
cs5363 1

Dataflow Analysis
Iterative Data-flow Analysis and

Static-Single-Assignment

cs5363 2

Optimization And Analysis
 Improving efficiency of generated code

 Correctness: optimized code must preserve meaning of
the original program

 Profitability: optimized code must improve code quality

 Program analysis
 Ensure safety and profitability of optimizations
 Compile-time reasoning of runtime program behavior

 Undecidable in general due to unknown program input
 Conservative approximation of program runtime behavior
 May miss opportunities, but ensure all optimizations are safe

 Data-flow analysis
 Reason about flow of values between statements
 Can be used for program optimization or understanding

cs5363 3

Control-Flow Graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs5363 4

Building Control-Flow Graphs
Identifying Basic Blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block,
including

 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0 (leader of the basic block)
 All statements following S0 up to but not including the next

starting statement (or the end of input)
……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs5363 5

Building Control-Flow Graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block
B2, create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge
from B1 to the basic block that immediately follows B1 in the
original evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs5363 6

Exercise:
Building Control-flow Graph

……
 i = 0; z = x
 while (i < 100) {
 i = i + 1;
 if (y < x) z=y;
 A[i]=i;
}
….

cs5363 7

Live Variable Analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers
 SSA (static single assignment) construction

 Dead variables don’t need ∅-functions at CFG merge points
 Useless-store elimination

 Dead variables don’t need to be stored back in memory
 Uninitialized variable detection

 No variable should be alive at program entry point

cs5363 8

Computing Live Variables
 Domain:

 All variables inside a function
 Goal: Livein(n) and LiveOut(n)

 Variables alive at each basic
block n

 For each basic block n, compute
 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Formulate flow of data
LiveOut(n)=∪m∈succ(n)LiveIn(m)
LiveIn(m)=UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

 ==>
 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G

cs5363 9

Algorithm:
Computing Live Variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs5363 10

Solution
Computing Live Variables

 Domain
 a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,wm:=a+b

n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G
∅

∅

∅

∅

∅

∅

∅

Live
Out

∅∅m,na,b,
c,d

G

a,b,c,d,fa,b,c,dv,wa,b,
c,d

F

a,b,c,d,fa,b,c,de,t,ua,c,
d,f

E

a,b,c,d,fa,b,c,de,s,ua,b,fD

a,b,c,d,fa,b,c,d,fq,ra,b,
c,d

C

a,b,c,da,b,c,dp,rc,dB

a,b,c,d,fa,b,c,d,fm,na,bA

Live
Out

Live
Out

Var
kill

UE
var

cs5363 11

Other Data-Flow Problems
Reaching Definitions
 Domain of analysis

 The set of definition points in a procedure

 Reaching definition analysis
 A definition point d of variable v reaches CFG point p iff

 There is a path from d to p along which v is not redefined

 At any CFG point p, what definition points can reach p?

 Reaching definition analysis can be used in
 Build data-flow graphs: where each operand is defined
 SSA (static single assignment) construction

π An IR that explicitly encodes both control and data flow

cs5363 12

Reaching Definition Analysis
 For each basic block n, let

 DEDef(n)= definition points whose variables
are not redefined in n

 DefKill(n)= definitions obscured by redefinition
of the same name in n

 Goal: evaluate all definition points that
can reach entry of n
 Reaches_exit(m)= DEDef(m) ∪

(Reaches_entry(m) - DefKill(m))
 Reaches_entry(n)= ∪ Reaches_exit(m)
 m∈pred(n)

cs5363 13

Example

 Compute the set of reaching definitions at the
entry and exit of each basic block through each
iteration of the data-flow analysis algorithm

void fee(int x, int y)
{

int I = 0;
int z = x;
while (I < 100) {
 I = I + 1;
 if (y < x) z = y;
 A[I] = I;
}

}

cs5363 14

More About Dataflow Analysis
 Sources of imprecision

 Unreachable control flow edges, array and pointer references,
procedural calls

 Other data-flow programs
 Very busy expression analysis

 An expression e is very busy at a CFG point p if it is evaluated on
every path leaving p, and evaluating e at p yields the same result.

 At any CFG point p, what expressions are very busy?

 Constant propagation analysis
 A variable-value pair (v,c) is valid at a CFG point p if on every

path from procedure entry to p, variable v has value c
 At any CFG point p, what variables have constants?

cs5363 15

The Overall Pattern
 Each data-flow analysis takes the form
 Input(n) := ∅ if n is program entry/exit

 := Λ m∈Flow(n) Result(m) otherwise
 Result(n) = ƒn (Input(n))

 Λ is ∩ or ∪ (may vs. must analysis)
 May analysis: properties satisfied by at least one path (∪)
 Must analysis: properties satisfied by all paths(∩)

 Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
 Forward flow: data flow forward along control-flow edges.

