Syntax Analysis

Context-free grammar Top-down and bottom-up parsing

Front end

- Source program
for (w = 1; w < 100; w = w * 2);
- Input: a stream of characters

- Scanning--- convert input to a stream of words (tokens)

■ "for" "(" "w" "=" "1" ";" "w" "<" "100" ";" "w"...

- Parsing---discover the syntax/structure of sentences

Context-free Syntax Analysis

- Goal: recognize the structure of programs
- Description of the language
- Context-free grammar
- Parsing: discover the structure of an input string
- Reject the input if it cannot be derived from the grammar

Describing context-free syntax

- Describe how to recursively compose programs/sentences from tokens

```
forStmt: "for" "(" expr ";" expr ";" expr ")" stmt
expr: expr + expr
    | expr - expr
    | expr * expr
    | expr / expr
    |! expr
stmt: assignment
        | forStmt
        whileStmt
    | .....
```


Context-free Grammar

- A context-free grammar includes (T,NT,S,P)
- A set of tokens or terminals --- T
\square Atomic symbols in the language
- A set of non-terminals --- NT
- Variables representing constructs in the language
- A set of productions --- P
- Rules identifying components of a construct
- BNF: each production has format $A::=B$ (or $A \rightarrow B$) where
- A is a single non-terminal
- B is a sequence of terminals and non-terminals
- A start non-terminal --- S
- The main construct of the language
- Backus-Naur Form: textual formula for expressing contextfree grammars

Example: simple expressions

- BNF: a collection of production rules
e ::= n | e+e | ee |e*e|e/e
- Non-terminals: e
- Terminal (token): n, +, -, *, /
- Start symbol: e
- Using CFG to describe regular expressions
- $\mathrm{n}::=\mathrm{d} \mathrm{n} \mid \mathrm{d}$
- d::=0|1|2|3|4|5|6|7|8|9
- Derivation: top-down replacement of non-terminals
- Each replacement follows a production rule
- One or more derivations exist for each program
- Example: derivations for $5+15$ * 20
$e=>e * e=>e+e * e=>5+e * e=>5+15 * e=>5+15 * 20$
$e=>e+e=>5+e=>5+e * e=>5+15 * e=>5+15 * 20$

Parse trees and derivations

- Given a CFG $G=(T, N T, P, S)$, a sentence si belongs to $L(G)$ if there is a derivation from S to si
- Left-most derivation
- replace the left-most non-terminal at each step
- Right-most derivation
- replace the right-most non-terminal at each step
- Parse tree: graphical representation of derivations

```
Grammar: e ::= n | e+e | ee | e*e|e/e
Sentence: 5 + 15 * 20
Derivations:
    e=>e*e=>e+e*e=>5+e*e=>5+15*e=>5+15*20
    e=>e+e=>5+e=>5+e*e=>5+15*e=>5+15*20
```

Parse trees:

Languages defined by CFG

e ::= num | string | id | e+e

- Support both alternative (I) and recursion
- Cannot incorporate context information
- Cannot determine the type of variable names
- Declaration of variables is in the context (symbol table)
- Cannot ensure variables are always defined before used

```
int w;
0 = w;
for (w = 1; w < 100; w = 2w)
    a = "c" + 3;
a = "c" + w
```


Writing CFGs

- Give BNFs to describe the following languages
- All strings generated by RE (0|1)*11
- Symmetric strings of $\{\mathrm{a}, \mathrm{b}\}$. For example
- "aba" and "babab" are in the language
- "abab" and "babbb" are not in the language
- All regular expressions over $\{0,1\}$. For example
- "0|1", " 0 *", ($01 \mid 10$)* are in the language
- "0|" and "*0" are not in the language
- For each solution, give an example input of the language. Then draw a parse tree for the input based on your BNF

Abstract vs. Concrete Syntax

- Concrete syntax: the syntax programmers write
- Example: different notations of expressions
- Prefix + 5* 1520
- Infix $5+15 * 20$
- Postfix 51520 * +
- Abstract syntax: the structure recognized by compilers
- Identifies only the meaningful components
- The operation
- The components of the operation

Parse Tree for $5+15 * 20$

Abstract Syntax Tree for $5+15$ * 20

Abstract syntax trees

- Condensed form of parse tree
- Operators and keywords do not appear as leaves
\square They define the meaning of the interior (parent) node

Ambiguous Grammars

- A grammar is syntactically ambiguous if
- Some program has multiple parse trees
- Consequence of multiple parse trees
- Multiple ways to interpret a program

$$
\begin{aligned}
& \text { Grammar: e ::= n | e+e | ee |e * e|e/e } \\
& \text { Sentence: } 5+15 * 20
\end{aligned}
$$

