (string concatenation)

  α | β is a r.e., L(α | β ) = L(α) ∪ L(β)  (alternatives)

  α   is a r.e., L(α ) = L(α)    (exponentiation s = sssssssss)

  α* is a r.e., L(α*) = L(α)*      (closure: ε, α, αα, ααα, ……)

i i i

i
i
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Regular Expression Examples
 Examples

a | b  {a, b}
(a | b) (a | b)  {aa, ab, ba, bb}
a*  {ε , a, aa, aaa, aaaa, …}
aa*  { a, aa, aaa, aaaa, …}
(a | b)*  all strings over {a,b}
a (a | b)*  all strings over {a,b} that start with a
a (a | b)* b  all strings start with and end with b

 Character classes (short-hands)
 [abcd] = a | b | c | d
 [a-z] = a | b | … | z
 [a-f0-3] = a | b | … | f | 0 | 1 | 2 | 3
 [^a-f] = ∑ - [a-f]
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What languages can be defined by
regular expressions?
letter = A | B | C | … | Z | a | b | c | … | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ID = letter (letter | digit)*
NAT = digit digit*
FLOAT = digit* . NAT | NAT . digit*
EXP = NAT (e | E) (+ | - | ε ) NAT
INT = NAT | - NAT
 The expressive power of regular expressions

 Alternatives (|) and loops (*)
 Each definition can refer to only previous definitions
 No recursion

 Exercises
 Strings over {a,b,c} that start with a and contain at least 2 c’s
 How to describe C/C++ comments?
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Finite Automata
 Deterministic Finite Automata (DFA)

 S: A set of states; S0: start state; F: a set of final states
 Alphabet  ∑ : a set of input symbols
 Transition function δ : S x ∑  S    e.g. δ (1, a) = 2

 Language accepted by FA
 All strings that correspond to a path from the start state s0  to

a final state f ∈ F

0 1 2 3start

b

a

a b b
Accepted language:
(a|b)*abb

start
0

1a

4
b

a

b
Accepted language:
a+ | b+

a
a

b
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Non-Deterministic Finite Automata
(NFA)
 Transition function  δ: S x (∑ ∩ {ε}) 2^S, where

  ε represents the empty string

 Example: δ (1, a) = {2,3}, δ (2, ε) = 4

0 1 2 3start

b

a b b

Accepted language:
(a|b)*abb

start
0

1 2
a

3 4
b

a

b

ε

ε

Accepted language:
a+ | b+

a
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Implementing DFA
Char  NextChar()
state  s0
while (char ≠ eof and state ≠ ERROR)
     state δ (state, char)
     char  NextChar()
if (state ∈ F) then report acceptance
else report failure 

s0

s2

s10

1..9

0..9
S = {s0,s1,s2}
∑ = {0,1,2.3,4,5,6,7,8,9} 
δ(s0,0) = s1
δ(s0,1-9) = s2
δ(s2,0-9) = s2
F = {s1,s2}
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Automatically building scanners
 Regular Expressions/lexical patterns  NFA
 NFA  DFA
 DFA  Lexical Analyzer

Char  NextChar()
state  s0
While (char ≠ eof and state ≠ ERROR)
     state δ (state, char)
     char  NextChar()
if (state ∈ F) then report acceptance
Else report failure 

DFA interpreter:

Scanner
generator

Lexical
patterns

Input
buffer

DFA
interpreter

DFA 
transition 
table

scanner
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Converting RE to NFA
 Thompson’s construction

 Takes a r.e. r and returns NFA N(r) that accepts L(r)

 Recursive rules
 For each symbol c ∈ ∑ ∩{ε}, define NFA N(c) as

 Alternation:  if (r = r1 | r2) build N(r) as

 Concatenation: if (r = r1r2) build N(r) as

 Repetition: if  (r = r1*) build N(r) as

c

N(r1)

N(r2)

ε

ε

ε

ε

N(r1) ε N(r2) ε

ε N(r1) ε
_

ε

ε

ε
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RE to NFA examples
a*b*

a0 12 3ε _ b4 56 7ε ε

ε

8 _

start

ε ε 9

(a|b)*

a0 1

b2 3

4
ε

ε
5

ε

ε

ε

ε 7
6 ε

start

ε

_ ε

ε

εε
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Converting NFA to DFA
 Each DFA state <=> a set of equivalent NFA states
 For each NFA state s, compute

  ε-closure(s) = all states reachable from s via ε-transitions

add ε-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
   mark T;
   for each symbol c in ∑ do begin
        U := ε-closure(move(T, c));
        Dtrans[T, c] := U;
        if U is not in Dstates then
              add U to Dstates unmarked
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Convert NFA to DFA example
0 1 2 3start

a

b

a b b
NFA:

Dstates = {ε-closure(s0)} = { {s0} }; 
Dtrans[{s0},a] = ε-closure(move({s0}, a)) = {s0,s1}; 
Dtrans[{s0},b] = ε -closure(move({s0}, b)) = {s0};

Dstates = {{s0} {s0,s1} }; 
Dtrans[{s0,s1},a] = ε-closure(move({s0,s1}, a)) = {s0,s1}; 
Dtrans[{s0,s1},b] = ε -closure(move({s0,s1}, b)) = {s0,s2};

Dstates = {{s0} {s0,s1} {s0,s2} }; 
Dtrans[{s0,s2},a] = ε -closure(move({s0,s2}, a)) = {s0,s1}; 
Dtrans[{s0,s2},b] = ε -closure(move({s0,s2}, b)) = {s0,s3};

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}}; 
Dtrans[{s0,s3},a] = ε -closure(move({s0,s3}, a)) = {s0,s1}; 
Dtrans[{s0,s3},b] = ε -closure(move({s0,s3}, b)) = {s0};
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Convert NFA to DFA example

0 0,1 0,2 0,3start

b

a

a b b

a a

b

DFA:

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}}; 
Dtrans[{s0},a] = {s0,s1}; 
Dtrans[{s0},b] = {s0};
Dtrans[{s0,s1},a] = {s0,s1}; 
Dtrans[{s0,s1},b] = {s0,s2};
Dtrans[{s0,s2},a] = {s0,s1}; 
Dtrans[{s0,s2},b] = {s0,s3};
Dtrans[{s0,s3},a] = {s0,s1}; 
Dtrans[{s0,s3},b] = {s0};


