Dataflow Analysis

Iterative Data-flow Analysis and Static-Single-Assignment
Optimization And Analysis

- Improving efficiency of generated code
 - Correctness: optimized code must preserve meaning of the original program
 - Profitability: optimized code must improve code quality

- Program analysis
 - Ensure safety and profitability of optimizations
 - Compile-time reasoning of runtime program behavior
 - Undecidable in general due to unknown program input
 - Conservative approximation of program runtime behavior
 - May miss opportunities, but ensure all optimizations are safe

- Data-flow analysis
 - Reason about flow of values between statements
 - Can be used for program optimization or understanding
Control-Flow Graph

- Graphical representation of runtime control-flow paths
 - Nodes of graph: basic blocks (straight-line computations)
 - Edges of graph: flows of control
- Useful for collecting information about computation
 - Detect loops, remove redundant computations, register allocation, instruction scheduling...
- Alternative CFG: Each node contains a single statement
Building Control-Flow Graphs
Identifying Basic Blocks

- Input: a sequence of three-address statements
- Output: a list of basic blocks
- Method:
 - Determine each statement that starts a new basic block, including
 - The first statement of the input sequence
 - Any statement that is the target of a goto statement
 - Any statement that immediately follows a goto statement
 - Each basic block consists of
 - A starting statement S0 (leader of the basic block)
 - All statements following S0 up to but not including the next starting statement (or the end of input)

```
......
i := 0
s0: if i < 50 goto s1
    goto s2
s1: t1 := b * 2
    a := a + t1
    goto s0
s2: ...
```

Starting statements:
```
i := 0
S0,
goto S2
S1,
S2
```
Building Control-Flow Graphs

- Identify all the basic blocks
 - Create a flow graph node for each basic block
- For each basic block B1
 - If B1 ends with a jump to a statement that starts basic block B2, create an edge from B1 to B2
 - If B1 does not end with an unconditional jump, create an edge from B1 to the basic block that immediately follows B1 in the original evaluation order

```
......
i := 0
s0: if i < 50 goto s1
    goto s2
s1: t1 := b * 2
    a := a + t1
    goto s0
S2: ...
```

Diagram:
```
i := 0
S0: if i < 50 goto s1
  goto s2
s1: t1 := b * 2
    a := a + t1
    goto s0
S2: ...
```
Exercise:
Building Control-flow Graph

......
i = 0; z = x
while (i < 100) {
i = i + 1;
if (y < x) z=y;
A[i]=i;
}
....
Live Variable Analysis

- A data-flow analysis problem
 - A variable v is live at CFG point p iff there is a path from p to a use of v along which v is not redefined
 - At any CFG point p, what variables are alive?

- Live variable analysis can be used in
 - Global register allocation
 - Dead variables no longer need to be in registers
 - SSA (static single assignment) construction
 - Dead variables don’t need \emptyset-functions at CFG merge points
 - Useless-store elimination
 - Dead variables don’t need to be stored back in memory
 - Uninitialized variable detection
 - No variable should be alive at program entry point
Computing Live Variables

- **Domain:**
 - All variables inside a function

- **Goal:** LiveIn(n) and LiveOut(n)
 - Variables alive at each basic block n

- For each basic block n, compute
 - UEVar(n)
 - vars used before defined
 - VarKill(n)
 - vars defined (killed by n)

- Formulate flow of data

\[
\text{LiveOut}(n) = \bigcup_{m \in \text{succ}(n)} \text{LiveIn}(m)
\]
\[
\text{LiveIn}(m) = \text{UEVar}(m) \cup (\text{LiveOut}(m) - \text{VarKill}(m))
\]

\[\Rightarrow\]
\[
\text{LiveOut}(n) = \bigcup_{m \in \text{succ}(n)} (\text{UEVar}(m) \cup (\text{LiveOut}(m) - \text{VarKill}(m)))
\]
Algorithm: Computing Live Variables

- For each basic block n, let
 - $UEVar(n)$ = variables used before any definition in n
 - $VarKill(n)$ = variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