Parse trees:

Rewrite ambiguous Expressions

- Solution1: introduce precedence and associativity rules to dictate the choices of applying production rules
e ::= n | e+e \| ee | e*e|e/e
- Precedence and associativity
- */ >> + -
- All operators are left associative
- Derivation for $n+n * n$
$\square e=>e+e=>n+e=>n+e^{*} e=>n+n^{*} e=>n+n^{*} n$
- Solution2: rewrite productions with additional non-terminals

E : : = E + T|E-T|T
T::= T* F | T / F | F
F::= n

- Derivation for $\mathrm{n}+\mathrm{n} * \mathrm{n}$
- $E=>E+T=>T+T=>F+T=>n+T=>n+T * F=>n+F * F=>n+n * F=>n+n * n$
- How to modify the grammar if
- + and - has high precedence than * and /
- All operators are right associative

Rewrite Ambiguous Grammars

- Disambiguate composition of non-terminals
- Original grammar

```
S = IF <expr> THEN S
IF <expr> THEN S ELSE S |
<other>
```

- Alternative grammar

S ::= MS | US
US ::= IF <expr> THEN MS ELSE US | IF <expr> THEN S
MS ::= IF <expr> THEN MS ELSE MS | <other>

Parsing

- Recognize the structure of programs
- Given an input string, discover its structure by constructing a parse tree
\square Reject the input if it cannot be derived from the grammar
- Top-down parsing
- Construct the parse tree in a top-down recursive descent fashion
- Start from the root of the parse tree, build down towards leaves
- Bottom-up parsing
- Construct the parse tree in a bottom-up fashion
- Start from the leaves of the parse tree, build up towards the root

Top-down Parsing

- Start from the starting non-terminal, try to find a left-most derivation

$$
\begin{aligned}
& E::=E+T|E-T| T \\
& T::=T * F|T / F| F \\
& F::=n
\end{aligned}
$$

```
void ParseE() {
    if (use the first rule) {
        ParseE();
        if (getNextToken() != PLUS)
            ErrorRecovery()
        ParseT();
    }
    else if (use the second rule) {
    ..
    }
    else ...
}
void ParseT() { ...... }
void ParseF() { ......}

-Create a procedure for each non-terminal S
- Recognize the language described by S
-Parse the whole language in a recursive descent fashion
How to decide which production rule to use?

\section*{LL(k) Parsers}
- Left-to-right, leftmost-derivation, k-symbol lookahead parsers
- The production for each non-terminal can be determined by checking at most k input tokens
- LL(k) grammar: grammars that can be parsed by LL(k) parsers

ㅁ LL(1) parser: the selection of every production can be determined by the next input token

\section*{Grammar:}
\[
\begin{aligned}
& E::=E+T|E-T| T \\
& T::=T * F|T / F| F \\
& F::=n \mid \text { (E) }
\end{aligned}
\]

\section*{Every production starts with a number. Not LL(1) \\ Left recursive \(==>\) not \(\operatorname{LL}(K)\)}

\section*{Equivalent LL(1) grammar :}

\section*{Grammar:}
\[
\begin{aligned}
& \mathrm{E}::=\mathrm{TE}^{\prime} \\
& \mathrm{E}^{\prime}::=+\mathrm{TE}^{\prime}\left|-\mathrm{TE}^{\prime}\right| \varepsilon \\
& \mathrm{T}::=\mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime}::=* \mathrm{FT}^{\prime}\left|/ \mathrm{FT}^{\prime}\right| \varepsilon \\
& \mathrm{F}::=\mathrm{n} \mid(\mathrm{E})
\end{aligned}
\]

\section*{Eliminating left recursion}
- A grammar is left-recursive if it has a derivation \(A \rightarrow A *\) for some string
- Left recursive grammar cannot be parsed by recursive descent parsers even with backtracking
\[
A::=A \bullet \mid \beta
\]

\[
\begin{aligned}
& A::=\beta \quad A^{\prime} \\
& A^{\prime}::=\vee A^{\prime} \mid \varepsilon
\end{aligned}
\]

Grammar:
\[
\begin{aligned}
& \mathrm{E}::=\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T} * \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F} \\
& \mathrm{~F}::=\mathrm{n}
\end{aligned}
\]

\section*{Grammar:}
\[
\begin{aligned}
& \mathrm{E}::=\mathrm{TE}^{\prime} \\
& \mathrm{E}^{\prime}::=+\mathrm{TE}\left|-\mathrm{TE}^{\prime}\right| \varepsilon \\
& \mathrm{T}::=\mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime}::=\mathrm{FT}^{\prime}\left|/ \mathrm{FT}^{\prime}\right| \varepsilon \\
& \mathrm{F}::=\mathrm{n}
\end{aligned}
\]

Problem: Left-recursion could involve multiple derivations

\section*{Algorithm: Eliminating left-recursion}
1. Arrange the non-terminals in some order A1,A2,...,An
2. for \(\mathrm{i}=1\) to n do for \(\mathrm{j}=1\) to \(\mathrm{i}-1\) do Replace each production
\(A i::=A_{j}\) » where
\[
A j::=\beta \quad 1|\beta \quad 2| \ldots \mid
\]
\(\beta\) k
\[
\begin{array}{r}
\text { Example: } \mathbf{S}::=\text { Aa | b } \\
\text { A }::=\text { Ac | Sd } \\
\hline
\end{array}
\]


Example: S ::= Aa | b
A ::=Ac|Aad | bd


Example: S ::= Aa | b \(A::=b d A^{\prime} \mid A^{\prime}\) \(A^{\prime}::=\mathbf{c A}^{\prime}\left|\mathbf{a d A}^{\prime}\right| \varepsilon\)

Eliminate left-recursion for all Ai productions end

\section*{Left factoring}
- When two alternative productions start with the same symbols, delay the decision until we can make the right choice
- Can change \(\operatorname{LL}(\mathrm{k})\) into \(\mathrm{LL}(1)\)
\[
A::=\diamond \beta \quad 1 \left\lvert\, \diamond \beta \quad 2 \quad \square \quad \begin{array}{lll}
A::=\diamond A^{\prime} \\
A^{\prime}::=\beta & 1| | & 2
\end{array}\right.
\]
```

