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Programming Languages
and Compilers

Qing Yi

class web site:
www.cs.utsa.edu/~qingyi/cs5363
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A little about myself
 Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

 Research Interests
 Compilers and software development tools

program analysis&optimization for high-performance computing
 Programming languages

type systems, different programming paradigms
 Software engineering

systematic error-discovery and verification of software
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General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs5363
 Check for class handouts and announcements

 Office hours: Mon 4-5pm and 7-8pm; by appointment
 Textbook and reference book

 Engineering a Compiler
 Second Edition. By Keith Cooper and Linda Torczon. Morgan-Kaufmann.

2011.

 Programming Language Pragmatics,
 by Michael Scott, Second Edition, Morgan Kaufmann Publishers, 2006

 Prerequisites
 C/C++/Java programming
 Basic understanding of algorithms and computer architecture

 Grading
 Exams (midterm and final): 50%;
 Projects: 25%; Homeworks: 20%;
 Problem solving (challenging problems of the week): 5%
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Outline
 Implementation of programming languages

 Compilation vs. interpretation

 Programming paradigms (beyond the textbook)
 Functional, imperative, and object-oriented programming
 What are the differences?

 The structure of a compiler
 Front end (parsing), mid end (optimization), and back end

(code generation)

 Focus of class
 Language implementation instead of design
 Compilation instead of interpretation

 Algorithms analyzing properties of application programs
 Optimizations that make your code run faster
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Programming languages
 Interface for problem solving using computers

 Express data structures and algorithms
 Instruct machines what to do
 Communicate between computers and programmers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output
Easier to program and maintain
Portable to different machines

Better machine efficiency 
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Language Implementation Compilers

………..
00000
01010
11110
01010
………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

 Translate programming languages to machine languages
 Translate one programming language to another
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…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract or virtual machine

Language Implementation
Interpreters

 Interpret the meaning of programs and perform the
operations accordingly
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Compilers and Interpreters
Efficiency vs. Flexibility
 Compilers

 Translation time is separate from execution time
 Compiled code can run many times
 Heavy weight optimizations are affordable
 Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

 Interpreters
 Translation time is included in execution time

X Re-interpret every expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
 Have full knowledge of program behavior
 Can dynamically change program behavior
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Programming Paradigms
 Functional programming: evaluation of expressions and functions

 Compute new values instead of modifying existing ones (disallow
modification of compound data structures)

 Treat functions as first-class objects (can return functions as results,
nest functions inside each other)

 Mostly interpreted and used for project prototyping (Lisp, Scheme, ML,
Haskell, …)

 Imperative programming: express side-effects of statements
 Emphasize machine efficiency (Fortran, C, Pascal, Algol,…)

 Object-oriented programming: modular program organization
 Combined data and function abstractions
 Separate interface and implementation
 Support subtype polymorphism and inheritance
 Simila, C++, Java, smalltalk,…

 Others (e.g., logic programming, concurrent programming)
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A few successful languages
 Fortran --- the first high-level programming language

 Led by John Backus around 1954-1956
 Designed for numerical computations
 Introduced variables, arrays, and subroutines

 Lisp
 Led by John McCarthy in late 1950s
 Designed for symbolic computation in artificial intelligence
 Introduced high-order functions and garbage collection
 Descendents include Scheme, ML, Haskell, …

 Algol
 Led by a committee of designers of Fortran and Lisp in late 1950s
 Introduced type system and data structuring
 Descendents include Pascal, Modula, C, C++ …

 Simula
 Led by Kristen Nygaard and Ole-Johan Dahl arround 1961-1967
 Designed for simulation
 Introduced data-abstraction and object-oriented design
 Descendents include C++, Java, smalltalk …
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Categorizing Languages
 Are these languages compiled or interpreted

(sometimes both)? What paradigms do they belong?
 C
 C++
 Java
 PERL
 bsh, csh
 Python
 C#
 HTML
 Postscript
 Ruby
 …
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Objectives of Compilers
 Fundamental principles of compilers

 Correctness: compilers must preserve semantics of the input
program

 Usefulness: compilers must do something useful to the input
program

 Compare with software testing tools---which must be useful,
but not necessarily sound

 The quality of a compiler can be judged in many ways
 Does the compiled code run with high speed?
 Does the compiled code fit in a compact space?
 Does the compiler provide feedbacks on incorrect program?
 Does the compiler allow debugging of incorrect program?
 Does the compiler finish translation with reasonable speed?

 Similar principles apply to software tools in general
 Are they sound? Do they produce useful results? How fast do

they run? How fast are the generated code?
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The structure of a compiler/translator

 Front end --- understand the input program
 Scanning, parsing, context-sensitive analysis

 IR --- intermediate (internal) representation of the input
 Abstract syntax tree, symbol table, control-flow graph

 Optimizer (mid end) --- improve the input program
 Data-flow analysis, redundancy elimination, computation re-structuring

 Back end --- generate output in a new language
 Native compilers: executable for target machine

 Instruction selection and scheduling, register allocation
What is common and different in an interpreter?

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

Compiler
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Front end
 Source program
      for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…
 Scanning--- convert input to a stream of words (tokens)

 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 Parsing---discover the syntax/structure of sentences

forStmt: “for” “(” expr1 “;” expr2 “;”  expr3 “)” stmt
expr1 : localVar(w) “=” integer(1)
expr2 : localVar(w) “<” integer(100)
expr3:  localVar(w) “=” expr4
expr4:  localVar(w) “*” integer(2)
stmt:  “;”
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Intermediate Representation
 Source program
      for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 v: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

assign less assign emptyStmt

Lv(w) int(1)
Lv(w) int(100)

Lv(w)

Lv(w)

mult

int(2)
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More About The Front End

 What errors are discovered by
 The lexical analyzer (characters  tokens)
 The  syntax analyzer (tokens  AST)
 Context-sensitive analysis (ASTsymbol tables)

  int w;
  0 = w;
  for (w = 1; w < 100; w = 2w)

a = “c” + 3;
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Mid end --- improving the code

int j = 0, k;
while (j < 500) {
     j = j + 1;
     k = j * 8;
     a[k] = 0;
 }

int k = 0;
while (k < 4000) {
     k = k + 8;
     a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data-flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered
 Useful for program understanding and verification

 Optimizations --- improve program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelism
 In program evolution, improve program modularity/correctness
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Back end --- Code Generation
 Machine code generation

 Memory management
 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in processors

 Source-to-source translation
 Program understanding --- output analysis results
 Code generation/evolution/optimization --- output in high-level

languages
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Roadmap
 Week1-4 --- front end (parsing)

 Regular expression and context-free grammar(wk1), NFA and
DFA(wk2), top-down and bottom-up parsing(wk3), attribute grammar
and type checking(wk4)

 Week5-9--- back end (code generation)
 Intermediate representation(wk5), procedural abstraction and code

shape(wk6-7), instruction selection(wk8)
 Week9-13 --- mid end (program optimizations)

 Redundancy elimination(wk9), data-flow analysis and SSA(wk10),
scalar optimizations(wk11), instruction scheduling(wk12), register
allocation(wk13)

 Project: build a small compiler/translator/development tool
 Needs to parse input in a small language, perform type checking,

perform some analysis/optimization, then output the result
 Intermediate projects are due by week 4, week 9, and week 11

respectively (dates will be posted at class web site)
 Implementation choices:

 Understanding of concepts/algorithms: smaller size projects in
scripting languages

 Enjoys programming and debugging: larger projects in C/C++/Java