 Input(n) is data entering n, Result is data exiting n
 Input(n) is ∅ if n is program entry

 Backward flow: data flow backward along control-flow edges.
 Input(n) is data exiting n, Result is data entering n
 Input(n) is ∅ if n is program exit

 ƒn is the transfer function associated with each block n

cs5363 16

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

Iterative dataflow algorithm
 Iterative evaluation of result

until a fixed point is reached
 Always terminate?

 If the results are bounded
and grow monotonically,
then yes; Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer is computed?
 Unique fixed-point solution
 Meet-over-all-paths solution

 How long does it take the
algorithm to terminate?

 Depends on traversing order
of basic blocks

cs5363 17

Traverse Order Of Basic Blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a node’s
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs5363 18

x0 := 17-4

x1:=a+b

x2:=y-z

x4:=13

x3:= ∅(x2,x0)

x5 := ∅(x4,x3)
z:=x5*q

x6:= ∅(x1,x5)
s:=w-x6

Static Single Assignment form
 Data-flow analysis

 Analyze data flow properties on
control flow graph

 Each analysis needs several passes
over CFG

 Static Single Assignment form
 Encode both control-flow and data-

flow in a single IR
 An intermediate representation

 Each variable is assigned exactly once
 Each use of variable has a single

definition

 Steps:
 Rename redefinition of variables
 Use ∅-functions to merge conflicting

definitions when paths meet

cs5363 19

(1)Insert ∅-functions
 for every basic block bi that has multiple predecessors
 for each variable y used in bi
 insert ∅-function y = ∅(y,y,…y),
 where each y in ∅ corresponds to a predecessor
(2) Renaming
 Compute reaching definitions on CFG
 Each variable use has only one reachable definition
 Rename all definitions so that each defines a different name
 Rename all uses of variables according to its definition point

Construction Of SSA form
 Naïve algorithm: maximum SSA

 Many extraneous ∅-functions are inserted
 Need better algorithm to insert ∅-functions only when

needed

cs5363 20

Dominators
 For each basic block y

 x dominates y (x ∈ Dom(y)) if
 x appears on all paths from

entry to y
 x strictly dominates y if

 x ∈ Dom(y) and x ≠ y
 i.e. x ∈ Dom(y)-{y}

 x immediately dominates y if
 x ∈ Dom(y) and
 ∀z ∈ Dom(y), z ∈ Dom(x)
 Written as x = IDom(y)

 Immediate dominators
IDom(F)=C
IDom(G)=A
IDom(D)=C

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

cs5363 21

Where to insert ∅-functions
 For variables defined in basic

block n, which joint points in
CFG need ∅-functions for them?
 A definition in n forces a ∅-

function just outside the region
of CFG that n dominates

 A ∅-function must be inserted
at each dominance frontier of n

m ∈ DF(n) iff
(1) n dominates a predecessor of m
 ∃ q ∈ preds(m) s.t. n ∈ Dom(q)
(2) n does not strict dominate m
 m ∉ Dom(n) – {n}

m0:=a0+b0
n0:=a0+b0

p0:=c0+d0
r0:=c0+d0

q0:=a0+b0
r1:=c0+d0

e0:=b0+18
s0:=a0+b0
u0:=e0+f0

e1:=a0+17
t0:=c0+d0
u1:=e1+f0

e2:=∅(e0,e1)
u2:=∅(u0,u1)
v0:=a0+b0
w0:=c0+d0
x0:=e2+f0

r2:=∅(r0,r1)
y0:=a0+b0
z0:=c0+d0

A

B

C

D E

F

G

cs5363 22

Example: Constructing SSA
void fee(int x, int y)
{

int I = 0;
int z = x;
while (I < 100) {
 I = I + 1;
 if (y < x) z = y;
 A[I] = I;
}

}

cs5363 23

i0:=1

i1:=∅(i0,i1+1)
while (i1 < 5)

z:=i1+…

i0:=1
i1:=i0

while (i1 < 5)

z:=i1+…

i1:=i1+1

i0:=1; j0=10;

i1:=∅(i0,j1)
j1:=∅(j0,i1)
while (i1 < j1)

z:=i1+…

Reconstructing Executable Code
 SSA form is not directly executable on machines

 Must rewrite ∅-functions into copy instructions
 Need to split incoming edges of each ∅-function
 Need to break cycles in ∅-function references

 Rewriting made complex by SSA transformations
 All phi functions of the same join point need to be evaluated

concurrently

cs5363 24

Appendix:Very Busy Expressions
 Domain of analysis

 Set of expressions in a procedure
 An expression e is very busy at a CFG point p if it is evaluated on every

path leaving p, and evaluating e at p yields the same result.
 At any CFG point p, what expressions are very busy?