S ::= IF <expr> THEN S ELSE S
| IF <expr> THEN S
| <other>

```
```

S ::= MS | US
US ::= IF <expr> THEN MS ELSE US
| IF <expr> THEN S
MS ::= IF <expr> THEN MS ELSE MS
| <other>

```
```

S ::= IF <expr> THEN S S' | <other>
S'::= ELSE S | \&

```
```

S ::= MS | US
US ::= IF <expr> THEN US'
US'::= MS ELSE S | S
MS ::= IF <expr> THEN MS ELSE MS
| <other>

```

\section*{Predictive parsing table}
\begin{tabular}{ll} 
Grammar: & \(\mathrm{E}::=\mathrm{TE}^{\prime}\) \\
& \(\mathrm{E}^{\prime}::=+\mathrm{TE}^{\prime}\left|-\mathrm{TE}^{\prime}\right| \varepsilon\) \\
& \(\mathrm{T}::=\mathrm{FT}^{\prime}\) \\
& \(\mathrm{T}^{\prime}::=* \mathrm{FT}^{\prime}\left|/ \mathrm{FT}^{\prime}\right| \varepsilon\) \\
& \(\mathrm{F}::=\mathrm{n}\) \\
&
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & n & + & - & \(*\) & \(/\) & \(\$\) \\
\hline E & \(\mathrm{E}::=\mathrm{TE}^{\prime}\) & & & & & \\
\hline \(\mathrm{E}^{\prime}\) & & \(\mathrm{E}^{\prime}::=+\mathrm{TE}^{\prime}\) & \(\mathrm{E}^{\prime}::=-\mathrm{TE}^{\prime}\) & & & \(\mathrm{E}^{\prime}::=\varepsilon\) \\
\hline T & \(\mathrm{T}::=\mathrm{FT}^{\prime}\) & & & & & \\
\hline \(\mathrm{T}^{\prime}\) & & \(\mathrm{T}^{\prime}::=\varepsilon\) & \(\mathrm{T}^{\prime}::=\varepsilon\) & \(\mathrm{T}^{\prime}::=* \mathrm{FT}^{\prime}\) & \(\mathrm{T}^{\prime}::=/ \mathrm{FT}^{\prime}\) & \(\mathrm{T}^{\prime}::=\varepsilon\) \\
\hline F & \(\mathrm{F}::=\mathrm{n}\) & & & & & \\
\hline
\end{tabular}

\section*{Constructing Predictive Parsing}

\section*{Table}
- For each string », compute
- First(»): terminals that can start all strings derived from *
- For each non-terminal A, compute
- Follow(A): terminals then can immediately follow \(A\) in some derivation
- Algorithm

For each production A::= », do
For each terminal a in \(\operatorname{First}(\stackrel{\wedge}{ })\), add \(A::=\) s to \(M[A, a]\) If \(\varepsilon \sum \operatorname{First}(\stackrel{\wedge}{ })\), add \(A::=\) v to \(M[A, b]\) for each \(b \sum\) Follow(A).
Each undefined entry of \(M\) is error

\section*{Compute First}
```

$\mathrm{E}::=\mathrm{TE}^{\prime}$
$\mathrm{E}^{\prime}::=+\mathrm{TE}\left|-T E^{\prime}\right| \varepsilon$
$\mathrm{T}::=\mathrm{FT}^{\prime}$
$\mathrm{T}^{\prime}::=* \mathrm{FT}^{\prime}\left|/ \mathrm{FT}^{\prime}\right| \varepsilon$
F::= n

```

First(E')=\{+,-, \(\varepsilon\}\)
\(\operatorname{First}\left(\mathrm{T}^{\prime}\right)=\{*, /, \varepsilon\}\)
First(F) \(=\) \{n\}
First(T)=First(F)=\{n\}
First(E)=First(T)=\{n\}

Strings:
First(TE')=\{n\} First(+TE')=\{+\} First \(\left(-\mathrm{TE}^{\prime}\right)=\{-\}\) First( \(\mathrm{FT}^{\prime}\) ) \(=\{\mathrm{n}\}\) First(*FT')=\{*\} First( \(/ \mathrm{FT}^{\prime}\) )=\{/\}

If \(X\) is terminal, then \(\operatorname{First}(X)=\{X\}\)
If \(X::=\varepsilon\) is a production, then \(\varepsilon \Sigma\) First(X)
If \(x::=y 1 y 2 . . . y k\) is a production, then First( \(x\) )=First(y1y2...yk)
If \(X=Y 1 Y 2\)... \(Y k\) is a string, then First( Y 1 ) \(\Sigma\) First( \(X\) ) If \(\varepsilon \Sigma\) First(Y1), \(\varepsilon \Sigma\) First(Y2)..\(\varepsilon \Sigma\) First(Yi), then First(Yi+1) \(\Sigma\) First(X)

\section*{Compute Follow}

Grammar: \(\mathrm{E}::=\mathrm{TE}{ }^{\prime}\)
\(\mathrm{E}^{\prime}::=+T E^{\prime}\left|-T E^{\prime}\right| \varepsilon\) \(\mathrm{T}::=\mathrm{FT}^{\prime}\) \(\mathrm{T}^{\prime}::=\) FFT \(^{\prime}\left|/ \mathrm{FT}^{\prime}\right| \varepsilon\) F::= n

\section*{Non-terminals:}
\[
\begin{aligned}
& \text { Follow }(E)=\{\$\} \\
& \text { Follow }\left(E^{\prime}\right)=\{\$\} \\
& \text { Follow }(T)=\{\$,+,-\} \\
& \text { Follow }\left(T^{\prime}\right)=\{\$,+,-\} \\
& \text { Follow }(F)=\{*, /,+,-, \$\}
\end{aligned}
\]

If \(S\) is the start non-terminal, then \(\$ \Sigma\) Follow(S)
If \(\mathbf{A}:=\diamond \mathbf{B} \beta \quad\) is a production, then First \((\beta \quad)-\{\varepsilon\} \Sigma\) Follow(B) If \(\varepsilon \Sigma\) First( \(\beta\) ), then Follow(A) \(\Sigma\) Follow(B)

If \(A:=\curvearrowright B\) is a production, then Follow(A) \(\Sigma\) Follow(B)

\section*{Build predictive parsing tables}

First(TE') \(=\{\mathbf{n}\}\)
First( + TE') \(=\{+\}\)
First \(\left(-\mathrm{TE}^{\prime}\right)=\{-\}\)
First( \(\mathrm{FT}^{\prime}\) ) \(=\{\mathrm{n}\}\)
First( \({ }^{\left(F T^{\prime}\right)} \mathbf{)}=\{*\}\)
First(/FT')=\{/\}
Follow(E)=\{\$\}
Follow( \(E^{\prime}\) ) \(=\{\$\}\)
Follow(T) \(=\{\$,+,-\}\)
Follow ( \(T^{\prime}\) ) \(=\{\$,+,-\}\)
Follow(F)=\{*,/,+,-,\$\}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & n & + & - & \(*\) & \(/\) & \(\$\) \\
\hline E & \(\mathrm{E}::=\mathrm{TE}^{\prime}\) & & & & & \\
\hline \(\mathrm{E}^{\prime}\) & & \(\mathrm{E}^{\prime}::=+\mathrm{TE}^{\prime}\) & \(\mathrm{E}^{\prime}::=-\mathrm{TE}^{\prime}\) & & & \(\mathrm{E}^{\prime}::=\varepsilon\) \\
\hline T & \(\mathrm{T}::=\mathrm{FT}^{\prime}\) & & & & & \\
\hline \(\mathrm{T}^{\prime}\) & & \(\mathrm{T}^{\prime}::=\varepsilon\) & \(\mathrm{T}^{\prime}::=\varepsilon\) & \(\mathrm{T}^{\prime}::=* \mathrm{FT}^{\prime}\) & \(\mathrm{T}^{\prime}::=/ \mathrm{FT}^{\prime}\) & \(\mathrm{T}^{\prime}::=\varepsilon\) \\
\hline F & \(\mathrm{F}::=\mathrm{n}\) & & & & & \\
\hline
\end{tabular}

\section*{Bottom-up Parsing}
- Start from the input string, try reduce it to the starting nonterminal. Equivalent to the reverse of a right-most derivation
Grammar:
\[
\begin{aligned}
& \mathrm{E}::=\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T} * \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F} \\
& \mathrm{~F}::=\mathrm{n}
\end{aligned}
\]

Right-most derivation for 5+15*20-7:
\[
\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T} \rightarrow \mathrm{E}-\mathrm{F} \rightarrow \mathrm{E}-7 \rightarrow \mathrm{E}+\mathrm{T}-7 \rightarrow \mathrm{E}+\mathrm{T} * \mathrm{~F}-7
\]
\[
\rightarrow \mathrm{E}+\mathrm{T}^{*} 20-7 \rightarrow \mathrm{E}+\mathrm{F} * 20-7 \rightarrow \mathrm{E}+15 * 20-7
\]
\[
\rightarrow \mathrm{T}+15 * 20-7 \rightarrow \mathrm{~F}+15 * 20-7 \rightarrow 5+15 * 20-7
\]

Bottom-up parsing: \(5+15 * 20-7 \rightarrow F+15 * 20-7 \rightarrow T+15 * 20-7\)

\[
\begin{aligned}
& \rightarrow \mathrm{E}+15 * 20-7 \rightarrow \mathrm{E}+\mathrm{F} * 20-7 \rightarrow \mathrm{E}+\mathrm{T} * 20-7 \\
& \rightarrow \mathrm{E}+\mathrm{T} * \mathrm{~F}-7 \rightarrow \mathrm{E}+\mathrm{T}-7 \rightarrow \mathrm{E}-7 \rightarrow \mathrm{E}-\mathrm{F} \rightarrow \mathrm{E}-\mathrm{T} \rightarrow \mathrm{E}
\end{aligned}
\]

Right-sentential form: any sentence that can appear as an intermediate form of a right-most derivation.
The handle of a right-sentential form \(\triangleleft\) : the substring to reduce to a non-terminal at each step

\section*{Handle pruning}
Grammar: \(\quad\)\begin{tabular}{ll}
\(\mathrm{E}::=\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T}\) \\
\(\mathrm{T}::=\mathrm{T} * \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F}\) \\
& \(\mathrm{F}::=\mathrm{n}\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Right-sentential form & Handle & Reducing production \\
\hline 5+15*20-7 & 5 & F: \(:=\mathrm{n}\) \\
\hline F+15*20-7 & F & T: : = F \\
\hline T+15*20-7 & T & E: \(:=\) T \\
\hline E+15*20-7 & 15 & F: : = n \\
\hline E+F*20-7 & F & T: \(:=\mathrm{F}\) \\
\hline E+T*20-7 & 20 & F: \(:=\mathrm{n}\) \\
\hline E+T*F-7 & T*F & T: \(:=\mathrm{T}^{*} \mathrm{~F}\) \\
\hline E+T-7 & E+T & E: \(=\mathrm{E}+\mathrm{T}\) \\
\hline E-7 & 7 & F: \(:=\mathrm{n}\) \\
\hline E-F & F & T: \(:=\mathrm{F}\) \\
\hline E-T & E-T & E: \(:=\mathrm{E}-\mathrm{T}\) \\
\hline E & & \\
\hline
\end{tabular}

\section*{LR(k)}
- Left-to-right, rightmost-derivation, k-symbol lookahead
- Decisions are made by checking the next \(k\) input tokens
- Use a finite automata to configure actions
- Automata states remember symbols to expect for each production
- Each (state, input token) pair determines a unique action

ㅁ Why use LR parsers?
- Can recognize more CFGs than can predictive LL(k) parsers
- Can recognize virtually all programming languages
- General non-backtracking method, efficient implementation
- Can detect error at the leftmost position of input string
- Tradeoff: \(\mathrm{LR}(\mathrm{k})\) vs \(\operatorname{LL}(\mathrm{k})\) parsers
- LR parsers are hard to build by hand --- use automatic parser generators (eg., yacc)
- Use a stack to save symbols already processed
- Prefix of handles processed so far

ㅁ Use a finite automata to make decisions
- State + lookahead => action + goto state
- Implement handle pruning through four actions
- Shift the current token from input string onto stack
- Reduce symbols on the top of stack to a non-terminal
- Accept: success
- Error

How to locate the handle to be reduced? Which production to use in reducing a handle?

Shift/reduce conflict: to shift or to reduce?
Reduce/reduce conflict: choose a production to reduce

\section*{Example: LR(1) parsing table}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & n & + & \(*\) & \(\$\) & E & T \\
\hline 0 & s 1 & & & & Goto2 & Goto3 \\
\hline 1 & & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & & \\
\hline 2 & & s 4 & & Acc & & \\
\hline 3 & & \(\mathrm{R}(\mathrm{E}::=\mathrm{T})\) & s 5 & \(\mathrm{R}(\mathrm{E}::=\mathrm{T})\) & & \\
\hline 4 & s 1 & & & & & Goto6 \\
\hline 5 & s 7 & & & & & \\
\hline 6 & & \(\mathrm{R}(\mathrm{E}::=\mathrm{E}+\mathrm{T})\) & s 5 & \(\mathrm{R}(\mathrm{E}::=\mathrm{E}+\mathrm{T})\) & & \\
\hline 7 & & \(\mathrm{R}(\mathrm{T}::=\mathrm{T} * \mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{T} * \mathrm{n})\) & \(\mathrm{R}\left(\mathrm{T}::=\mathrm{T}^{*} \mathrm{n}\right)\) & & \\
\hline
\end{tabular}

\section*{LR shift-reduce parsing}
\begin{tabular}{|c|c|c|}
\hline Stack & Input & Action \\
\hline (0) & 5+15*20\$ & Shift 1 \\
\hline (0)5(1) & +15*20\$ & Reduce by T: : = \\
\hline (0)T & +15*20\$ & Goto3 \\
\hline (0)T(3) & +15*20\$ & Reduce by E: : = \\
\hline (0)E & +15*20\$ & Goto2 \\
\hline (0)E(2) & +15*20\$ & Shift 4 \\
\hline (0) \(E(2)+(4)\) & 15*20\$ & Shift 1 \\
\hline (0) \(E(2)+(4) 15(1)\) & * 20\$ & Reduce by T: \(=\) = \\
\hline (0) \(E(2)+(4) T\) & *20\$ & Goto6 \\
\hline (0)E(2)+(4)T(6) & *20\$ & Shift5 \\
\hline (0)E(2)+(4)T(6)*(5) & 20\$ & Shift7 \\
\hline (0)E(2)+(4)T(6)*(5)20(7) & \$ & Reduce by T:: \(=\mathbf{T}^{*} \mathbf{n}\) \\
\hline (0) \(E(2)+(4) T\) & \$ & Goto6 \\
\hline (0)E(2)+(4)T(6) & \$ & Reduce by E::=E+T \\
\hline (0)E & \$ & Goto2 \\
\hline (0)E(2) & \$ & Accept \\
\hline
\end{tabular}

\section*{Model of an LR parser}

Stack


Configuration of LR parser:

Right-sentential form: \(\mathbf{X}_{1} X_{2} . . . X_{m a i a}{ }_{i+1} . . . \mathrm{an}_{\mathrm{n}} \$\)
Automata states: sos1s2...Sm

\section*{Constructing LR parsing tables}
- Augmented grammar: add a new starting non-terminal E'
- Build a finite automata to model prefix of handles
- NFA states: production + position of processed symbols + lookahead
- Build a DFA by grouping NFA states

ㅁ NFA states: \((S \rightarrow \alpha \beta, \gamma)\) where \(S \rightarrow o \beta\) is a production, \(\gamma \Sigma\) FOLLOW(S)
- Remembers the handle ( \(\alpha_{\alpha} \beta\) ) and lookahead \((\gamma)\) for each state
- Use lookahead information in automata states
- LR(0): no lookahead; LR(1): look-ahead one token

Grammar:
\[
\begin{aligned}
& \mathrm{E}^{\prime}::=\mathrm{E} \quad \mathrm{E}::=\mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T} * \mathrm{n} \mid \mathrm{n}
\end{aligned}
\]

LR(0) items:
\(\left(E^{\prime}::=. E\right) \rightarrow E \rightarrow\left(E^{\prime}::=E.\right) \quad(E::=. T) \rightarrow T \rightarrow(E::=T\).
(NFA states) \((\mathrm{E}::=. \mathrm{E}+\mathrm{T}) \rightarrow \mathrm{E} \rightarrow(\mathrm{E}::=\mathrm{E} .+\mathrm{T}) \rightarrow+\rightarrow(\mathrm{E}::=\mathrm{E}+. \mathrm{T}) \rightarrow \mathrm{T} \rightarrow(\mathrm{E}::=\mathrm{E}+\mathrm{T}\). \()\)
LR(1) items: \(\left(\mathrm{E}^{\prime}::=. \mathrm{E}, \$\right) \rightarrow \mathrm{E} \rightarrow\left(\mathrm{E}^{\prime}::=\mathrm{E} ., \$\right) \quad(\mathrm{E}::=. \mathrm{T}, \$) \rightarrow \mathrm{T} \rightarrow(\mathrm{E}::=\mathrm{T} ., \$)\)

\section*{Closure of LR(1) items}
- If I is a set of \(\operatorname{LR}(1)\) items, closure(I)
- Includes every item in I
- If ( \(\mathrm{A}::=\alpha \mathrm{B} \beta \quad, \mathrm{a}\) ) is in closure(I), and \(\mathrm{B}::=\gamma\) is a production, then for every \(b \sum \operatorname{FIRST}(\beta \quad a)\), add ( \(\mathrm{B}::=\gamma, \gamma\) ) to closure(I) Repeat until no more new items to add

Grammar:
\[
\begin{aligned}
& \mathrm{E}^{\prime}::=\mathrm{E} \quad \mathrm{E}::=\mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T} * \mathrm{n} \mid \mathrm{n}
\end{aligned}
\]

Closure \(\left(\left\{\mathrm{E}^{\prime}::=. \mathrm{E}, \$\right\}\right)=\left\{\left(\mathrm{E}^{\prime}::=. \mathrm{E}, \$\right),(\mathrm{E}::=. \mathrm{E}+\mathrm{T}, \$ /+),(\mathrm{E}::=. \mathrm{T}, \$ /+)\right.\)
(T::=.T*F,\$/+/*), (T::=.n,\$/+/*)\}

\section*{Goto (DFA) transitions}
- If \(I\) is a set of \(\operatorname{LR}(1)\) items, \(X\) is a grammar symbol, then Goto( \(\mathrm{I}, \mathrm{X}\) ) contains
- For each (A::= \(\alpha \times X\), a) in I, Closure( \(\{(\mathrm{A}::=\) \(\alpha X . \beta\),a) \(\}\) )
- Note: there is no transition from (A::= \(=a\) )
```

Cononical collection of LR(1) sets
Begin
C ::= {closure({(S'::=.S,\$)})}
repeat
for each item set I in C
for each grammar symbol X
add Goto(I,X) to C
until no more item sets can be added to C

```

\section*{Example: Building DFA}
Grammar:
\[
\begin{aligned}
& \mathrm{E}^{\prime}::=\mathrm{E} \\
& \mathrm{E}::=\mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T} * \mathrm{n} \mid \mathrm{n} \\
& \hline
\end{aligned}
\]
```

IO: \{(E'::=.E,\$), (E::=.E+T,\$/+), (E::=.T,\$/+),(T::=.T*F,\$/+/*),
(T::=.n,\$/+/*)\}
Goto(IO, n): $\{(\mathrm{T}::=\mathrm{n} ., \$ /+/ *)\} \rightarrow \mathrm{I} 1$
Goto(IO,E): $\left\{\left(\mathrm{E}^{\prime}::=\mathrm{E} ., \$\right),(\mathrm{E}::=\mathrm{E} .+\mathrm{T}, \$ /+)\right\} \rightarrow \mathrm{I} 2$
Goto(IO,T): $\{(\mathrm{E}::=\mathrm{T} ., \$ /+),(\mathrm{T}::=\mathrm{T} . * \mathrm{n}, \$ /+/ *)\} \rightarrow \mathrm{I} 3$
Goto(I2,+): $\left\{(\mathrm{E}::=\mathrm{E}+. \mathrm{T}, \$ /+),\left(\mathrm{T}::=. \mathrm{T}^{*} \mathrm{n}, \$ /+/ *\right),(\mathrm{T}::=. \mathrm{n}, \$ /+/ *)\right\} \rightarrow \mathrm{I} 4$
Goto(I3,*): \{(T::=T*.n,\$/+/*)\} \rightarrow I5
Goto(I4,T): \{(E::=E+T.,\$/+), (T::=T.*n,\$/+/*)\} \rightarrow I6
Goto(I4,n): $\{(\mathrm{T}::=\mathrm{n}, \mathrm{\$} /+/ *)\} \rightarrow \mathrm{I} 1$
Goto(I5,n): $\left\{\left(\mathrm{T}::=\mathrm{T}^{*} \mathrm{n} ., \$ /+/ *\right)\right\} \rightarrow \mathrm{I} 7$
Goto(I6,*): \{(T::=T*.n,\$/+/*)\} \rightarrow I5

```

\section*{LR(1) DFA Transitions}
```