- $LiveOut(n)$ = $\bigcup \left(UEVar(m) \cup (LiveOut(m) - VarKill(m)) \right)_{m \in succ(n)}$

```plaintext
for each basic block $bi$
    compute $UEVar(bi)$ and $VarKill(bi)$
    $LiveOut(bi) := \emptyset$
for (changed := true; changed; )
    changed = false
for each basic block $bi$
    old = $LiveOut(bi)$
    $LiveOut(bi) = \bigcup \left( UEVar(m) \cup (LiveOut(m) - VarKill(m)) \right)_{m \in succ(bi)}$
    if ($LiveOut(bi) \neq old$) changed := true
```
Solution
Computing Live Variables

- **Domain**
 - `a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,w`

<table>
<thead>
<tr>
<th>UE var</th>
<th>Var kill</th>
<th>Live Out</th>
<th>Live Out</th>
<th>Live Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a,b</td>
<td>m,n</td>
<td>∅</td>
<td>a,b,c,d,f</td>
</tr>
<tr>
<td>B</td>
<td>c,d</td>
<td>p,r</td>
<td>∅</td>
<td>a,b,c,d</td>
</tr>
<tr>
<td>C</td>
<td>a,b,c,d</td>
<td>q,r</td>
<td>∅</td>
<td>a,b,c,d,f</td>
</tr>
<tr>
<td>D</td>
<td>a,b,f</td>
<td>e,s,u</td>
<td>∅</td>
<td>a,b,c,d</td>
</tr>
<tr>
<td>E</td>
<td>a,c,d,f</td>
<td>e,t,u</td>
<td>∅</td>
<td>a,b,c,d</td>
</tr>
<tr>
<td>F</td>
<td>a,b,c,d</td>
<td>v,w</td>
<td>∅</td>
<td>a,b,c,d</td>
</tr>
<tr>
<td>G</td>
<td>a,b,c,d</td>
<td>m,n</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>
Other Data-Flow Problems
Reaching Definitions

- Domain of analysis
 - The set of definition points in a procedure

- Reaching definition analysis
 - A definition point d of variable v reaches CFG point p iff
 - There is a path from d to p along which v is not redefined
 - At any CFG point p, what definition points can reach p?

- Reaching definition analysis can be used in
 - Build data-flow graphs: where each operand is defined
 - SSA (static single assignment) construction
 - An IR that explicitly encodes both control and data flow
Reaching Definition Analysis

- For each basic block \(n \), let
 - \(\text{DEDef}(n) \) = definition points whose variables are not redefined in \(n \)
 - \(\text{DefKill}(n) \) = definitions obscured by redefinition of the same name in \(n \)

- Goal: evaluate all definition points that can reach entry of \(n \)
 - \(\text{Reaches}_{\text{exit}}(m) = \text{DEDef}(m) \cup (\text{Reaches}_{\text{entry}}(m) - \text{DefKill}(m)) \)
 - \(\text{Reaches}_{\text{entry}}(n) = \bigcup \text{Reaches}_{\text{exit}}(m) \mid m \in \text{pred}(n) \)
Example

```c
void fee(int x, int y)
{
    int I = 0;
    int z = x;
    while (I < 100) {
        I = I + 1;
        if (y < x) z = y;
        A[I] = I;
    }
}
```

- Compute the set of reaching definitions at the entry and exit of each basic block through each iteration of the data-flow analysis algorithm
More About Dataflow Analysis

- Sources of imprecision
 - Unreachable control flow edges, array and pointer references, procedural calls

- Other data-flow programs
 - Very busy expression analysis
 - An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
 - At any CFG point p, what expressions are very busy?
 - Constant propagation analysis
 - A variable-value pair (v, c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c
 - At any CFG point p, what variables have constants?
The Overall Pattern

- Each data-flow analysis takes the form

 \[
 \text{Input}(n) := \emptyset \quad \text{if } n \text{ is program entry/exit} \\
 := \Lambda \quad m \in \text{Flow}(n) \quad \text{Result}(m) \quad \text{otherwise} \\
 \text{Result}(n) = f_n (\text{Input}(n))
 \]

