
cs5363 1

Dataflow Analysis
Iterative Data-flow Analysis and

Static-Single-Assignment

cs5363 2

Optimization And Analysis
 Improving efficiency of generated code

 Correctness: optimized code must preserve meaning of
the original program

 Profitability: optimized code must improve code quality

 Program analysis
 Ensure safety and profitability of optimizations
 Compile-time reasoning of runtime program behavior

 Undecidable in general due to unknown program input
 Conservative approximation of program runtime behavior
 May miss opportunities, but ensure all optimizations are safe

 Data-flow analysis
 Reason about flow of values between statements
 Can be used for program optimization or understanding

cs5363 3

Control-Flow Graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs5363 4

Building Control-Flow Graphs
Identifying Basic Blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block,
including

 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0 (leader of the basic block)
 All statements following S0 up to but not including the next

starting statement (or the end of input)
……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs5363 5

Building Control-Flow Graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block
B2, create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge
from B1 to the basic block that immediately follows B1 in the
original evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs5363 6

Exercise:
Building Control-flow Graph

……
 i = 0; z = x
 while (i < 100) {
 i = i + 1;
 if (y < x) z=y;
 A[i]=i;
}
….

cs5363 7

Live Variable Analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers
 SSA (static single assignment) construction

 Dead variables don’t need ∅-functions at CFG merge points
 Useless-store elimination

 Dead variables don’t need to be stored back in memory
 Uninitialized variable detection

 No variable should be alive at program entry point

cs5363 8

Computing Live Variables
 Domain:

 All variables inside a function
 Goal: Livein(n) and LiveOut(n)

 Variables alive at each basic
block n

 For each basic block n, compute
 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Formulate flow of data
LiveOut(n)=∪m∈succ(n)LiveIn(m)
LiveIn(m)=UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

 ==>
 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G

cs5363 9

Algorithm:
Computing Live Variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs5363 10

Solution
Computing Live Variables

 Domain
 a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,wm:=a+b

n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G
∅

∅

∅

∅

∅

∅

∅

Live
Out

∅∅m,na,b,
c,d

G

a,b,c,d,fa,b,c,dv,wa,b,
c,d

F

a,b,c,d,fa,b,c,de,t,ua,c,
d,f

E

a,b,c,d,fa,b,c,de,s,ua,b,fD

a,b,c,d,fa,b,c,d,fq,ra,b,
c,d

C

a,b,c,da,b,c,dp,rc,dB

a,b,c,d,fa,b,c,d,fm,na,bA

Live
Out

Live
Out

Var
kill

UE
var

cs5363 11

Other Data-Flow Problems
Reaching Definitions
 Domain of analysis

 The set of definition points in a procedure

 Reaching definition analysis
 A definition point d of variable v reaches CFG point p iff

 There is a path from d to p along which v is not redefined

 At any CFG point p, what definition points can reach p?

 Reaching definition analysis can be used in
 Build data-flow graphs: where each operand is defined
 SSA (static single assignment) construction

π An IR that explicitly encodes both control and data flow

cs5363 12

Reaching Definition Analysis
 For each basic block n, let

 DEDef(n)= definition points whose variables
are not redefined in n

 DefKill(n)= definitions obscured by redefinition
of the same name in n

 Goal: evaluate all definition points that
can reach entry of n
 Reaches_exit(m)= DEDef(m) ∪

(Reaches_entry(m) - DefKill(m))
 Reaches_entry(n)= ∪ Reaches_exit(m)
 m∈pred(n)

cs5363 13

Example

 Compute the set of reaching definitions at the
entry and exit of each basic block through each
iteration of the data-flow analysis algorithm

void fee(int x, int y)
{

int I = 0;
int z = x;
while (I < 100) {
 I = I + 1;
 if (y < x) z = y;
 A[I] = I;
}

}

cs5363 14

More About Dataflow Analysis
 Sources of imprecision

 Unreachable control flow edges, array and pointer references,
procedural calls

 Other data-flow programs
 Very busy expression analysis

 An expression e is very busy at a CFG point p if it is evaluated on
every path leaving p, and evaluating e at p yields the same result.

 At any CFG point p, what expressions are very busy?

 Constant propagation analysis
 A variable-value pair (v,c) is valid at a CFG point p if on every

path from procedure entry to p, variable v has value c
 At any CFG point p, what variables have constants?

cs5363 15

The Overall Pattern
 Each data-flow analysis takes the form
 Input(n) := ∅ if n is program entry/exit

 := Λ m∈Flow(n) Result(m) otherwise
 Result(n) = ƒn (Input(n))

 Λ is ∩ or ∪ (may vs. must analysis)
 May analysis: properties satisfied by at least one path (∪)
 Must analysis: properties satisfied by all paths(∩)

 Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
 Forward flow: data flow forward along control-flow edges.

