Dataflow Analysis

Iterative Data-flow Analysis and
Static-Single-Assignment

555555

o Improving efficiency of generated code

Correctness: optimized code must preserve meaning of
the original program

Profitability: optimized code must improve code quality

o Program analysis
Ensure safety and profitability of optimizations
Compile-time reasoning of runtime program behavior
Undecidable in general due to unknown program input
Conservative approximation of program runtime behavior
May miss opportunities, but ensure all optimizations are safe
o Data-flow analysis
Reason about flow of values between statements
Can be used for program optimization or understanding

cs5363 2

Control-Flow Graph

o Graphical representation of runtime control-flow paths
= Nodes of graph: basic blocks (straight-line computations)
= Edges of graph: flows of control

o Useful for collecting information about computation

= Detect loops, remove redundant computations, register
allocation, instruction scheduling...

o Alternative CFG: Each node contains a single statement

i =0;
v
if I < 50
/
tl :=b * 2;
a:=a+tl;| /) [

cs5363

Building Control-Flow Graphs
ldentifying Basic Blocks

o Input: a sequence of three-address statements
o Output: a list of basic blocks

o Method:
= Determine each statement that starts a new basic block,
including
The first statement of the input sequence
Any statement that is the target of a goto statement
Any statement that immediately follows a goto statement
= Each basic block consists of

A starting statement SO (leader of the basic block)

All statements following SO up to but not including the next
starting statement (or the end of input)

------ Starting statements:

= .
[s0:ifi < 50 goto sl 1:=0
goto s2 SO,
sl:tl:=b*2 goto S2
a:=a+tl S1,
goto sO S2

[s2: ..
cs5363

Building Control-Flow Graphs

o Identify all the basic blocks
= Create a flow graph node for each basic block

0 For each basic block B1
= If B1 ends with a jump to a statement that starts basic block
B2, create an edge from B1 to B2

= If B1 does not end with an unconditional jump, create an edge
from B1 to the basic block that immediately follows B1 in the
original evaluation order

i =0
[i:=0
%so: if i < 50 goto s1 SO: if i < 50 goto sl
goto s2
sl:tl:=b*?2 /* \
3= 34 t1 sl:tl:=b*2 otosg/
S2: ... goto sO /S;/
- .

cs5363

EXxercise:
Building Control-flow Graph

i=0;,z=x
while (i < 100) {
i=i+1;
if (y < x) z=y;
Ali]=i;

cs5363

o A data-flow analysis problem

A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

At any CFG point p, what variables are alive?

O Live variable analysis can be used in
Global register allocation
Dead variables no longer need to be in registers
SSA (static single assignment) construction
Dead variables don’t need @-functions at CFG merge points
Useless-store elimination
Dead variables don’t need to be stored back in memory

Uninitialized variable detection
No variable should be alive at program entry point

cs5363 7

Computing, Live Variables

A | M:i=a+b
n:=a+b
el s
:=c+d q:=a+b
rl?:=c+d “|ri=ctd
/ *
e:=b+18 e:=a+17
D s:=a+b E|tj=c+d
u:=e+f u:=e+f
\ p
V:=a+b
F w:=c+d

o

m:=a+b
n:=c+d

O

O

cs5363

Domain:
= All variables inside a function

Goal: Livein(n) and LiveOut(n)
= Variables alive at each basic
block n
For each basic block n, compute
= UEVar(n)
vars used before defined
= VarKill(n)

vars defined (killed by n)
Formulate flow of data
LiveOut(n)=Umesucc(n)LiveIn(m)
LiveIn(m)=UEVar(m) U

(LiveOut(m)-VarKill(m))
==>
LiveOut(n)= U mesucc(n)
(UEVar(m) U
(LiveOut(m)-VarKill(m))

Algorithm:
Computing Live Variables

o For each basic block n, let
= UEVar(n)=variables used before any definition in n
= VarKill(n)=variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

= LiveOut(n)= U iUEVar(m) U (LiveOut(m) - VarKill(m))
me&succ(n)

for each basic block bi
compute UEVar(bi) and VarKill(bi)
LiveOut(bi) := @
for (changed : = true; changed;)
changed = false
for each basic block bi
old = LiveOut(bi)

