Dataflow Analysis

Iterative Data-flow Analysis and Static-Single-Assignment

Optimization And Analysis

- Improving efficiency of generated code
- Correctness: optimized code must preserve meaning of the original program
- Profitability: optimized code must improve code quality
- Program analysis
- Ensure safety and profitability of optimizations
- Compile-time reasoning of runtime program behavior
- Undecidable in general due to unknown program input
- Conservative approximation of program runtime behavior
- May miss opportunities, but ensure all optimizations are safe
- Data-flow analysis
- Reason about flow of values between statements
- Can be used for program optimization or understanding

Control-Flow Graph

- Graphical representation of runtime control-flow paths
- Nodes of graph: basic blocks (straight-line computations)
- Edges of graph: flows of control
- Useful for collecting information about computation
- Detect loops, remove redundant computations, register allocation, instruction scheduling...
- Alternative CFG: Each node contains a single statement

Building Control-Flow Graphs Identifying Basic Blocks

- Input: a sequence of three-address statements
- Output: a list of basic blocks
- Method:
- Determine each statement that starts a new basic block, including
- The first statement of the input sequence
\square Any statement that is the target of a goto statement
\square Any statement that immediately follows a goto statement
- Each basic block consists of
- A starting statement S0 (leader of the basic block)
- All statements following S0 up to but not including the next starting statement (or the end of input)

```
    i := 0
    s0: if i < 50 goto s1
    goto s2
    s1: t1 := b * 2
        \(a:=a+t 1\)
        goto s0
    S2: ...
```

Starting statements:
i := 0
S0,
goto S2
S1,
S2

Building Control-Flow Graphs

- Identify all the basic blocks
- Create a flow graph node for each basic block
- For each basic block B1
- If B1 ends with a jump to a statement that starts basic block B2, create an edge from B1 to B2
- If B1 does not end with an unconditional jump, create an edge from B1 to the basic block that immediately follows B1 in the original evaluation order

```
    i := 0
    s0: if i < 50 goto s1
    goto s2
    s1: t1 := b * 2
        a := a + t1
        goto s0
    S2: ...
```


Exercise:
 Building Control-flow Graph

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
i=0 ; z=x \\
\text { while }(i<100)\{ \\
i=i+1 ; \\
\\
\text { if }(y<x) z=y ; \\
\\
A[i]=i ;
\end{array}\right\} .
\end{aligned}
$$

Live Variable Analysis

- A data-flow analysis problem
- A variable v is live at CFG point p iff there is a path from p to a use of v along which v is not redefined
- At any CFG point p, what variables are alive?
- Live variable analysis can be used in
- Global register allocation
\square Dead variables no longer need to be in registers
- SSA (static single assignment) construction
- Dead variables don't need \varnothing-functions at CFG merge points
- Useless-store elimination
\square Dead variables don't need to be stored back in memory
- Uninitialized variable detection
\square No variable should be alive at program entry point

Computing Live Variables

- Domain:
- All variables inside a function
- Goal: Livein(n) and LiveOut(n)
- Variables alive at each basic block n
- For each basic block n, compute
- UEVar(n) vars used before defined
- VarKill(n) vars defined (killed by n)
- Formulate flow of data LiveOut(n) $=\cup_{m \in \operatorname{succ}(n) L i v e I n(m)}$ LiveIn $(m)=\operatorname{UEVar}(m) \cup$ (LiveOut(m)-VarKill(m)) = =>
LiveOut(n) $=\cup$ mesucc(n) ($\mathrm{UEVar}(\mathrm{m}) \cup$ (LiveOut(m)-VarKill(m))

Algorithm: Computing Live Variables

- For each basic block n, let
- UEVar(n)=variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

for each basic block bi compute UEVar(bi) and VarKill(bi) LiveOut(bi) := \varnothing
for (changed := true; changed;)
changed = false
for each basic block bi

$$
\begin{aligned}
& \text { old = LiveOut(bi) } \\
& \text { LiveOut(bi)= } \underset{\text { m } \in \operatorname{succ}(\mathrm{bi})}{\cup(\operatorname{UEV}(m) \cup(\text { LiveOut }(m)-\operatorname{VarKill(m))}} \\
& \text { if (LiveOut(bi) }!=\text { old) changed }:=\text { true }
\end{aligned}
$$