 Input(n) is data entering n, Result is data exiting n
 Input(n) is ∅ if n is program entry

 Backward flow: data flow backward along control-flow edges.
 Input(n) is data exiting n, Result is data entering n
 Input(n) is ∅ if n is program exit

 ƒn is the transfer function associated with each block n

cs5363 16

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

Iterative dataflow algorithm
 Iterative evaluation of result

until a fixed point is reached
 Always terminate?

 If the results are bounded
and grow monotonically,
then yes; Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer is computed?
 Unique fixed-point solution
 Meet-over-all-paths solution

 How long does it take the
algorithm to terminate?

 Depends on traversing order
of basic blocks

cs5363 17

Traverse Order Of Basic Blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a node’s
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs5363 18

x0 := 17-4

x1:=a+b

x2:=y-z

x4:=13

x3:= ∅(x2,x0)

x5 := ∅(x4,x3)
z:=x5*q

x6:= ∅(x1,x5)
s:=w-x6

Static Single Assignment form
 Data-flow analysis

 Analyze data flow properties on
control flow graph

 Each analysis needs several passes
over CFG

 Static Single Assignment form
 Encode both control-flow and data-

flow in a single IR
 An intermediate representation

 Each variable is assigned exactly once
 Each use of variable has a single

definition

 Steps:
 Rename redefinition of variables
 Use ∅-functions to merge conflicting

definitions when paths meet

cs5363 19

(1)Insert ∅-functions
 for every basic block bi that has multiple predecessors
 for each variable y used in bi
 insert ∅-function y = ∅(y,y,…y),
 where each y in ∅ corresponds to a predecessor
(2) Renaming
 Compute reaching definitions on CFG
 Each variable use has only one reachable definition
 Rename all definitions so that each defines a different name
 Rename all uses of variables according to its definition point

Construction Of SSA form
 Naïve algorithm: maximum SSA

 Many extraneous ∅-functions are inserted
 Need better algorithm to insert ∅-functions only when

needed

cs5363 20

Dominators
 For each basic block y

 x dominates y (x ∈ Dom(y)) if
 x appears on all paths from

entry to y
 x strictly dominates y if

 x ∈ Dom(y) and x ≠ y
 i.e. x ∈ Dom(y)-{y}

 x immediately dominates y if
 x ∈ Dom(y) and
 ∀z ∈ Dom(y), z ∈ Dom(x)
 Written as x = IDom(y)

 Immediate dominators
IDom(F)=C
IDom(G)=A
IDom(D)=C

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

cs5363 21

Where to insert ∅-functions
 For variables defined in basic

block n, which joint points in
CFG need ∅-functions for them?
 A definition in n forces a ∅-

function just outside the region
of CFG that n dominates

 A ∅-function must be inserted
at each dominance frontier of n

m ∈ DF(n) iff
(1) n dominates a predecessor of m
 ∃ q ∈ preds(m) s.t. n ∈ Dom(q)
(2) n does not strict dominate m
 m ∉ Dom(n) – {n}

m0:=a0+b0
n0:=a0+b0

p0:=c0+d0
r0:=c0+d0

q0:=a0+b0
r1:=c0+d0

e0:=b0+18
s0:=a0+b0
u0:=e0+f0

e1:=a0+17
t0:=c0+d0
u1:=e1+f0

e2:=∅(e0,e1)
u2:=∅(u0,u1)
v0:=a0+b0
w0:=c0+d0
x0:=e2+f0

r2:=∅(r0,r1)
y0:=a0+b0
z0:=c0+d0

A

B

C

D E

F

G

cs5363 22

Example: Constructing SSA
void fee(int x, int y)
{

int I = 0;
int z = x;
while (I < 100) {
 I = I + 1;
 if (y < x) z = y;
 A[I] = I;
}

}

cs5363 23

i0:=1

i1:=∅(i0,i1+1)
while (i1 < 5)

z:=i1+…

i0:=1
i1:=i0

while (i1 < 5)

z:=i1+…

i1:=i1+1

i0:=1; j0=10;

i1:=∅(i0,j1)
j1:=∅(j0,i1)
while (i1 < j1)

z:=i1+…

Reconstructing Executable Code
 SSA form is not directly executable on machines

 Must rewrite ∅-functions into copy instructions
 Need to split incoming edges of each ∅-function
 Need to break cycles in ∅-function references

 Rewriting made complex by SSA transformations
 All phi functions of the same join point need to be evaluated

concurrently

cs5363 24

Appendix:Very Busy Expressions
 Domain of analysis

 Set of expressions in a procedure
 An expression e is very busy at a CFG point p if it is evaluated on every

path leaving p, and evaluating e at p yields the same result.
 At any CFG point p, what expressions are very busy?

