Dataflow Analysis

Iterative Data-flow Analysis and
Static-Single-Assignment
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o Improving efficiency of generated code

Correctness: optimized code must preserve meaning of
the original program

Profitability: optimized code must improve code quality

o Program analysis
Ensure safety and profitability of optimizations
Compile-time reasoning of runtime program behavior
Undecidable in general due to unknown program input
Conservative approximation of program runtime behavior
May miss opportunities, but ensure all optimizations are safe
o Data-flow analysis
Reason about flow of values between statements
Can be used for program optimization or understanding
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Control-Flow Graph

o Graphical representation of runtime control-flow paths
= Nodes of graph: basic blocks (straight-line computations)
= Edges of graph: flows of control

o Useful for collecting information about computation

= Detect loops, remove redundant computations, register
allocation, instruction scheduling...

o Alternative CFG: Each node contains a single statement

i =0;
v
if I < 50
/
tl :=b * 2;
a:=a+tl;| /) [
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Building Control-Flow Graphs
ldentifying Basic Blocks

o Input: a sequence of three-address statements
o Output: a list of basic blocks

o Method:
= Determine each statement that starts a new basic block,
including
The first statement of the input sequence
Any statement that is the target of a goto statement
Any statement that immediately follows a goto statement
= Each basic block consists of

A starting statement SO (leader of the basic block)

All statements following SO up to but not including the next
starting statement (or the end of input)

------ Starting statements:

= .
[ s0:ifi < 50 goto sl 1:=0
goto s2 SO,
sl:tl:=b*2 goto S2
a:=a+tl S1,
goto sO S2

[ s2: ..
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Building Control-Flow Graphs

o Identify all the basic blocks
= Create a flow graph node for each basic block

0 For each basic block B1
= If B1 ends with a jump to a statement that starts basic block
B2, create an edge from B1 to B2

= If B1 does not end with an unconditional jump, create an edge
from B1 to the basic block that immediately follows B1 in the
original evaluation order

i =0
[ i:=0
%so: if i < 50 goto s1 SO: if i < 50 goto sl
goto s2
sl:tl:=b*?2 /* \
3= 34 t1 sl:tl:=b*2 otosg/
S2: ... goto sO /S;/
- .

cs5363



EXxercise:
Building Control-flow Graph

i=0;,z=x
while (i < 100) {
i=i+1;
if (y < x) z=y;
Ali]=i;
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o A data-flow analysis problem

A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

At any CFG point p, what variables are alive?

O Live variable analysis can be used in
Global register allocation
Dead variables no longer need to be in registers
SSA (static single assignment) construction
Dead variables don’t need @-functions at CFG merge points
Useless-store elimination
Dead variables don’t need to be stored back in memory

Uninitialized variable detection
No variable should be alive at program entry point
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Computing, Live Variables

A | M:i=a+b
n:=a+b
el s
:=c+d q:=a+b
rl?:=c+d “|ri=ctd
/ \*
e:=b+18 e:=a+17
D s:=a+b E|tj=c+d
u:=e+f u:=e+f
\ p
V:=a+b
F w:=c+d

o

m:=a+b
n:=c+d

O

O

cs5363

Domain:
= All variables inside a function

Goal: Livein(n) and LiveOut(n)
= Variables alive at each basic
block n
For each basic block n, compute
= UEVar(n)
vars used before defined
= VarKill(n)

vars defined (killed by n)
Formulate flow of data
LiveOut(n)=Umesucc(n)LiveIn(m)
LiveIn(m)=UEVar(m) U

(LiveOut(m)-VarKill(m))
==>
LiveOut(n)= U mesucc(n)
(UEVar(m) U
(LiveOut(m)-VarKill(m))



Algorithm:
Computing Live Variables

o For each basic block n, let
= UEVar(n)=variables used before any definition in n
= VarKill(n)=variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

= LiveOut(n)= U iUEVar(m) U (LiveOut(m) - VarKill(m))
me&succ(n)

for each basic block bi
compute UEVar(bi) and VarKill(bi)
LiveOut(bi) := @
for (changed : = true; changed; )
changed = false
for each basic block bi
old = LiveOut(bi)