Solution Computing Live Variables

Domain

	UE var	Var kill	Live Out	Live Out	Live Out
A	a, b	m, n	\varnothing	a, b, c, d, f	a, b, c, d, f
B	c,d	p, r	\varnothing	a, b, c, d	a, b, c, d
C	a,b, c, d	q,r	\varnothing	a, b, c, d, f	a, b, c, d, f
D	a, b, f	e, s, u	\varnothing	a, b, c, d	a, b, c, d, f
E	a, c, f d, f	e, t, u	\varnothing	a, b, c, d	a, b, c, d, f
F	a, b, c, d	v, w	\varnothing	a, b, c, d	a, b, c, d, f
G	a, b, c,d	m, n	\varnothing	\varnothing	\varnothing

Other Data-Flow Problems Reaching Definitions

- Domain of analysis
- The set of definition points in a procedure
- Reaching definition analysis
- A definition point d of variable v reaches CFG point piff
\square There is a path from d to p along which v is not redefined
- At any CFG point p, what definition points can reach p?
\square Reaching definition analysis can be used in
- Build data-flow graphs: where each operand is defined
- SSA (static single assignment) construction
π An IR that explicitly encodes both control and data flow

Reaching Definition Analysis

- For each basic block n, let
- DEDef(n)= definition points whose variables are not redefined in n
- DefKill(n)= definitions obscured by redefinition of the same name in n
\square Goal: evaluate all definition points that can reach entry of n
- Reaches_exit(m)= DEDef(m) \cup
(Reaches_entry(m) - DefKill(m))
- Reaches_entry(n)= U Reaches_exit(m) m $\in \operatorname{pred}(n)$

Example

```
void fee(int \(x\), int \(y\) )
\{
    int I = 0;
    int \(z=x\);
    while ( \(1<100\) ) \{
    I = I + 1;
    if \((y<x) z=y\);
    \(A[I]=1\);
\}
\}
```

\square Compute the set of reaching definitions at the entry and exit of each basic block through each iteration of the data-flow analysis algorithm

More About Dataflow Analysis

- Sources of imprecision
- Unreachable control flow edges, array and pointer references, procedural calls
- Other data-flow programs
- Very busy expression analysis
- An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
- At any CFG point p, what expressions are very busy?
- Constant propagation analysis
- A variable-value pair (v, c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c
\square At any CFG point p, what variables have constants?

The Overall Pattern

ㅁ Each data-flow analysis takes the form
Input(n) := \varnothing if n is program entry/exit $:=\Lambda$ m $\in \operatorname{Flow}(n)$ Result((m) otherwise
Result(n) $=f \mathrm{n}$ (Input(n$)$)

- Λ is \cap or \cup (may vs. must analysis)
\square May analysis: properties satisfied by at least one path (U)
\square Must analysis: properties satisfied by all paths(\cap)
- Flow(n) is pred(n) or succ(n) (forward vs. backward flow)
- Forward flow: data flow forward along control-flow edges.
- Input(n) is data entering n, Result is data exiting n
- Input(n) is \varnothing if n is program entry
\square Backward flow: data flow backward along control-flow edges.
- Input(n) is data exiting n, Result is data entering n
- Input(n) is \varnothing if n is program exit
- $f \mathrm{n}$ is the transfer function associated with each block n

Iterative dataflow algorithm

```
for each basic block bi
    compute Gen(bi) and Kill(bi)
    Result(bi) := \varnothing
for (changed := true; changed; )
    changed = false
    for each basic block bi
        old = Result(bi)
        Result(bi)=
        \cap or U
    [m\inpred(bi) or succ(bi)]
(Gen(m)\cup (Result(m)-Kill(m))
    if (Result(bi) != old)
            changed := true
```

- Iterative evaluation of result until a fixed point is reached
- Always terminate?
- If the results are bounded and grow monotonically, then yes; Otherwise, no.
. Fixed-point solution is independent of evaluation order
- What answer is computed?
- Unique fixed-point solution
- Meet-over-all-paths solution
- How long does it take the algorithm to terminate?
- Depends on traversing order of basic blocks