 If an expression e is very busy at p, we can evaluate e at p
and then remove all future evaluation of e.
 Code hoisting --- reduces code space, but may lengthen live

range of variables
 For each basic block n, let

 UEExpr(n)= expressions used before any operands being redefined in n
 ExprKill(n)= expressions whose operands are redefined in n

 Goal: evaluate very busy expressions on exit from n
 VeryBusy(n)= ∪ (UEExpr(m) ∩ (VeryBusy(m) - ExprKill(m))
 m∈succ(n)

cs5363 25

Appendix: Constant Propagation
 Domain of analysis

 Set of variable-value pairs in a procedure
 A pair (v,c) is valid at a CFG point p if on every path from

procedure entry to p, variable v has value c.
 (v,_): v has undefined value; (v,⊥): v has unknown value;
    (v, ci): v has a constant value ci

 If a variable v always has a constant value c at point p, the
compiler can replace uses of v at p with c
 Allows specialization of code based on value cz

 For each basic block n,
 Evaluate all variable-value pairs valid on entry to n
 Constants(n)= /\ Fm(Constants(m))
 m∈preds(n)

 where /\ : pair-wise meet of var-val pairs
 Fm(Constants(m)): var-val pairs on exit from m

cs5363 26

Constant Propagation
Local Sets And Meet-over-all-paths

 For each basic block n,

 Compute Fm(input)

(v,c1) if c1 == c2;
(v, ⊥) otherwise

(v,c1) /\ (v,c2)=

Constant if c2,c3 are constants
⊥ otherwise

c2 op c3 =

Constants(n)= /\ Fm(Constants(m))
 m∈preds(n)

 where Fm(Constants(m)) is var-val pairs
 on exit from m

Let m = S1, S2, …, Sk
for each i = 1, …, k
 If Si is x := y
 Suppose (x,c1),(y,c2) ∈ input
 input = (input – {(x,c1)})∩{(x,c2)}
 If Si is y op z
 Suppose (x,c1),(y,c2),(z,c3) ∈ input
 input = (input – {(x,c1)})∩{(x,c2 op c3)}

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs5363 27

More On Constant Propagation
 Termination of constant propagation

 Iterative data-flow algorithms are guaranteed to terminate if
the result sets are bounded and grow monotonically.

 Constant propagation does not have a bounded result set ---
the set of all constant values is infinite

 However, each variable-value pair can be updated at most
twice. So constant propagation is guaranteed to terminate

 Using constant propagation to specialize code
 Constant folding: evaluate integer expressions at compile time

instead of runtime
 Eliminate unreachable code: if a conditional test is always false,

the entire branch can be removed
 Enable more precision in other program analysis. E.g.,

knowing the bounds of loops can eliminate superfluous
reordering constraints.

cs5363 28

Appendix: Computing Dominators
 Domain of analysis

 Set of basic blocks in a
procedure

 A basic block x dominates
basic block y in CFG if x
appears on all paths from
entry to y

 At any CFG node y, what
basic blocks dominate y?

 For each basic block n
 Dom(n)= {n} ∪
 (∩ Dom(m)) m∈preds(n)
 IDom(n) = the block in

Dom(n) with smallest RPO
sequence number

 Each basic block n has a
single IDom(n)

 Can use IDom relation to
build a dominator tree

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

cs5363 29

Computing Dominance Frontiers
for each CFG node n
 DF(n) = ∅
for each CFG node n
 if n has multiple predecessors
 for each predecessor p of n
 runner := p
 while runner ≠ IDom(n)
 DF(runner) :=

 DF(runner) ∪ {n}
 runner := IDom(runner)

A

B C G

D E F

Dominance tree:

a = 5
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
X:=e+f

y:=a+b
z:=c+d

A

C

D E

F

G

cs5363 30

Inserting ∅-Functions (skip)

Globals:= ∅
for each variable x
 Blocks(x) = ∅
for each block bi: S1,S2,…,Sk
 VarKill := ∅
 for j = 1 to k
 let Sj be x := y op z
 if y ∉ VarKill then

 Globals := Globals ∪ {y}
 if z ∉ VarKill then

 Globals := Globals ∪ {z}

 VarKill := VarKill ∪ {x}

 Blocks(x) := Blocks(x) ∪ {b}

Finding global names:

for each name x ∈ Globals
 WorkList := Blocks(x)
 for each block b ∈ WorkList
 for each block d in DF(b)
 insert a ∅-function for x in d

 WorkList:=WorkList ∪ {d}

Inserting ∅-functions:

cs5363 31

Renaming After ∅-Insertion(skip)

for each name x ∈ Globals
 counter[x] := 0
 stack[x] := 0
Rename (n0)

Main

NewName(x)
 i := counter[x]
 counter[x] := counter[x] + 1
 push xi onto stack[x]
 return xi

Rename(bi)
 for each “x:=∅(…)” in bi
 rename x as NewName(x)
 for each operation “x:=y op z” in bi
 rewrite y as top(stack[y])
 rewrite z as top(stack[z])
 rewrite x as NewName(x)
 for each m ∈ succ(bi)
 fill in ∅-function parameters in m
 for each n such that bi = IDom(n)
 Rename(n)
 for each operation “x:=y op z” in bi
 and each “x:=∅(…)” in bi
 pop(stack[x])

Create new name:

Recursive renaming:

