Lexical Analysis

Regular expressions and Finite Automata

Phases of compilation

Compilers

Read input program \rightarrow optimization \rightarrow translate into machine code

Lexical analysis

- The first phase of compilation
- Also known as lexer, scanner
- Takes a stream of characters and returns tokens (words)
- Each token has a "type" and an optional "value"
- Called by the parser each time a new token is needed.

$$
\text { if }(\mathrm{a}=\mathrm{a}=\mathrm{b}) \quad \mathrm{c}=\mathrm{a} ;, \quad \begin{aligned}
& \text { IF } \\
& \text { LPARAN } \\
& \text { <ID "a"> } \\
& \text { EQ } \\
& \text { <ID "b">> } \\
& \text { RPARAN } \\
& \text { <ID "c"> } \\
& \text { ASSIGN } \\
& \text { <ID "a"> }
\end{aligned}
$$

Lexical analysis

- Typical tokens of programming languages
- Reserved words: class, int, char, bool,...
- Identifiers: abc, def, mmm, mine,...
- Constant numbers: 123, 123.45, 1.2E3...
- Operators and separators: (,), <, <=, +, -, ...
- Goal
- recognize token classes, report error if a string does not match any class

Each token class could be

A single reserved word: CLASS, INT, CHAR,...
A single operator: LE, LT, ADD,...
A single separator: LPARAN, RPARAN, COMMA,...
The group of all identifiers: <ID "a">, <ID "b">,...
The group of all integer constant: <INTNUM 1>,...
The group of all floating point numbers <FLOAT 1.0>...

Simple recognizers

```
c}\leqslantNextChar(
if (c = 'f') then do something
else c < NextChar()
    if (c = `e') then do something
    else c < NextChar()
        if (c = `e') then do something
        else report success
```

 c < NextChar();
 if ($c=$ ' 0^{\prime}) then report success
else if ($c<$ ' 1 ' or c > ' 9 ') then do something
else c \leftarrow NextChar()
while ($c>=$ ' 0^{\prime} and $c<=$ ' 9 ')
$c \leftarrow$ NextChar()
report success

Multiple token recognizers

What about automation?

- Each recognizer is a finite state machine (finite automata)
- Each state remembers what characters have been read and what characters to expect
- Each state corresponds to a distinct program point in the scanning algorithm
- No additional storage (other than the input buffer and the current input pointer) is required
- Can we automatically generate the scanning algorithm?
- Need an language to describe what tokens to recognize
- Need to translate token descriptions to a finite automata (finite state machine)
- Need to implement (compile/interpret) the finite automata

Describing tokens

- Each token type is a set of strings

```
CLASS = {"class"}; LE = {"<="}; ADD = {"+"};
ID = {strings that start with a letter}
INTNUM = {strings composed of only digits}
FLOAT = { ...}
```

- Use formal language theory to describe sets of strings

```
An alphabet }\Sigma\mathrm{ is a finite set of all characters/symbols
    e.g. {a,b,\ldots.z,0,1,\ldots9},{+,-,* ,/,<,>, (, )}
A string over }\Sigma\mathrm{ is a sequence of characters drawn from }
    e.g. "abc" "begin" "end" "class" "if a then b"
Empty string: &
A formal language is a set of strings over }
    {"class"} {"<+"'} {abc, def, ..}, {...-3, -2,-1,0, 1,\ldots}
    The C programming language
    English
```


Regular expression

- A subset of formal languages
- $\mathrm{L}(\alpha)$: the formal language described by α
\square Regular expressions over Σ (a recursive definition)
- The empty string ε is a r.e., $L(\varepsilon)=\{\varepsilon\}$
- For each $s \in \Sigma$, s is a r.e., $L(s)=\{s\}$
- If α and β are regular expressions then
$\square(\alpha)$ is a r.e., and $L((\alpha))=L(\alpha) \quad$ (parentheses)
- $\alpha \beta$ is a r.e., and $L(\alpha \beta)=L(\alpha) L(\beta) \quad$ (string concatenation)
$\square \alpha \mid \beta$ is a r.e., $L\left(\alpha \mid \beta_{i}\right)=L(\alpha) \cup L(\beta)$ (alternatives)
$\square \alpha^{\mathbf{i}}$ is a r.e., $\mathrm{L}^{\mathbf{i}}(\alpha)=\mathrm{L}^{\mathbf{i}}(\alpha) \quad$ (exponentiation $\mathrm{s}^{\mathbf{i}}=\underbrace{\text { in }}_{\text {ssssssss })})$
$\square \alpha^{*}$ is a r.e., $L\left(\alpha^{*}\right)=L(\alpha)^{*} \quad$ (closure: $\left.\varepsilon, \alpha, \alpha \alpha, \alpha \alpha \alpha, \ldots ..\right)$