 - \(\Lambda\) is \(\cap\) or \(\cup\) (may vs. must analysis)
 - May analysis: properties satisfied by at least one path (\(\cup\))
 - Must analysis: properties satisfied by all paths (\(\cap\))

- Flow\((n)\) is pred\((n)\) or succ\((n)\) (forward vs. backward flow)
 - Forward flow: data flow forward along control-flow edges.
 - Input\((n)\) is data entering \(n\), Result is data exiting \(n\)
 - Input\((n)\) is \(\emptyset\) if \(n\) is program entry
 - Backward flow: data flow backward along control-flow edges.
 - Input\((n)\) is data exiting \(n\), Result is data entering \(n\)
 - Input\((n)\) is \(\emptyset\) if \(n\) is program exit

- \(f_n\) is the transfer function associated with each block \(n\)
Iterative dataflow algorithm

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅
for (changed := true; changed;)
 changed = false
for each basic block bi
 old = Result(bi)
 Result(bi) =
 ∩ or ∪
 [m ∈ pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m) - Kill(m)))
 if (Result(bi) != old)
 changed := true

- Iterative evaluation of result until a fixed point is reached
 - Always terminate?
 - If the results are bounded and grow monotonically, then yes; Otherwise, no.
 - Fixed-point solution is independent of evaluation order
 - What answer is computed?
 - Unique fixed-point solution
 - Meet-over-all-paths solution
 - How long does it take the algorithm to terminate?
 - Depends on traversing order of basic blocks
Traverse Order Of Basic Blocks

- Facilitate fast convergence to the fixed point
- Postorder traversal
 - Visits as many of a node’s successors as possible before visiting the node
 - Used in backward data-flow analysis
- Reverse postorder traversal
 - Visits as many of a node’s predecessors as possible before visiting the node
 - Used in forward data-flow analysis
Static Single Assignment form

- Data-flow analysis
 - Analyze data flow properties on control flow graph
 - Each analysis needs several passes over CFG

- Static Single Assignment form
 - Encode both control-flow and data-flow in a single IR
 - An intermediate representation
 - Each variable is assigned exactly once
 - Each use of variable has a single definition

- Steps:
 - Rename redefinition of variables
 - Use \emptyset-functions to merge conflicting definitions when paths meet
Construction Of SSA form

- Naïve algorithm: maximum SSA
 - Many extraneous \emptyset-functions are inserted
 - Need better algorithm to insert \emptyset-functions only when needed

(1) Insert \emptyset-functions
 for every basic block b_i that has multiple predecessors
 for each variable y used in b_i
 insert \emptyset-function $y = \emptyset(y, y, \ldots y)$,
 where each y in \emptyset corresponds to a predecessor

(2) Renaming
 Compute reaching definitions on CFG
 Each variable use has only one reachable definition
 Rename all definitions so that each defines a different name
 Rename all uses of variables according to its definition point
Dominators

- For each basic block \(y \)
 - \(x \) dominates \(y \) (\(x \in \text{Dom}(y) \)) if
 - \(x \) appears on all paths from entry to \(y \)
 - \(x \) strictly dominates \(y \) if
 - \(x \in \text{Dom}(y) \) and \(x \neq y \)
 - i.e. \(x \in \text{Dom}(y) \)-\{\(y \}\}
 - \(x \) immediately dominates \(y \) if
 - \(x \in \text{Dom}(y) \)
 - \(\forall z \in \text{Dom}(y) \), \(z \in \text{Dom}(x) \)
 - Written as \(x = \text{IDom}(y) \)

- Immediate dominators
 - \(\text{IDom}(F) = C \)
 - \(\text{IDom}(G) = A \)
 - \(\text{IDom}(D) = C \)
Where to insert \emptyset-functions

For variables defined in basic block n, which joint points in CFG need \emptyset-functions for them?

- A definition in n forces a \emptyset-function just outside the region of CFG that n dominates.
- A \emptyset-function must be inserted at each dominance frontier of n.