Traverse Order Of Basic Blocks

- Facilitate fast convergence to the fixed point
- Postorder traversal
- Visits as many of a node's successors as possible before visiting the node
- Used in backward data-flow analysis
- Reverse postorder traversal
- Visits as many of a node's predecessors as possible before visiting the node
- Used in forward data-flow analysis

Static Single Assignment form

- Data-flow analysis
- Analyze data flow properties on control flow graph
- Each analysis needs several passes over CFG
- Static Single Assignment form
- Encode both control-flow and dataflow in a single IR
- An intermediate representation
- Each variable is assigned exactly once
- Each use of variable has a single definition
- Steps:
- Rename redefinition of variables
- Use \varnothing-functions to merge conflicting definitions when paths meet

Construction Of SSA form

■ Naïve algorithm: maximum SSA

- Many extraneous \varnothing-functions are inserted
- Need better algorithm to insert \varnothing-functions only when needed
(1)Insert \varnothing-functions for every basic block bi that has multiple predecessors for each variable y used in bi insert \varnothing-function $y=\varnothing(y, y, \ldots y)$, where each y in \varnothing corresponds to a predecessor
(2) Renaming

Compute reaching definitions on CFG
Each variable use has only one reachable definition
Rename all definitions so that each defines a different name Rename all uses of variables according to its definition point

Dominators

- For each basic block y
- x dominates $y(x \in \operatorname{Dom}(y))$ if
$\square x$ appears on all paths from entry to y
- x strictly dominates y if
$\square x \in \operatorname{Dom}(y)$ and $x \neq y$
\square i.e. $x \in \operatorname{Dom}(y)-\{y\}$
- x immediately dominates y if
- $x \in \operatorname{Dom}(y)$ and $\forall z \in \operatorname{Dom}(y), z \in \operatorname{Dom}(x)$
- Written as $x=\operatorname{IDom}(y)$
- Immediate dominators

IDom $(F)=C$
IDom(G) $=\mathrm{A}$
IDom(D) $=C$

Where to insert \varnothing-functions

Example: Constructing SSA

void fee(int x, int y)
\{
int I = 0; int $z=x$; while ($1<100$) \{

I = I + 1;
if $(y<x) z=y$; A $[\mathrm{I}]=\mathrm{I}$;
\}
\}

Reconstructing Executable Code

- SSA form is not directly executable on machines
- Must rewrite \varnothing-functions into copy instructions
\square Need to split incoming edges of each \varnothing-function
\square Need to break cycles in \varnothing-function references
- Rewriting made complex by SSA transformations
\square All phi functions of the same join point need to be evaluated concurrently

Appendix:Very Busy Expressions

- Domain of analysis
- Set of expressions in a procedure
- An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
- At any CFG point p, what expressions are very busy?
- If an expression e is very busy at p, we can evaluate e at p and then remove all future evaluation of e.
- Code hoisting --- reduces code space, but may lengthen live range of variables
- For each basic block n, let
- UEExpr(n)= expressions used before any operands being redefined in n
- ExprKill(n)= expressions whose operands are redefined in n

Goal: evaluate very busy expressions on exit from n

- VeryBusy $(\mathrm{n})=\cup(\operatorname{UEExpr}(\mathrm{m}) \cap(\operatorname{VeryBusy}(m)-\operatorname{ExprKill}(m))$
mesucc(n)

Appendix: Constant Propagation

- Domain of analysis
- Set of variable-value pairs in a procedure
- A pair (v, c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c.
- ($v, _$): v has undefined value; (v, \perp): v has unknown value;
(v, ci): v has a constant value ci
- If a variable v always has a constant value c at point p, the compiler can replace uses of v at p with c
- Allows specialization of code based on value cz
- For each basic block n,
- Evaluate all variable-value pairs valid on entry to n Constants(n)= /\Fm(Constants(m))
mepreds(n)
where $/ \backslash$: pair-wise meet of var-val pairs
Fm(Constants(m)): var-val pairs on exit from m

Constant Propagation Local Sets And Meet-over-all-paths

- For each basic block n,

Constants(n)= / $\mathrm{Fm}($ Constants(m)) mepreds(n)
where Fm (Constants(m)) is var-val pairs on exit from m
$(\mathrm{v}, \mathrm{c} 1) / \backslash(\mathrm{v}, \mathrm{c} 2)=\left\{\begin{array}{l}(\mathrm{v}, \mathrm{c} 1) \text { if } \mathrm{c} 1==\mathrm{c} 2 ; \\ (\mathrm{v}, \perp) \text { otherwise }\end{array}\right.$

