
cs5363 1

Lexical Analysis
Regular expressions and Finite

Automata

cs5363 2

Phases of compilation
 Compilers

 Read input program  optimization  translate into machine code

 front end mid end back end

Lexical
analysis

parsing Semantic
analysis

……… Code
gen

Assembler Linker

Characters

Words/strings

Sentences/
statements Meaning……… translation

cs5363 3

Lexical analysis
 The first phase of compilation

 Also known as lexer, scanner
 Takes a stream of characters and returns tokens (words)
 Each token has a “type” and an optional “value”
 Called by the parser each time a new token is needed.

IF
LPARAN
<ID “a”>
EQ
<ID “b”>
RPARAN
<ID “c”>
ASSIGN
<ID “a”>

if (a == b) c = a;

cs5363 4

Lexical analysis
 Typical tokens of programming languages

 Reserved words: class, int, char, bool,…
 Identifiers: abc, def, mmm, mine,…
 Constant numbers: 123, 123.45, 1.2E3…
 Operators and separators: (,), <, <=, +, -, …

 Goal
 recognize token classes, report error if a string does not

match any class

A single reserved word: CLASS, INT, CHAR,…
A single operator: LE, LT, ADD,…
A single separator: LPARAN, RPARAN, COMMA,…
The group of all identifiers: <ID “a”>, <ID “b”>,…
The group of all integer constant: <INTNUM 1>,…
The group of all floating point numbers <FLOAT 1.0>…

Each token class could be

cs5363 5

Simple recognizers
 c  NextChar()
 if (c ≠ ‘f’) then do something
 else c  NextChar()
 if (c ≠ ‘e’) then do something
 else c  NextChar()
 if (c ≠ ‘e’) then do something
 else report success

s0 s1 s2 s3f e e

 c  NextChar();
 if (c = ‘0’) then report success
 else if (c < ‘1’ or c > ‘9’) then do something
 else c  NextChar()
 while (c >= ‘0’ and c <= ‘9’)
 c  NextChar()
 report success

s0

s2

s10

1..9

0..9

cs5363 6

Multiple token recognizers
 c  NextChar()
 if (c ≠ ‘f’) then if (c ≠ ‘w’) then do something
 else c  NextChar()
 if (c ≠ `h’) then do something
 else ……
 else c  NextChar()
 if (c ≠ ‘e’) then if (c ≠ ‘i’) then do something
 else …
 else c  NextChar()
 if (c ≠ ‘e’) then do something
 else report success

s0 s1

s2

s4

s3

s5

s6 s7 s8 s9 s10

f
e e

ei

i

w

eh l

cs5363 7

What about automation?
 Each recognizer is a finite state machine (finite automata)

 Each state remembers what characters have been read and
what characters to expect

 Each state corresponds to a distinct program point in the
scanning algorithm

 No additional storage (other than the input buffer and the
current input pointer) is required

 Can we automatically generate the scanning algorithm?
 Need an language to describe what tokens to recognize
 Need to translate token descriptions to a finite automata (

finite state machine)
 Need to implement (compile/interpret) the finite automata

cs5363 8

Describing tokens
 Each token type is a set of strings

 Use formal language theory to describe sets of strings

 CLASS = {“class”}; LE = {“<=”}; ADD = {“+”};
 ID = {strings that start with a letter}
 INTNUM = {strings composed of only digits}
 FLOAT = { … }

An alphabet ∑ is a finite set of all characters/symbols
 e.g. {a,b,…z,0,1,…9}, {+, -, * ,/, <, >, (,)}
A string over ∑ is a sequence of characters drawn from ∑
 e.g. “abc” “begin” “end” “class” “if a then b”
Empty string: ε
A formal language is a set of strings over ∑
 {“class”} {“<+”} {abc, def, …}, {…-3, -2,-1,0, 1,…}
 The C programming language
 English

cs5363 9

Regular expression
 A subset of formal languages

 L(α): the formal language described by α

 Regular expressions over ∑ (a recursive definition)

 The empty string ε is a r.e., L(ε) = {ε}

 For each s ∈ ∑, s is a r.e., L(s) = {s}
 If α and β are regular expressions then

 (α) is a r.e., and L((α)) = L(α) (parentheses)
 αβ is a r.e., and L(αβ) = L(α)L(β) (string concatenation)

 α | β is a r.e., L(α | β) = L(α) ∪ L(β) (alternatives)

 α is a r.e., L(α) = L(α) (exponentiation s = sssssssss)

 α* is a r.e., L(α*) = L(α)* (closure: ε, α, αα, ααα, ……)

i i i

i
i

cs5363 10

Regular Expression Examples
 Examples

a | b  {a, b}
(a | b) (a | b)  {aa, ab, ba, bb}
a*  {ε , a, aa, aaa, aaaa, …}
aa*  { a, aa, aaa, aaaa, …}
(a | b)*  all strings over {a,b}
a (a | b)*  all strings over {a,b} that start with a
a (a | b)* b  all strings start with and end with b

 Character classes (short-hands)
 [abcd] = a | b | c | d
 [a-z] = a | b | … | z
 [a-f0-3] = a | b | … | f | 0 | 1 | 2 | 3
 [^a-f] = ∑ - [a-f]

cs5363 11

What languages can be defined by
regular expressions?
letter = A | B | C | … | Z | a | b | c | … | z
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
ID = letter (letter | digit)*
NAT = digit digit*
FLOAT = digit* . NAT | NAT . digit*
EXP = NAT (e | E) (+ | - | ε) NAT
INT = NAT | - NAT
 The expressive power of regular expressions

 Alternatives (|) and loops (*)
 Each definition can refer to only previous definitions
 No recursion

 Exercises
 Strings over {a,b,c} that start with a and contain at least 2 c’s
 How to describe C/C++ comments?

cs5363 12

Finite Automata
 Deterministic Finite Automata (DFA)

 S: A set of states; S0: start state; F: a set of final states
 Alphabet ∑ : a set of input symbols
 Transition function δ : S x ∑  S e.g. δ (1, a) = 2

 Language accepted by FA
 All strings that correspond to a path from the start state s0 to

a final state f ∈ F

0 1 2 3start

b

a

a b b
Accepted language:
(a|b)*abb

start
0

1a

4
b

a

b
Accepted language:
a+ | b+

a
a

b

cs5363 13

Non-Deterministic Finite Automata
(NFA)
 Transition function δ: S x (∑ ∩ {ε}) 2^S, where

 ε represents the empty string

 Example: δ (1, a) = {2,3}, δ (2, ε) = 4

0 1 2 3start

b

a b b

Accepted language:
(a|b)*abb

start
0

1 2
a

3 4
b

a

b

ε

ε

Accepted language:
a+ | b+

a

cs5363 14

Implementing DFA
Char  NextChar()
state  s0
while (char ≠ eof and state ≠ ERROR)
 state δ (state, char)
 char  NextChar()
if (state ∈ F) then report acceptance
else report failure

s0

s2

s10

1..9

0..9
S = {s0,s1,s2}
∑ = {0,1,2.3,4,5,6,7,8,9}
δ(s0,0) = s1
δ(s0,1-9) = s2
δ(s2,0-9) = s2
F = {s1,s2}

cs5363 15

Automatically building scanners
 Regular Expressions/lexical patterns  NFA
 NFA  DFA
 DFA  Lexical Analyzer

Char  NextChar()
state  s0
While (char ≠ eof and state ≠ ERROR)
 state δ (state, char)
 char  NextChar()
if (state ∈ F) then report acceptance
Else report failure

DFA interpreter:

Scanner
generator

Lexical
patterns

Input
buffer

DFA
interpreter

DFA
transition
table

scanner

cs5363 16

Converting RE to NFA
 Thompson’s construction

 Takes a r.e. r and returns NFA N(r) that accepts L(r)

 Recursive rules
 For each symbol c ∈ ∑ ∩{ε}, define NFA N(c) as

 Alternation: if (r = r1 | r2) build N(r) as

 Concatenation: if (r = r1r2) build N(r) as

 Repetition: if (r = r1*) build N(r) as

c

N(r1)

N(r2)

ε

ε

ε

ε

N(r1) ε N(r2) ε

ε N(r1) ε
_

ε

ε

ε

cs5363 17

RE to NFA examples
a*b*

a0 12 3ε _ b4 56 7ε ε

ε

8 _

start

ε ε 9

(a|b)*

a0 1

b2 3

4
ε

ε
5

ε

ε

ε

ε 7
6 ε

start

ε

_ ε

ε

εε

cs5363 18

Converting NFA to DFA
 Each DFA state <=> a set of equivalent NFA states
 For each NFA state s, compute

 ε-closure(s) = all states reachable from s via ε-transitions

add ε-closure(s0) to Dstates unmarked
while there is unmarked T in Dstates do
 mark T;
 for each symbol c in ∑ do begin
 U := ε-closure(move(T, c));
 Dtrans[T, c] := U;
 if U is not in Dstates then
 add U to Dstates unmarked

cs5363 19

Convert NFA to DFA example
0 1 2 3start

a

b

a b b
NFA:

Dstates = {ε-closure(s0)} = { {s0} };
Dtrans[{s0},a] = ε-closure(move({s0}, a)) = {s0,s1};
Dtrans[{s0},b] = ε -closure(move({s0}, b)) = {s0};

Dstates = {{s0} {s0,s1} };
Dtrans[{s0,s1},a] = ε-closure(move({s0,s1}, a)) = {s0,s1};
Dtrans[{s0,s1},b] = ε -closure(move({s0,s1}, b)) = {s0,s2};

Dstates = {{s0} {s0,s1} {s0,s2} };
Dtrans[{s0,s2},a] = ε -closure(move({s0,s2}, a)) = {s0,s1};
Dtrans[{s0,s2},b] = ε -closure(move({s0,s2}, b)) = {s0,s3};

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0,s3},a] = ε -closure(move({s0,s3}, a)) = {s0,s1};
Dtrans[{s0,s3},b] = ε -closure(move({s0,s3}, b)) = {s0};

cs5363 20

Convert NFA to DFA example

0 0,1 0,2 0,3start

b

a

a b b

a a

b

DFA:

Dstates = {{s0}, {s0,s1}, {s0,s2}, {s0,s3}};
Dtrans[{s0},a] = {s0,s1};
Dtrans[{s0},b] = {s0};
Dtrans[{s0,s1},a] = {s0,s1};
Dtrans[{s0,s1},b] = {s0,s2};
Dtrans[{s0,s2},a] = {s0,s1};
Dtrans[{s0,s2},b] = {s0,s3};
Dtrans[{s0,s3},a] = {s0,s1};
Dtrans[{s0,s3},b] = {s0};