$m \in DF(n)$ iff

1. n dominates a predecessor of m.
 \[\exists q \in \text{preds}(m) \text{ s.t. } n \in \text{Dom}(q) \]
2. n does not strict dominate m.
 \[m \notin \text{Dom}(n) - \{n\} \]
Example: Constructing SSA

```c
void fee(int x, int y)
{
    int I = 0;
    int z = x;
    while (I < 100) {
        I = I + 1;
        if (y < x) z = y;
        A[I] = I;
    }
}
```
Reconstructing Executable Code

- SSA form is not directly executable on machines
 - Must rewrite \emptyset-functions into copy instructions
 - Need to split incoming edges of each \emptyset-function
 - Need to break cycles in \emptyset-function references
 - Rewriting made complex by SSA transformations
 - All phi functions of the same join point need to be evaluated concurrently
Appendix: Very Busy Expressions

- Domain of analysis
 - Set of expressions in a procedure
 - An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
 - At any CFG point p, what expressions are very busy?

- If an expression e is very busy at p, we can evaluate e at p and then remove all future evaluation of e.
 - Code hoisting --- reduces code space, but may lengthen live range of variables

- For each basic block n, let
 - UEExpr(n) = expressions used before any operands being redefined in n
 - ExprKill(n) = expressions whose operands are redefined in n

Goal: evaluate very busy expressions on exit from n
 - VeryBusy(n) = \(\bigcup \{ UEExpr(m) \cap (VeryBusy(m) - ExprKill(m)) \} \)
 \[m \in \text{succ}(n) \]
Appendix: Constant Propagation

- Domain of analysis
 - Set of variable-value pairs in a procedure
 - A pair (v, c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c.
 - (v, _): v has undefined value; (v, ⊥): v has unknown value; (v, ci): v has a constant value ci

- If a variable v always has a constant value c at point p, the compiler can replace uses of v at p with c
 - Allows specialization of code based on value cz

- For each basic block n,
 - Evaluate all variable-value pairs valid on entry to n
 \[
 \text{Constants}(n) = \bigwedge \text{Fm}(\text{Constants}(m)) \quad m \in \text{preds}(n)
 \]
 where \(\bigwedge\): pair-wise meet of var-val pairs
 \[
 \text{Fm}(\text{Constants}(m)) : \text{var-val pairs on exit from m}
 \]
Constant Propagation
Local Sets And Meet-over-all-paths

- For each basic block \(n \),
 \[\text{Constants}(n) = \bigwedge \text{Fm} (\text{Constants}(m)) \]
 where \(\text{Fm}(\text{Constants}(m)) \) is var-val pairs on exit from \(m \)

\[
(v, c_1) \wedge (v, c_2) = \begin{cases}
 (v, c_1) & \text{if } c_1 = = c_2; \\
 (v, \bot) & \text{otherwise}
\end{cases}
\]

- Compute \(\text{Fm}(\text{input}) \)
 Let \(m = S_1, S_2, ..., S_k \)
 for each \(i = 1, ..., k \)
 If \(S_i \) is \(x := y \)
 Suppose \((x,c_1), (y,c_2) \in \text{input} \)
 \(\text{input} = (\text{input} - \{(x,c_1)\}) \cap \{(x,c_2)\} \)
 If \(S_i \) is \(y \text{ op } z \)
 Suppose \((x,c_1), (y,c_2), (z,c_3) \in \text{input} \)
 \(\text{input} = (\text{input} - \{(x,c_1)\}) \cap \{(x,c_2 \text{ op } c_3)\} \)
\[
c_2 \text{ op } c_3 = \begin{cases}
 \text{Constant} & \text{if } c_2, c_3 \text{ are constants} \\
 \bot & \text{otherwise}
\end{cases}
\]
More On Constant Propagation

- Termination of constant propagation
 - Iterative data-flow algorithms are guaranteed to terminate if the result sets are bounded and grow monotonically.
 - Constant propagation does not have a bounded result set --- the set of all constant values is infinite
 - However, each variable-value pair can be updated at most twice. So constant propagation is guaranteed to terminate

- Using constant propagation to specialize code
 - Constant folding: evaluate integer expressions at compile time instead of runtime
 - Eliminate unreachable code: if a conditional test is always false, the entire branch can be removed
 - Enable more precision in other program analysis. E.g., knowing the bounds of loops can eliminate superfluous reordering constraints.
Appendix: Computing Dominators

- **Domain of analysis**
 - Set of basic blocks in a procedure
 - A basic block \(x \) dominates basic block \(y \) in CFG if \(x \) appears on all paths from entry to \(y \)
 - At any CFG node \(y \), what basic blocks dominate \(y \)?

- **For each basic block \(n \)**
 - \(\text{Dom}(n) = \{n\} \cup (\cap \text{Dom}(m)) \) \(m \in \text{preds}(n) \)
 - \(\text{IDom}(n) \) = the block in \(\text{Dom}(n) \) with smallest RPO sequence number
 - Each basic block \(n \) has a single \(\text{IDom}(n) \)
 - Can use \(\text{IDom} \) relation to build a dominator tree
Computing Dominance Frontiers

for each CFG node \(n \)
\[
\text{DF}(n) = \emptyset
\]
for each CFG node \(n \)
if \(n \) has multiple predecessors
for each predecessor \(p \) of \(n \)
runner := \(p \)
while runner ≠ \text{IDom}(n)
\[
\text{DF}(\text{runner}) := \text{DF}(\text{runner}) \cup \{n\}
\]
runner := \text{IDom}(runner)

Dominance tree:
Inserting \emptyset-Functions (skip)

Finding global names:

<table>
<thead>
<tr>
<th>Globals := \emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>for each variable x</td>
</tr>
<tr>
<td>Blocks(x) := \emptyset</td>
</tr>
<tr>
<td>for each block b_i: S1, S2, ..., Sk</td>
</tr>
<tr>
<td>VarKill := \emptyset</td>
</tr>
<tr>
<td>for $j = 1$ to k</td>
</tr>
<tr>
<td>let S_j be $x := y \text{ op } z$</td>
</tr>
<tr>
<td>if $y \notin$ VarKill then</td>
</tr>
<tr>
<td>Globals :=Globals \cup ${y}$</td>
</tr>
<tr>
<td>if $z \notin$ VarKill then</td>
</tr>
<tr>
<td>Globals :=Globals \cup ${z}$</td>
</tr>
<tr>
<td>VarKill := VarKill \cup ${x}$</td>
</tr>
<tr>
<td>Blocks(x) := Blocks(x) \cup ${b}$</td>
</tr>
</tbody>
</table>

Inserting \emptyset-functions:

for each name $x \in$ Globals

| WorkList := Blocks(x) |
| for each block $b \in$ WorkList |
| for each block d in DF(b) |
| insert a \emptyset-function for x in d |
| WorkList := WorkList \cup $\{d\}$ |
Renaming After \emptyset-Insertion(skip)

Main

for each name $x \in \text{Globals}$
 counter[x] := 0
 stack[x] := 0
 Rename (n0)

Rename (n0)

for each $x := \emptyset(...) \in \text{bi}$
 rename x as NewName(x)

for each operation $x := y \ op \ z$ in bi
 rewrite y as top(stack[y])
 rewrite z as top(stack[z])
 rewrite x as NewName(x)

for each $m \in \text{succ}(\text{bi})$
 fill in \emptyset-function parameters in m

for each n such that $\text{bi} = \text{IDom}(n)$
 Rename(n)

for each operation $x := y \ op \ z$ in bi and each $x := \emptyset(...) \in \text{bi}$
 pop(stack[x])

Create new name:

NewName(x)

 $i := \text{counter}[x]$
 counter[x] := counter[x] + 1
 push x_i onto stack[x]
 return x_i

Recursive renaming:

Rename(bi)

 for each $x := \emptyset(...) \in \text{bi}$
 rename x as NewName(x)

 for each operation $x := y \ op \ z$ in bi
 rewrite y as top(stack[y])
 rewrite z as top(stack[z])
 rewrite x as NewName(x)

 for each $m \in \text{succ}(\text{bi})$
 fill in \emptyset-function parameters in m

 for each n such that $\text{bi} = \text{IDom}(n)$
 Rename(n)

 for each operation $x := y \ op \ z$ in bi and each $x := \emptyset(...) \in \text{bi}$
 pop(stack[x])