LiveOut(bi)niELéu(CLé%gia)r(m) U (LiveOut(m) - VarKill(m))

if (LiveOut(bi) '= old) changed := true
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Solution
Computi )Jg Live Variables

o Domain
A m:=a+b u alblcldlelflmlnlplqlrlsltlulvlw
n:=a+b UE | Vvar | Live | Live Live
3 el = ; var |kill |Out | out out
. .=a+
p:=c+d C C|. Alab |mn | |abcdf|ab,cdf
r:=c+d ri=c+d
/ \\‘ Blcd |p,r ¢ |ab,cd |ab,cd
e:=b+18 g:=a+17/ Clab, |ar | |ab,cdf]|ab,cdf
D s:=a+b E|t:=c+d c,d
u:=e+f y:=e+f D|abf|esul|y |abcd |ab,.cdf
\A |
vV:=a+b El|ac |etu|y |abcd |abcdf
Flwi=c+d df
Flab, |vvw | & a,b,c,d a,b,c,d,f
/ c,d
G m:=a+b G 313, mn | | %)
. — C,
n:=c+d cs5363 10




Other Data-Flow Problems
Reaching Definitions

o Domain of analysis
= The set of definition points in a procedure

o Reaching definition analysis

= A definition point d of variable v reaches CFG point p iff
There is a path from d to p along which v is not redefined

= At any CFG point p, what definition points can reach p?
o Reaching definition analysis can be used in
= Build data-flow graphs: where each operand is defined

m SSA (static single assignment) construction
An IR that explicitly encodes both control and data flow

cs5363
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o0 For each basic block n, let

DEDef(n)= definition points whose variables
are not redefined in n

DefKill(n)= definitions obscured by redefinition
of the same name in n

0 Goal: evaluate all definition points that
can reach entry of n
Reaches_exit(m)= DEDef(m) U
(Reaches_entry(m) - DefKill(m))
Reaches_entry(n)= U Reaches_exit(m)

mepred(n)
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Example

void fee(int x, int y)

{
int | =0;
intz = Xx;
while (I < 100) {
| =1+ 1;
if(y<x)z=y;
All]l =1;
}
}

o Compute the set of reaching definitions at the
entry and exit of each basic block through each
iteration of the data-flow analysis algorithm

cs5363
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More About Dataflow Analysis

O Sources of imprecision

= Unreachable control flow edges, array and pointer references,
procedural calls

o Other data-flow programs

= Very busy expression analysis
An expression e is very busy at a CFG point p if it is evaluated on

every path leaving p, and evaluating e at p yields the same result.

At any CFG point p, what expressions are very busy?

= Constant propagation analysis

A variable-value pair (v,c) is valid at a CFG point p if on every
path from procedure entry to p, variable v has value c

At any CFG point p, what variables have constants?

cs5363
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o Each data-flow analysis takes the form

Input(n) := g if n is program entry/exit
:= A meFlow(n) Result(m) otherwise
Result(n) = fn (Input(n))
Ais N or U (may vs. must analysis)

May analysis: properties satisfied by at least one path (V)
Must analysis: properties satisfied by all paths(N)

Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
Forward flow: data flow forward along control-flow edges.
= Input(n) is data entering n, Result is data exiting n
= Input(n) is & if n is program entry
Backward flow: data flow backward along control-flow edges.
= Input(n) is data exiting n, Result is data entering n
= Input(n) is & if n is program exit

fn is the transfer function associated with each block n
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for each basic block bi
compute Gen(bi) and Kill(bi)
Result(bi) := &
for (changed := true; changed; )
changed = false
for each basic block bi
old = Result(bi)
Result(bi)=
N or U
[m&pred(bi) or succ(bi)]
(Gen(m) U (Result(m)-Kill(m))
if (Result(bi) !'= old)
changed : = true

o Iterative evaluation of result
until a fixed point is reached

Always terminate?

If the results are bounded
and grow monotonically,
then yes; Otherwise, no.

Fixed-point solution is
independent of evaluation
order

What answer is computed?
Unique fixed-point solution
Meet-over-all-paths solution

How long does it take the

algorithm to terminate?

Depends on traversing order
of basic blocks
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Traverse Order Of Basic Blocks

o Facilitate fast convergence to
the fixed point

postorder Postorder traversal
= Visits as many of a node’s
successors as possible before
visiting the node

» Used in backward data-flow
analysis

o0 Reverse postorder traversal

= Visits as many of a node’s
predecessors as possible

before visiting the node
a Reverse = Used in forward data-flow
n postorder analysis
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Static Single Assignment form

X0 :=17-4
x1l:=a+b J
X2:=y-z
x3:= J(x2,x0)
e
x4:=13

x5 1= J(x4,x3)
Z:=x5%*q

/

x6:= J(x1,x5)
S:=wW-X6

o Data-flow analysis

= Analyze data flow properties on
control flow graph

= Each analysis needs several passes
over CFG

o Static Single Assignment form

» Encode both control-flow and data-
flow in a single IR

An intermediate representation

= Each variable is assigned exactly once
Each use of variable has a single
definition
o Steps:
= Rename redefinition of variables

