
cs5363 1

Code Shape
More on Three-address Code

Generation

cs5363 2

Machine Code Translation
 A single language construct can have many

implementations
 many-to-many mappings from high-level source

language to low-level target machine language
 Different implementations have different efficiency

 Speed, memory space, register, power consumption

Source code

x + y + z

Low-level three-address code

r1 := rx + ry
r2 := r1 + rz

r1 := rx + rz
r2 := r1 + ry

r1 := ry + rz
r2 := r1 + rx

 +

x y z

 +

 + z

x y

 +

 + y

x z

 +

 + x

y z

cs5363 3

Generating Three-Address Code
 No more support for structured control-flow

 Function calls=>explicit memory management and goto jumps
 Every three-address instr=>several machine instructions

 The original evaluation order is maintained
 Memory management

 Every variable must have a location to store its value
 Register, stack, heap, static storage

 Memory allocation convention
 Scalar/atomic values and addresses => registers, runtime stack
 Arrays => heap
 Global/static variables => static storage

void fee() {
 int a, *b, c;
 a = 0; b = &a; *b = 1;
 c = a + *b;
}

cs5363 4

From Expressions To 3-Address
 For every non-terminal expression E

 E.place: temporary variable used to store result
 Synthesized attributes for E

 Bottom up traversal ensures E.place assigned before used
 Symbol table has value types and storage for variables

 What about the value types of expressions?
E ::= id ‘=’ E1 { E.place=E1.place; gen_var_store(id.entry, E1.place); }
E ::= E1 ‘+’ E2 {E.place=new_tmp();
 gen_code(ADD,E1.place,E2.place,E.place);}
E ::= (E1) { E.place = E1.place; }
E ::= id { E.place=gen_varLoad(id.entry); }
E ::= num { E.place=new_tmp(); gen_code(LOADI, num.val, 0, E.place; }

Example input: a = b*c+b+2
 Should we reuse register for variable b?

cs5363 5

Storing And Accessing Arrays
 Single-dimensional array

 Accessing ith element: base + (i-low) * w
 Low: lower bound of dimension; w : element size

 Multi-dimensional arrays
 need to locate base addr of each dimension

 Row-major, column-major, Indirection vector

 Extend translation scheme to support array access

(1,1) (1,2) (1,3) (2, 1) (2, 2) (2, 3)Row-major
A(i,j)=value at (A+(i-low1)*len2*w+(j-low2)*w)

(1,1) (2,1) (1,2) (2, 2) (1,3) (2, 3)Column-major
A(i,j)=value at (A+(j-low2)*len1*w+(i-low1)*w)

Indirection vector

A(i,j)= value at (A+(i-low1)*wp+(j-low2)*w)

1 2 1 2 3 1 2 3

cs5363 6

Character Strings
 Languages provide different support for strings

 C/C++/Java: through library routines
 PLI/Lisp/ML/Perl/python: through language implementation
 Important string operations

 Assignment, concatenation

 Representing strings
 Null-terminated vs. explicit length field

 Treat strings as arrays of bytes
 More complex if hardware does not support operating on bytes
 Translate collective string operations to array operations before three-

address translation

a s t r i n g \0 7 a s t r i n g

Null-termination Explicit length field

loadI @b => r1
cloadAI r1, 2 => r2
loadI @a => r3
cstoreAI r2 => r3, 1

String assignment
a[1] = b[2]

cs5363 7

Translating Procedural calls
 Function/procedural calls need to

be translated into calling
sequences

 Side-effect of procedural calls
 Determined by linkage convention
 If function call has side effects,

Orig. evaluation order need be
preserved

 Saving and restoring registers
 Expensive for large register sets
 Use special routines or operations

to speed it up
 Combine responsibility of caller

and callee
 Optimizing small procedures that

don’t call others
 Reduce precall and prologue
 Reduce number of registers need

to be saved

Procedure q

Procedure p

prologue

precall

Postreturn

epilogue

prologue

epilogue

cal
l

return

cs5363 8

Passing Arrays As Parameters
 Arrays are pointers to data areas

 Mostly treated as addresses (pointers)
 Must know dimension & size to support element access
 Must have type info when passed as parameters

 Handled either by compilers or programmers

 Compiler support for dynamic arrays
 Arrays passed as parameters or dynamically allocated
 Must save type information at runtime to be type safe

 Dope vector: runtime descriptor of arrays
 Saves starting address, number of dimensions,

lower/upper bound and size of each dimension
 Build a dope vector for each array
 Can support runtime checking of each element access

 Before accessing the element, is it a valid access?

cs5363 9

Translating Boolean Expressions
 Two approaches

 Same as translating regular expressions: true1/non-zero;
false 0

 Translate into control-flow branches
 For every boolean expression E
 E.true/E.false: the labels to goto if E is true/false

 if a < b goto Et
 else goto Ef
Et: c := true
 goto next
Ef: c := false
next:

c := a < b
 cmp ra, rb => cc1
 cbr_LT cc1 =>L1, L2
L1: loadI true => rc
 jumpI => L3
L2: loadI false=> rc
L3:

c := (a < b) Cmp_LT ra, rb => rc

Numerical translation:

Position-based translation:

cs5363 10

Short-Circuit Evaluation
 Evaluate only expressions required to determine the final result

 E: a < b && c < d
 if a >= b, there is no need to evaluate whether c < d

 For every boolean expression E
 E.true/E.false: the labels to goto if E is true/false

E: a < b && c < d
 if a < b goto L1
 else goto E.false
L1: if c < d goto E.true
 else goto E.false

 cmp ra, rb => cc1
 cbr_LT cc1 => L1,Ef
L1: cmp rc, rd => cc2
 cbr_LT cc2 => Et,Ef
Et: …
 jumpI next
Ef: …
Next:

cs5363 11

Translating control-flow
statements

S::= if E THEN S1 E.true:
E.code

S1.code

……E.false:

S::= if E THEN S1 else S2
E.true:

E.code

S1.code

……

E.false:
goto S.next

S2.code

S::= While E DO S1
E.true:

E.code

S1.code

……E.false:
goto S.begin

S.begin:

cs5363 12

Example
Translating control-flow statements

void fee(int x, int y) {
int I = 0;
int z = x;
while (I < 100) {
 I = I + 1;
 if (y < x) z = y;
 A[I] = I;
}

}

 cmp ra, rb => cc1
 cbr_LT cc1 => L1,Ef
L1: cmp rc, rd => cc2
 cbr_LT cc2 => Et,Ef
Et: move ra => rx
 jumpI next
Ef: move rx => rd
Next:

if (a < b && c < d)
 x = a;
else
 x = d;

cs5363 13

More On Control-flow Translation
 If-then-else conditional

 Use predicated execution vs. conditional branches

 Different forms of loops
 While, for, until, etc.
 Optimizations on loop body, branch prediction

 Case statement
 Evaluate controlling expression
 Branch to the selected case

 Linear search : a sequence of if-then-else
 Binary search or direct jump table

 Build an ordered table that maps case values to branch labels

 Execute code of branched case
 Break to the end of switch statement

cs5363 14

Appendix
Translating control-flow statements
 For every statement S, add two additional attributes

 S.begin: the label of S
 S.next: the label of statement following S

S ::= {if (S.begin != 0) gen_label(S.begin); } E ‘;’
 {S.next=merge(E.true,E.false); }
S ::= WHILE { if (S.begin==0) S.begin=new_label();
 gen_label(S.begin); }
 ‘(‘ E ‘)’ { S1.begin=E.true; } S1
 { S.next=E.false; merge_label(S1.next,S.begin);
 gen_code(jumpI,0,0,S.begin); }
S ::= LBRACE {stmts.begin = S.begin; } stmts RBRACE
 { S.next=stmts.next; }
stmts ::= {S.begin=stmts.begin;} S { stmts.next = S.next; }
stmts ::= {S.begin=stmts.begin; } S
 {stmts1.begin = S.next; } stmts1
 {stmts.next = stmts1.next; }

cs5363 15

Appendix: Translating
Boolean Expressions

E::= true { E.true = new_label(); E.false=0;
 gen_code(jumpI,0,0,E.true); }
E::= false { E.false = new_label(); E.true=0;
 gen_code(jumpI,0,0,E.false); }
E::= E1 relop E2 {E.true= new_label(); E.false=new_label();
 r=new_tmp(); gen_code(cmp,E1.place,E2.place,r);
 gen_code(relop.cbr, r, E.true, E.false);}

 Every boolean expression E has two attributes
 E.true/false: the label to goto if E is true/false

 Evaluate E.true and E.false as synthesized attribute
 Create a new label for every unknown jump destination
 Set destination of created jump labels later

 Usually evaluated by traversing the AST instead of during parsing
 Issue: creation/merging/insertion of instruction labels

cs5363 16

Appendix: Hardware Support For
Relational Operations

 Straight conditional code
 Special condition-code

registers interpreted only
by conditional branches

 Conditional move
 Add a special conditional

move instruction
 Boolean valued

comparisons
 Store boolean values

directly in registers
 Predicated evaluation

 Conditionally executing
instructions

Comp rx, ry => cc1
Cbr_LT cc1 -> L1, L2
L1: loadI true => ra
 …
L2: loadI false => ra
 …

cmp_LT rx, ry => ra
Cbr ra -> L1, L2
L1: …
L2: …

Comp rx, ry => cc1
i2i_LT cc1,true,false
 =>ra

Cmp_LT rx, ry => r1
Not r1 => r2
(r1)? …
(r2)? …

Predicated eval.Bool valued comparison

Straight conditional code
Conditional move

Translating a := x < y

