Dataflow Analysis

Iterative Data-flow Analysis and Static-Single-Assignment

Optimization And Analysis

Improving efficiency of generated code

- Correctness: optimized code must preserve meaning of the original program
- Profitability: optimized code must improve code quality
- Program analysis
 - Ensure safety and profitability of optimizations
 - Compile-time reasoning of runtime program behavior
 - Undecidable in general due to unknown program input
 - Conservative approximation of program runtime behavior
 - May miss opportunities, but ensure all optimizations are safe

Data-flow analysis

- Reason about flow of values between statements
- Can be used for program optimization or understanding

Control-Flow Graph

Graphical representation of runtime control-flow paths

- Nodes of graph: basic blocks (straight-line computations)
- Edges of graph: flows of control
- Useful for collecting information about computation
 - Detect loops, remove redundant computations, register allocation, instruction scheduling...
- □ Alternative CFG: Each node contains a single statement

Building Control-Flow Graphs Identifying Basic Blocks

- Input: a sequence of three-address statements
- Output: a list of basic blocks
- Method:
 - Determine each statement that starts a new basic block, including
 - The first statement of the input sequence
 - Any statement that is the target of a goto statement
 - Any statement that immediately follows a goto statement
 - Each basic block consists of
 - A starting statement S0 (leader of the basic block)
 - All statements following S0 up to but not including the next starting statement (or the end of input)

<pre>i := 0 s0: if i < 50 goto s1 goto s2 s1: t1 := b * 2 a := a + t1 goto s0</pre>	Starting statements: i := 0 S0, goto S2 S1, S2
	52
_ J21	cs5363

Building Control-Flow Graphs

- Identify all the basic blocks
 - Create a flow graph node for each basic block
- For each basic block B1
 - If B1 ends with a jump to a statement that starts basic block B2, create an edge from B1 to B2
 - If B1 does not end with an unconditional jump, create an edge from B1 to the basic block that immediately follows B1 in the original evaluation order

Exercise: Building Control-flow Graph

Live Variable Analysis

A data-flow analysis problem

- A variable v is live at CFG point p iff there is a path from p to a use of v along which v is not redefined
- At any CFG point p, what variables are alive?
- Live variable analysis can be used in
 - Global register allocation
 - Dead variables no longer need to be in registers
 - SSA (static single assignment) construction
 - Dead variables don't need Ø-functions at CFG merge points
 - Useless-store elimination
 - Dead variables don't need to be stored back in memory
 - Uninitialized variable detection
 - No variable should be alive at program entry point

Computing Live Variables

Domain:

- All variables inside a function
- Goal: Livein(n) and LiveOut(n)
 - Variables alive at each basic block n
- □ For each basic block n, compute
 - UEVar(n) vars used before defined
 - VarKill(n) vars defined (killed by n)
- Formulate flow of data LiveOut(n)=Um∈succ(n)LiveIn(m) LiveIn(m)=UEVar(m) ∪ (LiveOut(m)-VarKill(m))

==>

LiveOut(n)= ∪ m∈succ(n) (UEVar(m) ∪ (LiveOut(m)-VarKill(m))

Algorithm: Computing Live Variables

For each basic block n, let

- UEVar(n)=variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)
- Goal: evaluate names of variables alive on exit from n
 - LiveOut(n) = ∪ (UEVar(m) ∪ (LiveOut(m) VarKill(m)) m∈succ(n)

Solution Computing Live Variables

Domain

a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,w

		UE	Var	Live	Live	Live
		var	kill	Out	Out	Out
	А	a,b	m,n	Ø	a,b,c,d,f	a,b,c,d,f
7	В	c,d	p,r	Ø	a,b,c,d	a,b,c,d
	С	a,b, c,d	q,r	Ø	a,b,c,d,f	a,b,c,d,f
	D	a,b,f	e,s,u	Ø	a,b,c,d	a,b,c,d,f
	Е	a,c, d,f	e,t,u	Ø	a,b,c,d	a,b,c,d,f
	F	a,b, c,d	v,w	Ø	a,b,c,d	a,b,c,d,f
	G	a,b, c,d	m,n	Ø	Ø	Ø
cs5363						10

Other Data-Flow Problems Reaching Definitions

- Domain of analysis
 - The set of definition points in a procedure
- Reaching definition analysis
 - A definition point d of variable v reaches CFG point p iff
 There is a path from d to p along which v is not redefined
 - At any CFG point p, what definition points can reach p?
- Reaching definition analysis can be used in
 - Build data-flow graphs: where each operand is defined
 - SSA (static single assignment) construction
 - $_{\pi}\,$ An IR that explicitly encodes both control and data flow

Reaching Definition Analysis

For each basic block n, let

- DEDef(n) = definition points whose variables are not redefined in n
- DefKill(n) = definitions obscured by redefinition of the same name in n
- Goal: evaluate all definition points that can reach entry of n
 - Reaches_exit(m) = DEDef(m) ∪ (Reaches_entry(m) - DefKill(m))
 - Reaches_entry(n) = U Reaches_exit(m)

 $m \in pred(n)$

Example

```
void fee(int x, int y)
{
    int I = 0;
    int z = x;
    while (I < 100) {
        I = I + 1;
        if (y < x) z = y;
        A[I] = I;
    }
}</pre>
```

Compute the set of reaching definitions at the entry and exit of each basic block through each iteration of the data-flow analysis algorithm

More About Dataflow Analysis

- Sources of imprecision
 - Unreachable control flow edges, array and pointer references, procedural calls

Other data-flow programs

- Very busy expression analysis
 - An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
 - At any CFG point p, what expressions are very busy?
- Constant propagation analysis
 - A variable-value pair (v,c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c
 - At any CFG point p, what variables have constants?

The Overall Pattern

- Each data-flow analysis takes the form
 - Input(n) := \emptyset if n is program entry/exit := Λ m \in Flow(n) Result(m) otherwise Result(n) = fn (Input(n))
 - Λ is \cap or \cup (may vs. must analysis)
 - May analysis: properties satisfied by at least one path (\cup)
 - Must analysis: properties satisfied by all paths(\cap)
 - Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
 - Forward flow: data flow forward along control-flow edges.
 - Input(n) is data entering n, Result is data exiting n
 - Input(n) is \varnothing if n is program entry
 - Backward flow: data flow backward along control-flow edges.
 - Input(n) is data exiting n, Result is data entering n
 - Input(n) is Ø if n is program exit
 - fn is the transfer function associated with each block n

Iterative dataflow algorithm

- Iterative evaluation of result until a fixed point is reached
 - Always terminate?
 - If the results are bounded and grow monotonically, then yes; Otherwise, no.
 - Fixed-point solution is independent of evaluation order
 - What answer is computed?
 - Unique fixed-point solution
 - Meet-over-all-paths solution
 - How long does it take the algorithm to terminate?
 - Depends on traversing order of basic blocks

Traverse Order Of Basic Blocks

Static Single Assignment form

Data-flow analysis

- Analyze data flow properties on control flow graph
- Each analysis needs several passes over CFG
- Static Single Assignment form
 - Encode both control-flow and dataflow in a single IR
 - An intermediate representation
 - Each variable is assigned exactly once
 - Each use of variable has a single definition

Steps:

- Rename redefinition of variables
- Use Ø-functions to merge conflicting definitions when paths meet

Construction Of SSA form

Naïve algorithm: maximum SSA

- Many extraneous Ø-functions are inserted
- Need better algorithm to insert Ø-functions only when needed

(1)Insert Ø-functions

for every basic block bi that has multiple predecessors
for each variable y used in bi
insert Ø-function y = Ø(y,y,...y),
where each y in Ø corresponds to a predecessor

(2) Renaming

Compute reaching definitions on CFG
Each variable use has only one reachable definition
Rename all definitions so that each defines a different name
Rename all uses of variables according to its definition point

Dominators

- **•** For each basic block y
 - x dominates y ($x \in Dom(y)$) if
 - x appears on all paths from entry to y
 - x strictly dominates y if
 - $x \in Dom(y)$ and $x \neq y$
 - i.e. $x \in Dom(y)$ -{y}
 - x immediately dominates y if
 - $x \in Dom(y)$ and
 - $\forall z \in \text{Dom}(y), \, z \in \text{Dom}(x)$
 - Written as x = IDom(y)
- Immediate dominators

IDom(F)=C IDom(G)=A IDom(D)=C

Where to insert \emptyset -functions

- For variables defined in basic block n, which joint points in CFG need \varnothing -functions for them?
 - A definition in n forces a \emptyset function just outside the region of CFG that n dominates
 - A \varnothing -function must be inserted at each dominance frontier of n

 $m \in DF(n)$ iff

(1) n dominates a predecessor of m

 $\exists q \in preds(m) s.t. n \in Dom(q)$

(2) n does not strict dominate m $m \notin Dom(n) - \{n\}$

Example: Constructing SSA

```
void fee(int x, int y)
{
    int I = 0;
    int z = x;
    while (I < 100) {
        I = I + 1;
        if (y < x) z = y;
        A[I] = I;
    }
}</pre>
```

Reconstructing Executable Code

SSA form is not directly executable on machines

- Must rewrite Ø-functions into copy instructions
 - □ Need to split incoming edges of each Ø-function
 - Need to break cycles in Ø-function references
- Rewriting made complex by SSA transformations

 All phi functions of the same join point need to be evaluated concurrently

Appendix:Very Busy Expressions

Domain of analysis

- Set of expressions in a procedure
- An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
- At any CFG point p, what expressions are very busy?
- If an expression e is very busy at p, we can evaluate e at p and then remove all future evaluation of e.
 - Code hoisting --- reduces code space, but may lengthen live range of variables
- □ For each basic block n, let
 - UEExpr(n) = expressions used before any operands being redefined in n
 - ExprKill(n) = expressions whose operands are redefined in n
 - Goal: evaluate very busy expressions on exit from n
 - VeryBusy(n) = ∪ (UEExpr(m) ∩ (VeryBusy(m) ExprKill(m)) m∈succ(n)

Appendix: Constant Propagation

- Domain of analysis
 - Set of variable-value pairs in a procedure
 - A pair (v,c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c.
 - (v,_): v has undefined value; (v,⊥): v has unknown value;
 (v, ci): v has a constant value ci
- If a variable v always has a constant value c at point p, the compiler can replace uses of v at p with c
 - Allows specialization of code based on value cz
- □ For each basic block n,
 - Evaluate all variable-value pairs valid on entry to n
 - Constants(n) = / Fm(Constants(m))

 $m \in preds(n)$

where / : pair-wise meet of var-val pairs

Fm(Constants(m)): var-val pairs on exit from m

Constant Propagation Local Sets And Meet-over-all-paths

More On Constant Propagation

• Termination of constant propagation

- Iterative data-flow algorithms are guaranteed to terminate if the result sets are bounded and grow monotonically.
- Constant propagation does not have a bounded result set --the set of all constant values is infinite
- However, each variable-value pair can be updated at most twice. So constant propagation is guaranteed to terminate
- Using constant propagation to specialize code
 - Constant folding: evaluate integer expressions at compile time instead of runtime
 - Eliminate unreachable code: if a conditional test is always false, the entire branch can be removed
 - Enable more precision in other program analysis. E.g., knowing the bounds of loops can eliminate superfluous reordering constraints.

Appendix: Computing Dominators

- Domain of analysis
 - Set of basic blocks in a procedure
 - A basic block x dominates basic block y in CFG if x appears on all paths from entry to y
 - At any CFG node y, what basic blocks dominate y?
- For each basic block n
 - Dom(n)= {n} ∪ (∩ Dom(m)) m∈preds(n)
 - IDom(n) = the block in Dom(n) with smallest RPO sequence number
 - Each basic block n has a single IDom(n)
 - Can use IDom relation to build a dominator tree

Computing Dominance Frontiers

for each CFG node n $DF(n) = \emptyset$ for each CFG node n if n has multiple predecessors for each predecessor p of n runner := p while runner \neq IDom(n) DF(runner) := $DF(runner) \cup \{n\}$ runner := IDom(runner)

Dominance tree:

Inserting Ø-Functions (skip)

Finding global names:	Inserting \emptyset -functions:		
Globals:= \emptyset	-		
for each variable x	for each name $x \in Globals$		
$Blocks(x) = \emptyset$	WorkList := $Blocks(x)$		
for each block bi: S1,S2,,Sk	for each block $b \in WorkList$		
VarKill := \emptyset	for each block d in DF(b)		
for $j = 1$ to k	insert a \emptyset -function for x in d		
let Sj be x := y op z	WorkList:=WorkList \cup {d}		
if y ∉ VarKill then			
Globals := Globals $\cup \{y\}$			
if z∉ VarKill then			
Globals := Globals $\cup \{z\}$			
$VarKill := VarKill \cup \{x\}$			
$Blocks(x) := Blocks(x) \cup \{b\}$			

Renaming After Ø-Insertion(skip)

Main

for each name $x \in Globals$ counter[x] := 0 stack[x] := 0 Rename (n0)

Create new name:

NewName(x)
i := counter[x]
counter[x] := counter[x] + 1
push xi onto stack[x]
return xi

Recursive renaming:

Rename(bi) for each "x:= $\emptyset(...)$ " in bi rename x as NewName(x) for each operation "x:=y op z'' in bi rewrite y as top(stack[y]) rewrite z as top(stack[z]) rewrite x as NewName(x) for each $m \in succ(bi)$ fill in Ø-function parameters in m for each n such that bi = IDom(n)Rename(n) for each operation "x:=y op z'' in bi and each "x:= $\emptyset(...)$ " in bi pop(stack[x])