= Use g-functions to merge conflicting
definitions when paths meet
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o Naive algorithm: maximum SSA
Many extraneous J-functions are inserted

Need better algorithm to insert @-functions only when
needed

(1)Insert g-functions
for every basic block bi that has multiple predecessors
for each variable y used in bi
insert J-function y = J(y,y,...Y),
where each y in & corresponds to a predecessor
(2) Renaming
Compute reaching definitions on CFG
Each variable use has only one reachable definition
Rename all definitions so that each defines a different name
Rename all uses of variables according to its definition point

cs5363
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Dominators

p:=c+d
r:=c+d

Ala=>5

n:=a+b

e

C

g:=a+b
r:=c+d

/

i

e:=b+18
s:=a+b
u:=e+f

El t:=c+d
u:=e+f

e:=a+17

T~

—

For each basic block y

= X dominates y (x € Dom(y)) if

X appears on all paths from
entry to y

m X strictly dominates vy if
x € Dom(y) and x # y
i.e. x € Dom(y)-{y}

= X immediately dominates y if
x € Dom(y) and
Vz € Dom(y), z € Dom(x)
Written as x = IDom(y)

v:=a+b
w:=c+d
X:=e+f

0o Immediate dominators
IDom(F)=C
IDom(G)=A
IDom(D)=C
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Where to insert J-functions

A | m0:=a0+b0 o For variable_s dgfi_ned in bas_ic
n0:=a0+b0 block n, which joint points in
B «— — CFG need J-functions for them?
p0:=c0+d0 c| 90:=a0+b0 = A definition in n forces a J-
r0:=c0+d0 r1:=c0+d0 function just outside the region
a— N of CFG that n dominates
D| €0:=b0+18 el:=al+17| o A @-function must be inserted
s0:=a0+Db0 t0:=c0+d0 at each dominance frontier of n
u0:=e0+f0 ul:=el+f0
?@(ﬂ m € DF(n) iff
£ |u2:=2(uo,ut) (1) n dominates a predecessor of m
v0:=a0+b0 1 g € preds(m) s.t. n € Dom(q)
W(?!=C§+f%0 (2) n does not strict dominate m
x0:=e2+
m & Dom(n) - {n
X ¢ Dom(n) - {n}
G | r2:=9(r0,r1)
y0:=a0+b0
z0:=c0+d0O cs5363 21




Example:

Constructing SSA

void fee(int x, int y)
{
int|=0;
intz = Xx;
while (I < 100) {
=1+ 1;
if (y<x)z=y;
Alll = I;
}
}

cs5363
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Reconstructing Executable Code

o SSA form is not directly executable on machines

= Must rewrite g-functions into copy instructions
Need to split incoming edges of each J-function
Need to break cycles in J-function references
= Rewriting made complex by SSA transformations
All phi functions of the same join point need to be evaluated

concurrently

i0:=1

I

i0:=1
il1:=i0

i1:=(i0,i1+1)
while (i1 < 5)

v o4

while (i1 < 5)

i0:=1; jO=10;

L

’

z:=il+...

il:=il+1

z:=il+...

cs5363

i1:=(i0,j1)
j1:=2(jo,i1)
while (i1 < j1)

l

z:=il+...
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o Domain of analysis
Set of expressions in a procedure

An expression e is very busy at a CFG point p if it is evaluated on every
path leaving p, and evaluating e at p yields the same result.

At any CFG point p, what expressions are very busy?
o If an expression e is very busy at p, we can evaluate e at p
and then remove all future evaluation of e.
Code hoisting --- reduces code space, but may lengthen live
range of variables

o For each basic block n, let
UEExpr(n)= expressions used before any operands being redefined in n
ExprKill(n)= expressions whose operands are redefined in n

Goal: evaluate very busy expressions on exit from n

VeryBusy(n)= U (UEExpr(m) N (VeryBusy(m) - ExprKill(m))
mesucc(n)
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Appendix: Constant Propagation

o Domain of analysis
= Set of variable-value pairs in a procedure

= A pair (v,c) is valid at a CFG point p if on every path from
procedure entry to p, variable v has value c.

= (v,_): v has undefined value; (v,1): v has unknown value;
(v, ci): v has a constant value ci
o If a variable v always has a constant value c at point p, the
compiler can replace uses of v at p with c
= Allows specialization of code based on value cz
o For each basic block n,

= Evaluate all variable-value pairs valid on entry to n
Constants(n)= /\ Fm(Constants(m))
mepreds(n)
where /\ : pair-wise meet of var-val pairs
Fm(Constants(m)): var-val pairs on exit from m
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Constant Propagation
Local Sets And Meet-over-all-paths

a=>5
n:=a+b
B —,
p:=c+d c|g:=at+b
r=c+d r:=c+d
/ \
e:=b+18 e:=a+17
D|s:=a+b t:=c+d
u:=e+f u:=e+f
v:=a+b
F w:=c+d
X:=e+f
P
y:=a+b
G Z:=c+d

o For each basic block n,

Constants(n)= /\ Fm(Constants(m))
mepreds(n)
where Fm(Constants(m)) is var-val pairs

on exit from m (v,c1) if c1 >
1 2)= v,cl)ifcl == c2;
(v,c1) /\ (v,c2) (v, 1) otherwise

0o Compute Fm(input)
Let m = 51, S2, ..., Sk
foreachi=1, ..., k
IfSiisx:=y
Suppose (x,c1),(y,c2) € input
input = (input - {(x,c1)})N{(x,c2)}
If Siisyopz
Suppose (x,c1),(y,c2),(z,c3) € input
input = (input - {(x,c1)})N{(x,c2 op c3)}
JiConstant if c2,c3 are constants

c2 op c3 =
P 1 otherwise
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o Termination of constant propagation

Iterative data-flow algorithms are guaranteed to terminate if
the result sets are bounded and grow monotonically.

Constant propagation does not have a bounded result set ---
the set of all constant values is infinite

However, each variable-value pair can be updated at most
twice. So constant propagation is guaranteed to terminate

o Using constant propagation to specialize code

Constant folding: evaluate integer expressions at compile time
instead of runtime

Eliminate unreachable code: if a conditional test is always false,
the entire branch can be removed

Enable more precision in other program analysis. E.qg.,

knowing the bounds of loops can eliminate superfluous
reordering constraints.
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Appendix: Computing Dominators

o Domain of analysis

A | Mmi=a+b , .
n:=a+b = Set of basic blocks in a
: procedure
e = A basic block x dominates
C q:=a+b basic block y in CFG if x
r'=c+d appears on all paths from
entry to y
— T = At any CFG node y, what
e:=b+18 e:=a+17 basic blocks dominate y?
D | s:=a+b E|t:=lc+d O For each basic block n
u:=e+f u:se+f = Dom(n)= {n} U
\ (N Dom(m)) mepreds(n)
= IDom(n) = the block in
vi=a+b Dom(n) with smallest RPO
Flw:=c+d sequence number
- Each basic block n has a
X:=e+f single IDom(n)
Can use IDom relation to
G y:=a+b build a dominator tree
Zz:=c+d
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Computing Dominance Frontiers

p:=c+d
r:=c+d

Ala=>5

n:=a+b

e

C

g:=a+b
r:=c+d

/

i

e:=b+18
s:=a+b
u:=e+f

e:=a+17/
El t:=c+d
u:=e+f

T~

—

v:=a+b
w:=c+d
X:=e+f

for each CFG node n
DF(n) = &
for each CFG node n
if n has multiple predecessors
for each predecessor p of n
runner := p
while runner # IDom(n)
DF(runner) :=

DF(runner) U {n?}
runner := IDom(runner)

Dominance tree:

B C G
m
D E F

cs5363 29



Inserting J-Functions (skip)

Finding global names: Inserting @-functions:

Globals:= &
for each variable x for each name x € Globals
Blocks(x) = & WorkList := Blocks(x)
for each block bi: 51,S2,...,Sk for each block b € WorkList
VarKill := & for each block d in DF(b)
forj=1tok insert a J-function for x in d
let Sj be x 1=y op z WorkList: =WorkList U {d}

if y & VarKill then

Globals := Globals U {y?}
if z & VarKill then

Globals := Globals U {z}
VarKill := VarKill U {x}
Blocks(x) := Blocks(x) U {b}
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Main

for each name x € Globals
counter[x] := 0
stack[x] := 0

Rename (n0)

Create new name:

Recursive renaming:

NewName(x)
| 1= counter[x]
counter[x] := counter[x] + 1
push Xi onto stack[x]
return Xxi

Rename(bi)

for each “x:=J(...)" in bi
rename X as NewName(x)

for each operation “x:=y op z” in bi
rewrite y as top(stack[y])
rewrite z as top(stack[z])
rewrite x as NewName(x)

for each m &€ succ(bi)
fill in J-function parameters in m

for each n such that bi = IDom(n)
Rename(n)

for each operation “x:=y op z” in bi
and each “x:=d(...)" in bi
pop(stack[x])
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