Regular Expression Examples

- Examples
$a \mid b \rightarrow\{a, b\}$
$(a \mid b)(a \mid b) \rightarrow\{a a, a b, b a, b b\}$
$a^{*} \rightarrow\{\varepsilon, a, a a, ~ a a a, ~ a a a a, \ldots\}$
aa* $\rightarrow\{a$, aa, aaa, aaaa, ...\}
$(a \mid b)^{*} \rightarrow$ all strings over $\{a, b\}$
$a(a \mid b)^{*} \rightarrow$ all strings over $\{a, b\}$ that start with a
$a(a \mid b) * b \rightarrow$ all strings start with and end with b
- Character classes (short-hands)
- [abcd] = a | b |c|d
- $[a-z]=a|b| \ldots \mid z$
- [a-f0-3] = a | b | ... |f|0|1|2|3
- $[\wedge a-f]=\Sigma-[a-f]$

What languages can be defined by regular expressions?

letter $=\mathrm{A}|\mathrm{B}| \mathrm{C}|\ldots| \mathrm{Z}|\mathrm{a}| \mathrm{b}|\mathrm{c}| \ldots \mid \mathrm{z}$
digit $=0|1| 2|3| 4|5| 6|7| 8 \mid 9$
ID $=$ letter (letter | digit)*
NAT = digit digit*
FLOAT $=$ digit*. NAT | NAT . digit*
EXP = NAT (e | E) (+ | - | ε) NAT
INT = NAT | - NAT

- The expressive power of regular expressions
- Alternatives (I) and loops (*)
- Each definition can refer to only previous definitions
- No recursion
- Exercises
- Strings over $\{a, b, c\}$ that start with a and contain at least 2 c's
- How to describe C/C++ comments?

Finite Automata

- Deterministic Finite Automata (DFA)
- S: A set of states; S0: start state; F: a set of final states
- Alphabet Σ : a set of input symbols
- Transition function $\delta: S \times \Sigma \rightarrow S \quad$ e.g. $\delta(1, a)=2$
- Language accepted by FA
- All strings that correspond to a path from the start state s0 to a final state $f \in F$

Non-Deterministic Finite Automata (NFA)

ㅁ Transition function $\delta: S \times(\Sigma \cap\{\varepsilon\}) \rightarrow 2^{\wedge} S$, where

- \mathcal{E} represents the empty string
- Example: $\delta(1, a)=\{2,3\}, \delta(2, \varepsilon)=4$

Accepted language: (a|b)*abb

Accepted language: $a+\mid b+$

Implementing DFA

```
Char < NextChar()
state < s0
while (char }\not=\mathrm{ eof and state }\not=E\mathrm{ ERROR)
    state << (state, char)
    char < NextChar()
if (state }\inF\mathrm{ ) then report acceptance
else report failure
```

$$
\begin{aligned}
& S=\{s 0, s 1, s 2\} \\
& \sum=\{0,1,2.3,4,5,6,7,8,9\} \\
& \delta(s 0,0)=s 1 \\
& \delta(s 0,1-9)=s 2 \\
& \delta(s 2,0-9)=s 2 \\
& F=\{s 1, s 2\}
\end{aligned}
$$

Automatically building scanners

- Regular Expressions/lexical patterns \rightarrow NFA
- NFA \rightarrow DFA
- DFA \rightarrow Lexical Analyzer

DFA interpreter:

```
Char < NextChar()
state < s0
While (char }=\mathrm{ eof and state }=\mathrm{ ERROR)
    state <\delta (state, char)
    char < NextChar()
if (state }\inF\mathrm{ ) then report acceptance
Else report failure
```


Converting RE to NFA

- Thompson's construction
- Takes a r.e. r and returns NFA $N(r)$ that accepts $L(r)$
- Recursive rules
- For each symbol $c \in \Sigma \cap\{\varepsilon\}$, define NFA N(c) as

- Alternation: if $(r=r 1 \mid r 2)$ build $N(r)$ as
- Concatenation: if ($r=r 1 r 2$) build $N(r)$ as

- Repetition: if $\left(r=r 1^{*}\right)$ build $N(r)$ as

RE to NFA examples

a*b*

(a|b)*

Converting NFA to DFA

- Each DFA state $<=>$ a set of equivalent NFA states
- For each NFA state s, compute
- ε-closure(s) $=$ all states reachable from s via ε-transitions

```
add \varepsilon-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
    mark T;
    for each symbol c in \Sigma do begin
        U := \varepsilon-closure(move(T, c));
        Dtrans[T, c] := U;
        if U is not in Dstates then
        add U to Dstates unmarked
```


Convert NFA to DFA example

Convert NFA to DFA example

Dstates $=\{\{s 0\},\{s 0, s 1\},\{s 0, s 2\},\{s 0, s 3\}\} ;$
Dtrans[\{s0\},a] = \{s0,s1\};
Dtrans[\{s0\},b] = \{s0\};
Dtrans[\{s0,s1\},a] = $\{s 0, s 1\}$;
$\operatorname{Dtrans}[\{\mathrm{s} 0, \mathrm{~s} 1\}, \mathrm{b}]=\{\mathrm{s} 0, \mathrm{~s} 2\} ;$
$\operatorname{Dtrans}[\{s 0, s 2\}, a]=\{s 0, s 1\} ;$
Dtrans[\{s0,s2\},b] = \{s0,s3\};
Dtrans[\{s0,s3\},a] = \{s0,s1\};
Dtrans[\{s0,s3\},b] = \{s0\};