IO: \{(E'::=.E,\$), (E::=.E+T,\$/+), (E::=.T,\$/+), (T::=.T*n,\$/+/*),
(T::=.n,\$/+/*)\}
Goto(IO,n): \{(T::=n.,\$/+/*)\} \rightarrow I1
Goto(IO,E): \{(E'::=E.,\$), (E::=E.+T,\$/+)\} \rightarrow I2
Goto(IO,T): $\{(\mathrm{E}::=\mathrm{T} ., \$ /+),(\mathrm{T}::=\mathrm{T} . * \mathrm{n}, \$ /+/ *)\} \rightarrow \mathrm{I} 3$
Goto(I2,+): \{(E::=E+.T,\$/+), (T::=.T*n,\$/+/*), (T::=.n,\$/+/*)\} \rightarrow I4
Goto(I3,*): \{(T::=T*.n,\$/+/*)\} \rightarrow I5
Goto(I4,T): \{(E::=E+T.,\$/+), (T::=T.*n,\$/+/*)\} \rightarrow I6
Goto(I4,n): \{(T::=n.,\$/+/*)\} \rightarrow I1
Goto(I5,n): $\left\{\left(\mathrm{T}::=\mathrm{T}^{*} \mathrm{n} ., \$ /+/ *\right)\right\} \rightarrow$ I7
Goto(I6,*): \{(T::=T*.n,\$/+/*)\} \rightarrow I5

```


\section*{Constructing LR(1) Parsing Table}
- Input: augmented grammar G'
- Output: parsing table functions (action and goto)
- Method:
1. Construct \(\mathrm{C}=\{\mathrm{IO}, \mathrm{I} 1, \ldots, \mathrm{In}\}\), the canonical LR(1) collection
2. Create a state \(i\) for each \(I_{i} \sum \mathbf{C}\)
a) if Goto( \(\left.\mathrm{I}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{I}_{\mathrm{j}}\) and "a" is a terminal set action[i,a] to "shift \(\mathbf{j}\) ".
b) if Goto( \(I_{i}, A\) ) \(=I j\) and " \(A\) " is a non-terminal, set GOTO[i,A] to \(\mathbf{j}\).
b) if ( \(A::=», a\) ) is in Ii (note: * could be \(\varepsilon\) ) set action[i,a] to "reduce \(A::=\) "
c) if ( \(\mathbf{S}^{\prime}::=\mathbf{S} ., \$\) ) is in \(\mathrm{I}_{\mathrm{i}}\), set action \([\mathrm{i}, \$]\) to "accept".

\section*{Example: LR(1) parsing table}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & n & + & \(*\) & \(\$\) & E & T \\
\hline 0 & s 1 & & & & Goto2 & Goto3 \\
\hline 1 & & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{n})\) & & \\
\hline 2 & & s 4 & & Acc & & \\
\hline 3 & & \(\mathrm{R}(\mathrm{E}::=\mathrm{T})\) & s 5 & \(\mathrm{R}(\mathrm{E}::=\mathrm{T})\) & & \\
\hline 4 & s 1 & & & & & Goto6 \\
\hline 5 & s 7 & & & & & \\
\hline 6 & & \(\mathrm{R}(\mathrm{E}::=\mathrm{E}+\mathrm{T})\) & s 5 & \(\mathrm{R}(\mathrm{E}::=\mathrm{E}+\mathrm{T})\) & & \\
\hline 7 & & \(\mathrm{R}(\mathrm{T}::=\mathrm{T} * \mathrm{n})\) & \(\mathrm{R}(\mathrm{T}::=\mathrm{T} * \mathrm{n})\) & \(\mathrm{R}\left(\mathrm{T}::=\mathrm{T}^{*} \mathrm{n}\right)\) & & \\
\hline
\end{tabular}

\section*{Precedence and Associativity}
E ::=E+E\|E*E\|(E)|id

17: \{E::=E+E., E::=E.+E, E::=E.*E\}
Operator + is left-associative on input token + , reduce with \(E::=E+E\) Operator * has higher precedence than + on input token \(*\), shift * onto stack

18: \{E::=E*E., E::=E.+E, E::=E.*E\}
Operator * is left-associative on input token \(*\), reduce with \(\mathrm{E}:=\mathrm{E}\) * E Operator * has higher precedence than + on input token + , reduce with \(E::=E * E\)

\section*{Parser hierarchy}


\section*{Summary: grammars and Parsers}
- Specification and implementation of languages
- Grammars specify the syntax of languages
- Parsers implement the specification
- Context-free grammars
- Ambiguous vs non-ambiguous grammars
- Left-recursive grammars vs. LL parsers
- Left-factoring of grammars
- Parsers
- Backtracking vs predictive parsers
- LL parsers vs LR parsers
- Lookahead information```

