
cs5363 1

Instruction Selection
and Scheduling

Machine code generation

cs5363 2

Machine code generation
Intermediate
Code generator

 machine
Code generator

Code optimizer

 Input: intermediate code + symbol tables
 All variables have values that machines can directly manipulate
 Each operation has at most two operands
 Assume program is free of errors

 Type checking has taken place, type conversion done

 Output:
 Absolute/relocatable machine (assembly) code
 Architectures

 RISC machines, CISC processors, stack machines

 Issues:
 Instruction selection
 Instruction scheduling
 Register allocation and memory management

cs5363 3

Retargetable back-end

 Build retargetable compilers
 Compilers on different machines share a common IR

 Can have common front and mid ends
 Isolate machine dependent information

 Table-based back ends share common algorithms

 Table-based instruction selector
 Create a description of target machine, use back-end generator

Machine
description

Back end
generator

 Tables

Pattern-
Matching
engine

Instruction
selector

cs5363 4

*

ID(a,ARP,4) ID(b,ARP,8)

*

ID(a,ARP,4) NUM(2)

loadI 4 => r5
loadA0 rarp, r5 => r6
LoadI 8 => r7
loadA0 rarp, r7 => r8
Mult r6, r8 => r9

loadI 4 => r5
loadA0 rarp, r5 => r6
loadI 2 => r7
Mult r6, r7 => r8

loadAI rarp, 4 => r5
loadAI rarp, 8 => r6
Mult r5, r6

loadAI rarp, 4 => r5
multI r5, 2 => r6

vs. vs.

Instruction Selection

 Based on locations of operands, different instructions may be selected
 Two pattern-matching approaches

 Generate efficient instruction sequences from the AST
 Generate naïve code, then rewrite inefficient code sequences

cs5363 5

Tree-Pattern Matching
 Tiling the AST

 Use a low-level AST to expose all the impl. details
 Define a collection of (operation pattern, code generation template) pairs
 Match each AST subtree with an operation pattern, then select

instructions accordingly
 Given an AST and a collection of operation trees

 A tiling is a collection of <ASTnode, op-pattern> pairs, each specifying
the implementation for a AST node

 Storage for result of each AST operation must be consistent across
different operation trees

 low-level AST for w  x – 2 + y
<-

+

arp 4

+

- M

+

arp 12

M

+

arp 8

2

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

Tiling an AST for G+12:

cs5363 6

Rules Through Tree Grammar
 Use attributed grammar to define code generation rules

 Summarize structures of AST through context-free grammar
 Each production defines a tree pattern in prefix-notation
 Each production is associated with a code generation template

(syntax-directed translation) and a cost
 Each grammar symbol is associated with a synthesized attribute

(location of value) to be used in code generation

07: Reg:=val1 (value in reg, e.g. rarp)

loadI num1 => rnew18: Reg := Num1 (constant integer value)

loadI lab1 => rnew16: Reg:=lab1 (a relocatable symbol)

storeAI r3 => r2, n115: Assign := <- (+ (num1, Reg2), Reg3)

storeAI r3 => r1, n214: Assign := <- (+ (Reg1, num2), Reg3)

storeA0 r3 => r1, r213: Assign := <- (+ (Reg1, Reg2), Reg3)

Store r2 => r112: Assign := <- (Reg1, Reg2)

01: Goal := Assign

Code templatecostproduction

cs5363 7

Tree Grammar (continued)

addI r2, n1 => rnew119: Reg := + (Num1, Reg2)

addI r1, n2 => rnew118: Reg := + (Reg1, Num2)

add r1, r2=> rnew117: Reg := +(Reg1, Reg2)

subI r1, n2 => rnew116: Reg := - (Reg1, Num2)

addI r1, l2 => rnew120: Reg := + (Reg1, Lab2)