 If an expression e is very busy at p, we can evaluate e at p
and then remove all future evaluation of e.
 Code hoisting --- reduces code space, but may lengthen live

range of variables
 For each basic block n, let

 UEExpr(n)= expressions used before any operands being redefined in n
 ExprKill(n)= expressions whose operands are redefined in n

 Goal: evaluate very busy expressions on exit from n
 VeryBusy(n)= ∪ (UEExpr(m) ∩ (VeryBusy(m) - ExprKill(m))
 m∈succ(n)

cs5363 25

Appendix: Constant Propagation
 Domain of analysis

 Set of variable-value pairs in a procedure
 A pair (v,c) is valid at a CFG point p if on every path from

procedure entry to p, variable v has value c.
 (v,_): v has undefined value; (v,⊥): v has unknown value;
    (v, ci): v has a constant value ci

 If a variable v always has a constant value c at point p, the
compiler can replace uses of v at p with c
 Allows specialization of code based on value cz

 For each basic block n,
 Evaluate all variable-value pairs valid on entry to n
 Constants(n)= /\ Fm(Constants(m))
 m∈preds(n)

 where /\ : pair-wise meet of var-val pairs
 Fm(Constants(m)): var-val pairs on exit from m

cs5363 26

Constant Propagation
Local Sets And Meet-over-all-paths

 For each basic block n,

 Compute Fm(input)

(v,c1) if c1 == c2;
(v, ⊥) otherwise

(v,c1) /\ (v,c2)=

Constant if c2,c3 are constants
⊥ otherwise

c2 op c3 =

Constants(n)= /\ Fm(Constants(m))
 m∈preds(n)

 where Fm(Constants(m)) is var-val pairs
 on exit from m

Let m = S1, S2, …, Sk
for each i = 1, …, k
 If Si is x := y
 Suppose (x,c1),(y,c2) ∈ input
 input = (input – {(x,c1)})∩{(x,c2)}
 If Si is y op z
 Suppose (x,c1),(y,c2),(z,c3) ∈ input
 input = (input – {(x,c1)})∩{(x,c2 op c3)}

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs5363 27

More On Constant Propagation
 Termination of constant propagation

 Iterative data-flow algorithms are guaranteed to terminate if
the result sets are bounded and grow monotonically.

 Constant propagation does not have a bounded result set ---
the set of all constant values is infinite

 However, each variable-value pair can be updated at most
twice. So constant propagation is guaranteed to terminate

 Using constant propagation to specialize code
 Constant folding: evaluate integer expressions at compile time

instead of runtime
 Eliminate unreachable code: if a conditional test is always false,

the entire branch can be removed
 Enable more precision in other program analysis. E.g.,

knowing the bounds of loops can eliminate superfluous
reordering constraints.

cs5363 28

Appendix: Computing Dominators
 Domain of analysis

 Set of basic blocks in a
procedure

 A basic block x dominates
basic block y in CFG if x
appears on all paths from
entry to y

 At any CFG node y, what
basic blocks dominate y?

 For each basic block n
 Dom(n)= {n} ∪
 (∩ Dom(m)) m∈preds(n)
 IDom(n) = the block in

Dom(n) with smallest RPO
sequence number

 Each basic block n has a
single IDom(n)

 Can use IDom relation to
build a dominator tree

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs5363 29

Computing Dominance Frontiers
for each CFG node n
 DF(n) = ∅
for each CFG node n
 if n has multiple predecessors
 for each predecessor p of n
 runner := p
 while runner ≠ IDom(n)
 DF(runner) :=

 DF(runner) ∪ {n}
 runner := IDom(runner)

A

B C G

D E F

Dominance tree:

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

cs5363 30

Inserting ∅-Functions (skip)

Globals:= ∅
for each variable x
 Blocks(x) = ∅
for each block bi: S1,S2,…,Sk
 VarKill := ∅
 for j = 1 to k
 let Sj be x := y op z
 if y ∉ VarKill then

 Globals := Globals ∪ {y}
 if z ∉ VarKill then

 Globals := Globals ∪ {z}

 VarKill := VarKill ∪ {x}

 Blocks(x) := Blocks(x) ∪ {b}

Finding global names:

for each name x ∈ Globals
 WorkList := Blocks(x)
 for each block b ∈ WorkList
 for each block d in DF(b)
 insert a ∅-function for x in d

 WorkList:=WorkList ∪ {d}

Inserting ∅-functions:

cs5363 31

Renaming After ∅-Insertion(skip)

for each name x ∈ Globals
 counter[x] := 0
 stack[x] := 0
Rename (n0)

Main

NewName(x)
 i := counter[x]
 counter[x] := counter[x] + 1
 push xi onto stack[x]
 return xi

Rename(bi)
 for each “x:=∅(…)” in bi
 rename x as NewName(x)
 for each operation “x:=y op z” in bi
 rewrite y as top(stack[y])
 rewrite z as top(stack[z])
 rewrite x as NewName(x)
 for each m ∈ succ(bi)
 fill in ∅-function parameters in m
 for each n such that bi = IDom(n)
 Rename(n)
 for each operation “x:=y op z” in bi
 and each “x:=∅(…)” in bi
 pop(stack[x])

Create new name:

Recursive renaming:

