
cs5363 1

Programming Languages
and Compilers

Qing Yi

class web site:
www.cs.utsa.edu/~qingyi/cs5363

cs5363 2

A little about myself
 Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

 Research Interests
 Compilers and software development tools

program analysis&optimization for high-performance computing
 Programming languages

type systems, different programming paradigms
 Software engineering

systematic error-discovery and verification of software

cs5363 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs5363
 Check for class handouts and announcements

 Office hours: Mon 4-5pm and 7-8pm; by appointment
 Textbook and reference book

 Engineering a Compiler
 Second Edition. By Keith Cooper and Linda Torczon. Morgan-Kaufmann.

2011.

 Programming Language Pragmatics,
 by Michael Scott, Second Edition, Morgan Kaufmann Publishers, 2006

 Prerequisites
 C/C++/Java programming
 Basic understanding of algorithms and computer architecture

 Grading
 Exams (midterm and final): 50%;
 Projects: 25%; Homeworks: 20%;
 Problem solving (challenging problems of the week): 5%

cs5363 4

Outline
 Implementation of programming languages

 Compilation vs. interpretation

 Programming paradigms (beyond the textbook)
 Functional, imperative, and object-oriented programming
 What are the differences?

 The structure of a compiler
 Front end (parsing), mid end (optimization), and back end

(code generation)

 Focus of class
 Language implementation instead of design
 Compilation instead of interpretation

 Algorithms analyzing properties of application programs
 Optimizations that make your code run faster

cs5363 5

Programming languages
 Interface for problem solving using computers

 Express data structures and algorithms
 Instruct machines what to do
 Communicate between computers and programmers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output
Easier to program and maintain
Portable to different machines

Better machine efficiency

cs5363 6

Language Implementation Compilers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

 Translate programming languages to machine languages
 Translate one programming language to another

cs5363 7

…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract or virtual machine

Language Implementation
Interpreters

 Interpret the meaning of programs and perform the
operations accordingly

cs5363 8

Compilers and Interpreters
Efficiency vs. Flexibility
 Compilers

 Translation time is separate from execution time
 Compiled code can run many times
 Heavy weight optimizations are affordable
 Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

 Interpreters
 Translation time is included in execution time

X Re-interpret every expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
 Have full knowledge of program behavior
 Can dynamically change program behavior

cs5363 9

Programming Paradigms
 Functional programming: evaluation of expressions and functions

 Compute new values instead of modifying existing ones (disallow
modification of compound data structures)

 Treat functions as first-class objects (can return functions as results,
nest functions inside each other)

 Mostly interpreted and used for project prototyping (Lisp, Scheme, ML,
Haskell, …)

 Imperative programming: express side-effects of statements
 Emphasize machine efficiency (Fortran, C, Pascal, Algol,…)

 Object-oriented programming: modular program organization
 Combined data and function abstractions
 Separate interface and implementation
 Support subtype polymorphism and inheritance
 Simila, C++, Java, smalltalk,…

 Others (e.g., logic programming, concurrent programming)

cs5363 10

A few successful languages
 Fortran --- the first high-level programming language

 Led by John Backus around 1954-1956
 Designed for numerical computations
 Introduced variables, arrays, and subroutines

 Lisp
 Led by John McCarthy in late 1950s
 Designed for symbolic computation in artificial intelligence
 Introduced high-order functions and garbage collection
 Descendents include Scheme, ML, Haskell, …

 Algol
 Led by a committee of designers of Fortran and Lisp in late 1950s
 Introduced type system and data structuring
 Descendents include Pascal, Modula, C, C++ …

 Simula
 Led by Kristen Nygaard and Ole-Johan Dahl arround 1961-1967
 Designed for simulation
 Introduced data-abstraction and object-oriented design
 Descendents include C++, Java, smalltalk …

cs5363 11

Categorizing Languages
 Are these languages compiled or interpreted

(sometimes both)? What paradigms do they belong?
 C
 C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 Ruby
 …

cs5363 12

Objectives of Compilers
 Fundamental principles of compilers

 Correctness: compilers must preserve semantics of the input
program

 Usefulness: compilers must do something useful to the input
program

 Compare with software testing tools---which must be useful,
but not necessarily sound

 The quality of a compiler can be judged in many ways
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 Similar principles apply to software tools in general
 Are they sound? Do they produce useful results? How fast do

they run? How fast are the generated code?

cs5363 13

The structure of a compiler/translator

 Front end --- understand the input program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, symbol table, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-structuring

 Back end --- generate output in a new language
 Native compilers: executable for target machine

 Instruction selection and scheduling, register allocation
What is common and different in an interpreter?

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

Compiler

cs5363 14

Front end
 Source program
 for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…
 Scanning--- convert input to a stream of words (tokens)

 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 Parsing---discover the syntax/structure of sentences

forStmt: “for” “(” expr1 “;” expr2 “;” expr3 “)” stmt
expr1 : localVar(w) “=” integer(1)
expr2 : localVar(w) “<” integer(100)
expr3: localVar(w) “=” expr4
expr4: localVar(w) “*” integer(2)
stmt: “;”

cs5363 15

Intermediate Representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 v: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

assign less assign emptyStmt

Lv(w) int(1)
Lv(w) int(100)

Lv(w)

Lv(w)

mult

int(2)

cs5363 16

More About The Front End

 What errors are discovered by
 The lexical analyzer (characters  tokens)
 The syntax analyzer (tokens  AST)
 Context-sensitive analysis (ASTsymbol tables)

 int w;
 0 = w;
 for (w = 1; w < 100; w = 2w)

a = “c” + 3;

cs5363 17

Mid end --- improving the code

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data-flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered
 Useful for program understanding and verification

 Optimizations --- improve program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelism
 In program evolution, improve program modularity/correctness

cs5363 18

Back end --- Code Generation
 Machine code generation

 Memory management
 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in processors

 Source-to-source translation
 Program understanding --- output analysis results
 Code generation/evolution/optimization --- output in high-level

languages

cs5363 19

Roadmap
 Week1-4 --- front end (parsing)

 Regular expression and context-free grammar(wk1), NFA and
DFA(wk2), top-down and bottom-up parsing(wk3), attribute grammar
and type checking(wk4)

 Week5-9--- back end (code generation)
 Intermediate representation(wk5), procedural abstraction and code

shape(wk6-7), instruction selection(wk8)
 Week9-13 --- mid end (program optimizations)

 Redundancy elimination(wk9), data-flow analysis and SSA(wk10),
scalar optimizations(wk11), instruction scheduling(wk12), register
allocation(wk13)

 Project: build a small compiler/translator/development tool
 Needs to parse input in a small language, perform type checking,

perform some analysis/optimization, then output the result
 Intermediate projects are due by week 4, week 9, and week 11

respectively (dates will be posted at class web site)
 Implementation choices:

 Understanding of concepts/algorithms: smaller size projects in
scripting languages

 Enjoys programming and debugging: larger projects in C/C++/Java

