
cs5363 1

CS5363 Final Review

cs5363 2

Programming language implementation
 Programming languages

 Tools for describing data and algorithms
 Instructing machines what to do
 Communicate between computers and programmers

 Different programming languages
 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, …

 Compilers/translators
 Translate programming languages to machine languages
 Translate one programming language to another

 Interpreters
 Interpret the meaning of programs and perform the

operations accordingly

cs5363 3

Objectives of compilers
 Fundamental principles

 Compilers shall preserve the meaning of the input
program --- it must be correct

 Translation should not alter the original meaning
 Compilers shall do something of value

 Optimize the performance of the input application

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

compiler

cs5363 4

Front end
 Source program
 for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…
 Scanning--- convert input to a stream of words (tokens)

 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 Parsing---discover the syntax/structure of sentences

forStmt: “for” “(” expr1 “;” expr2 “;” expr3 “)” stmt
expr1 : localVar(w) “=” integer(1)
expr2 : localVar(w) “<” integer(100)
expr3: localVar(w) “=” expr4
expr4: localVar(w) “*” integer(2)
stmt: “;”

cs5363 5

Lexical analysis/Scanning
 Called by the parser each time a new token is needed

 Each token has a “type” and an optional “value”
 Regular expression: compact description of composition of

tokens
 Alphabet ∑: the set of characters that make up tokens
A regular expression over ∑ could be

 the empty string, a symbol s ∈ ∑, or
 (α), αß, α | ß, or α*, where α and ß are regular expressions.
 Finite automata

 Include an alphabet ∑, a set of states S (including a start state
s0 and a set of final states F), and a transition function δ

 DFA δ: S * ∑ S; NFA δ: S * ∑ power(S)
 Regular expressions and finite automata

 Describing and recognizing an input language
 From R.E to NFA to DFA
 Examples: comments, identifiers, integers, floating point

numbers, ……

cs5363 6

Context-free grammar
 Describe how to recursively compose programs/sentences from

tokens
 Loops, statements, expressions, declarations, …….

 A context-free grammar includes (T,NT,S,P)
 BNF: each production has format A ::= B (or AB) where a is a single

non-terminal; B is a sequence of terminals and non-terminals
 Using CFG to describe regular expressions

 n ::= dn | d
 d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Given a CFG G=(T,NT,P,S), a sentence s belongs to L(G) if there
is a derivation from S to s

 Derivation: top-down replacement of non-terminals
 Each replacement follows a production rule
 Left-most vs. right-most derivations
 Example: derivations for 5 + 15 * 20
e=>e*e=>e+e*e=>5+e*e=>5+15*e=>5+15*20
e=>e+e=>5+e=>5+e*e=>5+15*e=>5+15*20

 Writing grammars for languages
 E.g., the set of balanced parentheses

cs5363 7

Parse trees and abstract syntax trees
 Parse tree: graphical representation of derivations

 Parent: left-hand of production; children: right-hand of
production

 A grammar is syntactically ambiguous if
 some program has multiple parse trees
 Rewrite an ambiguous grammar: identify source of ambiguity,

restrict the applicability of some productions
 Standard rewrite for defining associativity and precedence of

operators
 Abstract syntax tree: condensed form of parse tree

 Operators and keywords do not appear as leaves
 Chains of single productions may be collapsed

Parse tree:
e

e

e

e

5
*

+

15
20

e
+

20

5

15

*

Abstract syntax tree:

cs5363 8

Top-down and bottom-up parsing
 Top-down parsing: start from the starting non-terminal, try

to find a left-most derivation
 Recursive descent parsing and LL(k) predictive parsers
 Transformation to grammars: eliminate left-recursion and Left-

factoring
 Build LL(1) parsers: compute First for each production and

Follow for each non-terminal
 Bottom-up parsing: start from the input string, try to

reduce the input string to the starting non-terminal
 Equivalent to the reverse of a right-most derivation
 Right-sentential forms and their handles
 Shift-reduce parsing and LR(k) parsers

 The meaning of LR(1) items; building DFA for handle pruning;
canonical LR(1) collection

 How to build LR(1) parse table and how to interpret LR(1) table

 Top-down vs. bottom-up parsers: which is better?

cs5363 9

Intermediate representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 V: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

assign less assign emptyStmt

Lv(w) int(1)
Lv(w) int(100)

Lv(w)

Lv(w)

mult

int(2)

cs5363 10

Context-sensitive analysis
 Attribute grammar (syntax-directed definition)

 Associate a collection of attributes with each grammar symbol
 Define actions to evaluate attribute values during parsing

 Synthesized and inherited attribute
 Dependences in attribute evaluation
 Annotated parse tree and attribute dependence graph
 Bottom-up parsing and L-attribute evaluation
 Translation scheme: define attribute evaluation within the

parsing of grammar symbols
 Type checking

 Basic types and compound types
 Types of variables and expressions

 Type environment (symbol table)
 Type system, type checking and type conversion

 Compile-time vs. runtime type checking
 Type checking and type inference

cs5363 11

Variation of IR
 IR: intermediate language between source and

target
 Source-level IR vs. machine-level IR
 Graphical IR vs. linear IR
 Mapping names/storages to variables

 Translating from source language to IR ---
syntax-directed translation

 IR for the purpose of program analysis
 Control-flow graph
 Dependence graph
 Static single assignment (SSA)

cs5363 12

Execution model of programs
 Procedural abstraction: scope and storage management

 Nested blocks and namespaces
 Scoping rules

 static/lexical vs. dynamic scoping
 Local vs. global variables

 Parameter passing: pass-by-value vs pass-by-reference
 Activation record for blocks and functions: what are the

necessary fields?
 The simplified memory model

 Runtime stack, heap and code space
 program pointer and activation record pointer

 Allocating activation records on stack
 how to set up the activation record?

 Allocating variables in memory
 base address and offset; local vs. static/global variables
 Coordinates of variables: nesting level of variable scope

 Access link and global display

cs5363 13

Mid end --- improving the code

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered

 Transformations --- improve target program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelization

cs5363 14

Data-flow analysis
 Program analysis: statically examines input computation to

ensure safety and profitability of optimizations
 Data-flow analysis: reason about flow of values on control-

flow graph
 Forward vs. backward flow problem

 Define domain of analysis; build the control-flow graph
 Define a set of data-flow equations at each basic block
 Evaluate local data-flow sets at each basic block
 Iteratively modify result at each basic block until reaching a fixed

point
 Traversal order of basic blocks: (reverse) postorder
 Example: available expression analysis, live variable analysis,

reaching definition analysis, dominator analysis
 SSA (static single assignment)

 Two rules that must be satisfied
 Insertion of ∅ functions; rewrite from SSA to normal code
 Computing dominance relations and dominance frontiers

cs5363 15

Scope of optimization
 Local methods

 Applicable only to basic blocks
 Superlocal methods

 Operate on extended basic blocks
(EBB)

 B1,B2,B3,…,Bm, where Bi is the
single predecessor of B(i+1)

 Regional methods
 Operate beyond EBBs, e.g. loops,

conditionals
 Global (intraprocedural) methods

 Operate on entire procedure
(subroutine)

 Whole-program (interprocedural)
methods
 Operate on entire program

S0: if i< 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

EBB

cs5363 16

Program optimizations
 Redundant expression elimination

 Value numbering
 Simulate runtime evaluation of instruction sequence
 Use an integer number to unique identify each runtime

value
 Map each expression to a value number
 Scope of optimization: local, EBB, dominator based

 Global redundancy elimination
 Find available expressions at the entry of each basic block
 Remove expressions that are redundant

 Naming of variables change availability of expressions
 Dead code elimination

 Mark instructions that are necessary to evaluation of
program; remove expressions with never-used results

 Computing control dependence among basic blocks

cs5363 17

Back end --- code generation
 Memory management

 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in

processors

cs5363 18

Example of code generation

loadAI rarp, @w rw // load ‘w’
loadI 2 r2 // constant 2 into r2
loadAI rarp, @x rx // load ‘x’
loadAI rarp, @y ry // load ‘y’
loadAI rarp, @z rz // load ‘z’
mult rw, r2 rw // rw w * 2
Mult rw, rx rw // rw w*2*x
Mult rw, ry rw // rw w * 2 * x * y
Mult rw, rz rw // rw w * 2 * x * y * z
storeAI rw rarp, @w // write rw back to ‘w’

Code for w w * 2 * x * y * z in ILOC

ILOC: Imtermediate language for an optimizing compiler
 similar to the assembly language for a simple RISC machine

cs5363 19

Machine code generation
 Assigning storage: register or memory

 Every expression e must have
 A type that determines the size/meaning of its value
 A location to store its value (e.place)

 A variable may require a permanent storage
 Non-local variables or variables that might be aliased

 Translating to three-address code
 Different code shapes may have different efficiency
 Translating expressions

 Mixed type expressions --- implicit type conversion
 Arithmetic vs. boolean expressions; short-circuit translation

 Translating variable access, arrays, and function calls
 Translating control-flow statements

cs5363 20

Register allocation and assignment
 Values in registers are easier and faster to access than

memory
 Reserve a few registers for memory access
 Efficiently utilize the rest of general-purpose registers

 Register allocation: at each program point, select a set of
values to reside in registers

 Register assignment: pick a specific register for each value,
subject to hardware constraints

 Register-to-register vs. memory model
 Local register allocation: top-down vs. bottom-up
 Graph-coloring based register allocation

 Construct global live ranges
 Build interference graph
 Coalesce live ranges to eliminate register copying
 Rank all live ranges based on spilling cost
 Color the interference graph

cs5363 21

Instruction selection
 Table-based instruction selector

 Create a description of target machine, use back-end
generator to produce a pattern-matching table

 AST tiling: pattern-based instruction selection
through tree-grammar
 Bottom-up walk of the AST, for each node n, find all

applicable tree patterns and select the one with lowest
cost

 Peephole optimization
 Use a simple scheme to translate IR to machine code
 Discover local improvements by examining short

sequences of adjacent operations: expand simplify
match

cs5363 22

Instruction scheduling
 Dependence/precedence graph G = (N,E)

 Each node n ∈ N is a single operation
 type(n) and delay(n)

 Edge (n1,n2) ∈ N indicates n2 uses result of n1 as operand
 What about anti-dependences?

 G is acyclic within each basic block
 Given a dependence graph D = (N,E), a schedule S maps

each node n ∈ N to the cycle number that n is issued.
 Each schedule S must be well-formed, correct, and feasible.
 Critical path: the longest path in the dependence graph

 List scheduling: greedy heuristic to scheduling operations in
a single basic block
 Build a dependence graph (rename to avoid anti-dependences)
 Assign priorities to each operation n (the length of longest

latency path from n to end)
 Iteratively select an operation and schedule it