- Compute Fm(input)

Let $\mathrm{m}=\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sk}$
for each $i=1, \ldots, k$
If Si is $\mathrm{x}:=\mathrm{y}$
Suppose ($\mathrm{x}, \mathrm{c} 1$), $(\mathrm{y}, \mathrm{c} 2) \in$ input input $=($ input $-\{(x, c 1)\}) \cap\{(x, c 2)\}$
If $S i$ is y op z
Suppose $(x, c 1),(y, c 2),(z, c 3) \in$ input input $=($ input $-\{(x, c 1)\}) \cap\{(x, c 2$ op $c 3)\}$
c2 op c3 $=\left\{\begin{array}{l}\text { Constant if c2,c3 are constants } \\ \perp \text { otherwise }\end{array}\right.$

More On Constant Propagation

- Termination of constant propagation
- Iterative data-flow algorithms are guaranteed to terminate if the result sets are bounded and grow monotonically.
- Constant propagation does not have a bounded result set --the set of all constant values is infinite
- However, each variable-value pair can be updated at most twice. So constant propagation is guaranteed to terminate
- Using constant propagation to specialize code
- Constant folding: evaluate integer expressions at compile time instead of runtime
- Eliminate unreachable code: if a conditional test is always false, the entire branch can be removed
- Enable more precision in other program analysis. E.g., knowing the bounds of loops can eliminate superfluous reordering constraints.

Appendix: Computing Dominators

- Domain of analysis
- Set of basic blocks in a procedure
- A basic block x dominates basic block y in CFG if x appears on all paths from entry to y
- At any CFG node y, what basic blocks dominate y ?
- For each basic block n
- $\operatorname{Dom}(n)=\{n\} \cup$
($\cap \operatorname{Dom}(m))$ mepreds(n)
- $\operatorname{IDom}(\mathrm{n})=$ the block in Dom(n) with smallest RPO sequence number
- Each basic block n has a single IDom(n)
- Can use IDom relation to build a dominator tree

Computing Dominance Frontiers

for each CFG node n $D F(n)=\varnothing$
for each CFG node n
if n has multiple predecessors for each predecessor p of n runner:= p while runner \neq IDom(n) DF(runner) :=

DF(runner) $\cup\{n\}$ runner:= IDom(runner)

Dominance tree:

Inserting \varnothing-Functions (skip)

Finding global names:

```
Globals: = \(\varnothing\)
for each variable \(x\)
    Blocks(x) = \(\varnothing\)
for each block bi: S1,S2,...,Sk
    VarKill := \(\varnothing\)
    for \(\mathrm{j}=1\) to k
        let Sj be x :=y op z
        if \(\mathrm{y} \notin\) VarKill then
            Globals := Globals \(\cup\{y\}\)
        if \(z \notin\) VarKill then
            Globals := Globals \(\cup\{z\}\)
    VarKill := VarKill \(\cup\{x\}\)
    Blocks(x) := Blocks(x) \(\cup\{b\}\)
```

Inserting \varnothing-functions:
for each name $x \in$ Globals WorkList : = Blocks(x) for each block $b \in$ WorkList for each block d in DF(b) insert a \varnothing-function for x in d WorkList:=WorkList $\cup\{d\}$

Renaming After \varnothing-Insertion(skip)

Main

for each name $x \in$ Globals counter[x]:=0 stack[x]:= 0
Rename (n0)

Create new name:

```
NewName(x)
    i := counter[x]
    counter[x]:= counter[x] + 1
    push xi onto stack[x]
    return xi
```

Recursive renaming:

```
Rename(bi)
    for each "x:= \varnothing(...)" in bi
        rename x as NewName(x)
    for each operation "x:=y op z" in bi
        rewrite y as top(stack[y])
        rewrite z as top(stack[z])
        rewrite x as NewName(x)
    for each m }\in\operatorname{succ}(bi
        fill in }\varnothing\mathrm{ -function parameters in m
    for each n such that bi = IDom(n)
        Rename(n)
    for each operation "x:=y op z" in bi
        and each "x:=\varnothing(...)" in bi
        pop(stack[x])
```