LiveOut(bi)niELéu(CLé%gia)r(m) U (LiveOut(m) - VarKill(m))

if (LiveOut(bi) '= old) changed := true

cs5363

Solution
Computi)Jg Live Variables

o Domain
A m:=a+b u alblcldlelflmlnlplqlrlsltlulvlw
n:=a+b UE | Vvar | Live | Live Live
3 el = ; var |kill |Out | out out
. .=a+
p:=c+d C C|. Alab |mn | |abcdf|ab,cdf
r:=c+d ri=c+d
/ \\‘ Blcd |p,r ¢ |ab,cd |ab,cd
e:=b+18 g:=a+17/ Clab, |ar | |ab,cdf]|ab,cdf
D s:=a+b E|t:=c+d c,d
u:=e+f y:=e+f D|abf|esul|y |abcd |ab,.cdf
\A |
vV:=a+b El|ac |etu|y |abcd |abcdf
Flwi=c+d df
Flab, |vvw | & a,b,c,d a,b,c,d,f
/ c,d
G m:=a+b G 313, mn | | %)
. — C,
n:=c+d cs5363 10

Other Data-Flow Problems
Reaching Definitions

o Domain of analysis
= The set of definition points in a procedure

o Reaching definition analysis

= A definition point d of variable v reaches CFG point p iff
There is a path from d to p along which v is not redefined

= At any CFG point p, what definition points can reach p?
o Reaching definition analysis can be used in
= Build data-flow graphs: where each operand is defined

m SSA (static single assignment) construction
An IR that explicitly encodes both control and data flow

cs5363

11

o0 For each basic block n, let

DEDef(n)= definition points whose variables
are not redefined in n

DefKill(n)= definitions obscured by redefinition
of the same name in n

0 Goal: evaluate all definition points that
can reach entry of n
Reaches_exit(m)= DEDef(m) U
(Reaches_entry(m) - DefKill(m))
Reaches_entry(n)= U Reaches_exit(m)

mepred(n)

cs5363 12

Example

void fee(int x, int y)

{
int | =0;
intz = Xx;
while (I < 100) {
| =1+ 1;
if(y<x)z=y;
All]l =1;
}
}

o Compute the set of reaching definitions at the
entry and exit of each basic block through each
iteration of the data-flow analysis algorithm

cs5363

13

More About Dataflow Analysis

O Sources of imprecision

= Unreachable control flow edges, array and pointer references,
procedural calls

o Other data-flow programs

= Very busy expression analysis
An expression e is very busy at a CFG point p if it is evaluated on

every path leaving p, and evaluating e at p yields the same result.

At any CFG point p, what expressions are very busy?

= Constant propagation analysis

A variable-value pair (v,c) is valid at a CFG point p if on every
path from procedure entry to p, variable v has value c

At any CFG point p, what variables have constants?

cs5363

14

o Each data-flow analysis takes the form

Input(n) := g if n is program entry/exit
:= A meFlow(n) Result(m) otherwise
Result(n) = fn (Input(n))
Ais N or U (may vs. must analysis)

May analysis: properties satisfied by at least one path (V)
Must analysis: properties satisfied by all paths(N)

Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
Forward flow: data flow forward along control-flow edges.
= Input(n) is data entering n, Result is data exiting n
= Input(n) is & if n is program entry
Backward flow: data flow backward along control-flow edges.
= Input(n) is data exiting n, Result is data entering n
= Input(n) is & if n is program exit

fn is the transfer function associated with each block n
cs5363 15

for each basic block bi
compute Gen(bi) and Kill(bi)
Result(bi) := &
for (changed := true; changed;)
changed = false
for each basic block bi
old = Result(bi)
Result(bi)=
N or U
[m&pred(bi) or succ(bi)]
(Gen(m) U (Result(m)-Kill(m))
if (Result(bi) !'= old)
changed : = true

o Iterative evaluation of result
until a fixed point is reached

Always terminate?

If the results are bounded
and grow monotonically,
then yes; Otherwise, no.

Fixed-point solution is
independent of evaluation
order

What answer is computed?
Unique fixed-point solution
Meet-over-all-paths solution

How long does it take the

algorithm to terminate?

Depends on traversing order
of basic blocks

cs5363 16

Traverse Order Of Basic Blocks

o Facilitate fast convergence to
the fixed point

postorder Postorder traversal
= Visits as many of a node’s
successors as possible before
visiting the node

» Used in backward data-flow
analysis

o0 Reverse postorder traversal

= Visits as many of a node’s
predecessors as possible

before visiting the node
a Reverse = Used in forward data-flow
n postorder analysis

cs5363 17

Static Single Assignment form

X0 :=17-4
x1l:=a+b J
X2:=y-z
x3:= J(x2,x0)
e
x4:=13

x5 1= J(x4,x3)
Z:=x5%*q

/

x6:= J(x1,x5)
S:=wW-X6

o Data-flow analysis

= Analyze data flow properties on
control flow graph

= Each analysis needs several passes
over CFG

o Static Single Assignment form

» Encode both control-flow and data-
flow in a single IR

An intermediate representation

= Each variable is assigned exactly once
Each use of variable has a single
definition
o Steps:
= Rename redefinition of variables

= Use g-functions to merge conflicting
definitions when paths meet

cs5363 18

o Naive algorithm: maximum SSA
Many extraneous J-functions are inserted

Need better algorithm to insert @-functions only when
needed

(1)Insert g-functions
for every basic block bi that has multiple predecessors
for each variable y used in bi
insert J-function y = J(y,y,...Y),
where each y in & corresponds to a predecessor
(2) Renaming
Compute reaching definitions on CFG
Each variable use has only one reachable definition
Rename all definitions so that each defines a different name
Rename all uses of variables according to its definition point

cs5363

19

Dominators

p:=c+d
r:=c+d

Ala=>5

n:=a+b

e

C

g:=a+b
r:=c+d

/

i

e:=b+18
s:=a+b
u:=e+f

El t:=c+d
u:=e+f

e:=a+17

T~

—

For each basic block y

= X dominates y (x € Dom(y)) if

X appears on all paths from
entry to y

m X strictly dominates vy if
x € Dom(y) and x # y
i.e. x € Dom(y)-{y}

= X immediately dominates y if
x € Dom(y) and
Vz € Dom(y), z € Dom(x)
Written as x = IDom(y)

v:=a+b
w:=c+d
X:=e+f

0o Immediate dominators
IDom(F)=C
IDom(G)=A
IDom(D)=C

cs5363 20

Where to insert J-functions

A | m0:=a0+b0 o For variable_s dgfi_ned in bas_ic
n0:=a0+b0 block n, which joint points in
B «— — CFG need J-functions for them?
p0:=c0+d0 c| 90:=a0+b0 = A definition in n forces a J-
r0:=c0+d0 r1:=c0+d0 function just outside the region
a— N of CFG that n dominates
D| €0:=b0+18 el:=al+17| o A @-function must be inserted
s0:=a0+Db0 t0:=c0+d0 at each dominance frontier of n
u0:=e0+f0 ul:=el+f0
?@(ﬂ m € DF(n) iff
£ |u2:=2(uo,ut) (1) n dominates a predecessor of m
v0:=a0+b0 1 g € preds(m) s.t. n € Dom(q)
W(?!=C§+f%0 (2) n does not strict dominate m
x0:=e2+
m & Dom(n) - {n
X ¢ Dom(n) - {n}
G | r2:=9(r0,r1)
y0:=a0+b0
z0:=c0+d0O cs5363 21

Example:

Constructing SSA

void fee(int x, int y)
{
int|=0;
intz = Xx;
while (I < 100) {
=1+ 1;
if (y<x)z=y;
Alll = I;
}
}

cs5363

22

Reconstructing Executable Code

o SSA form is not directly executable on machines

= Must rewrite g-functions into copy instructions
Need to split incoming edges of each J-function
Need to break cycles in J-function references
= Rewriting made complex by SSA transformations
All phi functions of the same join point need to be evaluated

concurrently

i0:=1

I

i0:=1
il1:=i0

i1:=(i0,i1+1)
while (i1 < 5)

v o4

while (i1 < 5)

i0:=1; jO=10;

L

’

z:=il+...

il:=il+1

z:=il+...

cs5363

i1:=(i0,j1)
j1:=2(jo,i1)
while (i1 < j1)

l

z:=il+...

23

o Domain of analysis
Set of expressions in a procedure

An expression e is very busy at a CFG point p if it is evaluated on every
path leaving p, and evaluating e at p yields the same result.

At any CFG point p, what expressions are very busy?
o If an expression e is very busy at p, we can evaluate e at p
and then remove all future evaluation of e.
Code hoisting --- reduces code space, but may lengthen live
range of variables

o For each basic block n, let
UEExpr(n)= expressions used before any operands being redefined in n
ExprKill(n)= expressions whose operands are redefined in n

Goal: evaluate very busy expressions on exit from n

VeryBusy(n)= U (UEExpr(m) N (VeryBusy(m) - ExprKill(m))
mesucc(n)

cs5363 24

Appendix: Constant Propagation

o Domain of analysis
= Set of variable-value pairs in a procedure

= A pair (v,c) is valid at a CFG point p if on every path from
procedure entry to p, variable v has value c.

= (v,_): v has undefined value; (v,1): v has unknown value;
(v, ci): v has a constant value ci
o If a variable v always has a constant value c at point p, the
compiler can replace uses of v at p with c
= Allows specialization of code based on value cz
o For each basic block n,

= Evaluate all variable-value pairs valid on entry to n
Constants(n)= /\ Fm(Constants(m))
mepreds(n)
where /\ : pair-wise meet of var-val pairs
Fm(Constants(m)): var-val pairs on exit from m

cs5363 25

Constant Propagation
Local Sets And Meet-over-all-paths

a=>5
n:=a+b
B —,
p:=c+d c|g:=at+b
r=c+d r:=c+d
/ \
e:=b+18 e:=a+17
D|s:=a+b t:=c+d
u:=e+f u:=e+f
v:=a+b
F w:=c+d
X:=e+f
P
y:=a+b
G Z:=c+d

o For each basic block n,

Constants(n)= /\ Fm(Constants(m))
mepreds(n)
where Fm(Constants(m)) is var-val pairs

on exit from m (v,c1) if c1 >
1 2)= v,cl)ifcl == c2;
(v,c1) /\ (v,c2) (v, 1) otherwise

0o Compute Fm(input)
Let m = 51, S2, ..., Sk
foreachi=1, ..., k
IfSiisx:=y
Suppose (x,c1),(y,c2) € input
input = (input - {(x,c1)})N{(x,c2)}
If Siisyopz
Suppose (x,c1),(y,c2),(z,c3) € input
input = (input - {(x,c1)})N{(x,c2 op c3)}
JiConstant if c2,c3 are constants

c2 op c3 =
P 1 otherwise

cs5363 26

o Termination of constant propagation

Iterative data-flow algorithms are guaranteed to terminate if
the result sets are bounded and grow monotonically.

Constant propagation does not have a bounded result set ---
the set of all constant values is infinite

However, each variable-value pair can be updated at most
twice. So constant propagation is guaranteed to terminate

o Using constant propagation to specialize code

Constant folding: evaluate integer expressions at compile time
instead of runtime

Eliminate unreachable code: if a conditional test is always false,
the entire branch can be removed

Enable more precision in other program analysis. E.qg.,

knowing the bounds of loops can eliminate superfluous
reordering constraints.

cs5363 27

Appendix: Computing Dominators

o Domain of analysis

A | Mmi=a+b , .
n:=a+b = Set of basic blocks in a
: procedure
e = A basic block x dominates
C q:=a+b basic block y in CFG if x
r'=c+d appears on all paths from
entry to y
— T = At any CFG node y, what
e:=b+18 e:=a+17 basic blocks dominate y?
D | s:=a+b E|t:=lc+d O For each basic block n
u:=e+f u:se+f = Dom(n)= {n} U
\ (N Dom(m)) mepreds(n)
= IDom(n) = the block in
vi=a+b Dom(n) with smallest RPO
Flw:=c+d sequence number
- Each basic block n has a
X:=e+f single IDom(n)
Can use IDom relation to
G y:=a+b build a dominator tree
Zz:=c+d

cs5363 28

Computing Dominance Frontiers

p:=c+d
r:=c+d

Ala=>5

n:=a+b

e

C

g:=a+b
r:=c+d

/

i

e:=b+18
s:=a+b
u:=e+f

e:=a+17/
El t:=c+d
u:=e+f

T~

—

v:=a+b
w:=c+d
X:=e+f

for each CFG node n
DF(n) = &
for each CFG node n
if n has multiple predecessors
for each predecessor p of n
runner := p
while runner # IDom(n)
DF(runner) :=

DF(runner) U {n?}
runner := IDom(runner)

Dominance tree:

B C G
m
D E F

cs5363 29

Inserting J-Functions (skip)

Finding global names: Inserting @-functions:

Globals:= &
for each variable x for each name x € Globals
Blocks(x) = & WorkList := Blocks(x)
for each block bi: 51,S2,...,Sk for each block b € WorkList
VarKill := & for each block d in DF(b)
forj=1tok insert a J-function for x in d
let Sj be x 1=y op z WorkList: =WorkList U {d}

if y & VarKill then

Globals := Globals U {y?}
if z & VarKill then

Globals := Globals U {z}
VarKill := VarKill U {x}
Blocks(x) := Blocks(x) U {b}

cs5363 30

Main

for each name x € Globals
counter[x] := 0
stack[x] := 0

Rename (n0)

Create new name:

Recursive renaming:

NewName(x)
| 1= counter[x]
counter[x] := counter[x] + 1
push Xi onto stack[x]
return Xxi

Rename(bi)

for each “x:=J(...)" in bi
rename X as NewName(x)

for each operation “x:=y op z” in bi
rewrite y as top(stack[y])
rewrite z as top(stack[z])
rewrite x as NewName(x)

for each m &€ succ(bi)
fill in J-function parameters in m

for each n such that bi = IDom(n)
Rename(n)

for each operation “x:=y op z” in bi
and each “x:=d(...)" in bi
pop(stack[x])

cs5363 31

