
cs5363 1

Programming Languages
and Compilers

Qing Yi

class web site:
www.cs.utsa.edu/~qingyi/cs5363

cs5363 2

A little about myself
 Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

 Research Interests
 Compilers and software development tools

program analysis&optimization for high-performance computing
 Programming languages

type systems, different programming paradigms
 Software engineering

systematic error-discovery and verification of software

cs5363 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs5363
 Check for class handouts and announcements

 Office hours: Mon 4-5pm and 7-8pm; by appointment
 Textbook and reference book

 Engineering a Compiler
 Second Edition. By Keith Cooper and Linda Torczon. Morgan-Kaufmann.

2011.

 Programming Language Pragmatics,
 by Michael Scott, Second Edition, Morgan Kaufmann Publishers, 2006

 Prerequisites
 C/C++/Java programming
 Basic understanding of algorithms and computer architecture

 Grading
 Exams (midterm and final): 50%;
 Projects: 25%; Homeworks: 20%;
 Problem solving (challenging problems of the week): 5%

cs5363 4

Outline
 Implementation of programming languages

 Compilation vs. interpretation

 Programming paradigms (beyond the textbook)
 Functional, imperative, and object-oriented programming
 What are the differences?

 The structure of a compiler
 Front end (parsing), mid end (optimization), and back end

(code generation)

 Focus of class
 Language implementation instead of design
 Compilation instead of interpretation

 Algorithms analyzing properties of application programs
 Optimizations that make your code run faster

cs5363 5

Programming languages
 Interface for problem solving using computers

 Express data structures and algorithms
 Instruct machines what to do
 Communicate between computers and programmers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output
Easier to program and maintain
Portable to different machines

Better machine efficiency

cs5363 6

Language Implementation Compilers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

 Translate programming languages to machine languages
 Translate one programming language to another

cs5363 7

…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract or virtual machine

Language Implementation
Interpreters

 Interpret the meaning of programs and perform the
operations accordingly

cs5363 8

Compilers and Interpreters
Efficiency vs. Flexibility
 Compilers

 Translation time is separate from execution time
 Compiled code can run many times
 Heavy weight optimizations are affordable
 Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

 Interpreters
 Translation time is included in execution time

X Re-interpret every expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
 Have full knowledge of program behavior
 Can dynamically change program behavior

cs5363 9

Programming Paradigms
 Functional programming: evaluation of expressions and functions

 Compute new values instead of modifying existing ones (disallow
modification of compound data structures)

 Treat functions as first-class objects (can return functions as results,
nest functions inside each other)

 Mostly interpreted and used for project prototyping (Lisp, Scheme, ML,
Haskell, …)

 Imperative programming: express side-effects of statements
 Emphasize machine efficiency (Fortran, C, Pascal, Algol,…)

 Object-oriented programming: modular program organization
 Combined data and function abstractions
 Separate interface and implementation
 Support subtype polymorphism and inheritance
 Simila, C++, Java, smalltalk,…

 Others (e.g., logic programming, concurrent programming)

cs5363 10

A few successful languages
 Fortran --- the first high-level programming language

 Led by John Backus around 1954-1956
 Designed for numerical computations
 Introduced variables, arrays, and subroutines

 Lisp
 Led by John McCarthy in late 1950s
 Designed for symbolic computation in artificial intelligence
 Introduced high-order functions and garbage collection
 Descendents include Scheme, ML, Haskell, …

 Algol
 Led by a committee of designers of Fortran and Lisp in late 1950s
 Introduced type system and data structuring
 Descendents include Pascal, Modula, C, C++ …

 Simula
 Led by Kristen Nygaard and Ole-Johan Dahl arround 1961-1967
 Designed for simulation
 Introduced data-abstraction and object-oriented design
 Descendents include C++, Java, smalltalk …

cs5363 11

Categorizing Languages
 Are these languages compiled or interpreted

(sometimes both)? What paradigms do they belong?
 C
 C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 Ruby
 …

cs5363 12

Objectives of Compilers
 Fundamental principles of compilers

 Correctness: compilers must preserve semantics of the input
program

 Usefulness: compilers must do something useful to the input
program

 Compare with software testing tools---which must be useful,
but not necessarily sound

 The quality of a compiler can be judged in many ways
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 Similar principles apply to software tools in general
 Are they sound? Do they produce useful results? How fast do

they run? How fast are the generated code?

cs5363 13

The structure of a compiler/translator

 Front end --- understand the input program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, symbol table, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-structuring

 Back end --- generate output in a new language
 Native compilers: executable for target machine

 Instruction selection and scheduling, register allocation
What is common and different in an interpreter?

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

Compiler

cs5363 14

Front end
 Source program
 for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…
 Scanning--- convert input to a stream of words (tokens)

 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 Parsing---discover the syntax/structure of sentences

forStmt: “for” “(” expr1 “;” expr2 “;” expr3 “)” stmt
expr1 : localVar(w) “=” integer(1)
expr2 : localVar(w) “<” integer(100)
expr3: localVar(w) “=” expr4
expr4: localVar(w) “*” integer(2)
stmt: “;”

cs5363 15

Intermediate Representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 v: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

assign less assign emptyStmt

Lv(w) int(1)
Lv(w) int(100)

Lv(w)

Lv(w)

mult

int(2)

cs5363 16

More About The Front End

 What errors are discovered by
 The lexical analyzer (characters tokens)
 The syntax analyzer (tokens AST)
 Context-sensitive analysis (ASTsymbol tables)

 int w;
 0 = w;
 for (w = 1; w < 100; w = 2w)

a = “c” + 3;

cs5363 17

Mid end --- improving the code

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data-flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered
 Useful for program understanding and verification

 Optimizations --- improve program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelism
 In program evolution, improve program modularity/correctness

cs5363 18

Back end --- Code Generation
 Machine code generation

 Memory management
 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in processors

 Source-to-source translation
 Program understanding --- output analysis results
 Code generation/evolution/optimization --- output in high-level

languages

cs5363 19

Roadmap
 Week1-4 --- front end (parsing)

 Regular expression and context-free grammar(wk1), NFA and
DFA(wk2), top-down and bottom-up parsing(wk3), attribute grammar
and type checking(wk4)

 Week5-9--- back end (code generation)
 Intermediate representation(wk5), procedural abstraction and code

shape(wk6-7), instruction selection(wk8)
 Week9-13 --- mid end (program optimizations)

 Redundancy elimination(wk9), data-flow analysis and SSA(wk10),
scalar optimizations(wk11), instruction scheduling(wk12), register
allocation(wk13)

 Project: build a small compiler/translator/development tool
 Needs to parse input in a small language, perform type checking,

perform some analysis/optimization, then output the result
 Intermediate projects are due by week 4, week 9, and week 11

respectively (dates will be posted at class web site)
 Implementation choices:

 Understanding of concepts/algorithms: smaller size projects in
scripting languages

 Enjoys programming and debugging: larger projects in C/C++/Java