Sub r1 r2 => rnew115: Reg := - (Reg1,Reg2)

addI r2, l1 => rnew121: Reg := + (Lab1, Reg2)

loadAI r2, l1 => rnew114: Reg := M(+ (Lab1,Reg2))

loadAI r1, l2 => rnew113: Reg := M(+ (Reg1, Lab2))

loadAi r2, n1 => rnew112: Reg := M(+ (Num1,Reg2))

loadAI r1, n2 => rnew111: Reg := M(+ (Reg1,Num2))

loadA0 r1, r2 => rnew110: Reg := M(+ (Reg1,Reg2))

Load r1 => rnew19: Reg := M(Reg1)

Code templatecostproduction

cs5363 8

Tree Matching Approach
 Need to select lowest-cost instructions in bottom-

up traversal of AST
 Need to determine lowest-cost match for each storage

class

 Automatic tools
 Hand-coding of tree matching
 Encode the tree-matching problem as a finite automata
 Use parsing techniques

 Need to be extended to handle ambiguity

 Use string-matching techniques
 Linearize the tree into a prefix string
 Apply string pattern matching algorithms

cs5363 9

Tiling the AST
 Given an AST and a collection of operation trees, tiling the

AST maps each AST subtree to an operation tree
 A tiling is a collection of <ASTnode, op-tree> pairs, each

specifying the implementation for a AST node
 Storage for result of each AST operation must be consistent

across different operation trees

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

cs5363 10

Finding a tiling

Tile(n)
 Label(n) := ∅
 if n is a binary node then
 Tile(left(n))
 Tile(right(n))
 for each rule r that matches n’s operation
 if left(r) ∈ Label(left(n)) and right(r) ∈ Label(right(n))
 then Lable(n) := Label(n) ∪ {r}
 else if n is a unary node then
 Tile(left(n))
 for each rule r that matches n’s operation
 if (left(r) ∈ Label(left(n))
 then Label(n) := Label(n) ∪ {r}
 else /* n is a AST leaf */
 Label(n) := {all rules that match the operation in n}

 Bottom-up walk of the AST, for each node n
 Label(n) contains the set of all applicable tree patterns

cs5363 11

Finding The Low-cost Tiling
 Tiling can find all the matches in the pattern set

 Multiple matches exist because grammar is ambiguous
 To find the one with lowest cost, must keep track of the

cost in each matched translation

Example: low-level AST for w  x – 2 + y

<-
+

arp 4

+

- M

+

arp 12

M

+
arp 8

2(7,0)

(18,1)
(17,2)

(8,1)
(9,2)(10,2)
 (11,1) (8,1)

(15,3)
(16,2)

(9.2)
(11,1)

(17,4)

(7,0) (8,1)

(18,1)
(17,2)

(7,0) (8,1)

(18,1)
(17,2)

(4,5) (2,6) loadAI rarp,8=>r1
subI r1, 2=> r2
loadAI rarp,12=>r3
Add r2, r3 => r4
storeAI r4=>rarp, 4

cs5363 12

Peephole optimization
 Use simple scheme to match IR to machine code

 Discover local improvements by examining short
sequences of adjacent operations

StoreAI r1 => rarp, 8
loadAI rarp,8 => r15

storeAI r1 => rarp 8
I2i r1 => r15

addI r2, 0 => r7
Mult r4, r7 => r10 Mult r4, r2 => r10

 jumpI -> L10
L10: jumpI -> L11

 jumpI -> L11
L10: jumpI -> L11

cs5363 13

Systematic Peephole Optimization

 Expander
 Rewrites each assembly instruction to a sequence of low-level

IRs that represent all the direct effects of operation
 Simplifier

 Examine and improve LLIR operations in a small sliding
window

 Forward substitution, algebraic simplification, constant evaluation,
eliminating useless effects

 Matcher
 Match simplified LLIR against pattern library for instructions

that best captures the LLIR effects

Expander
ASM->LLIR

Simplifier
LLIR->LLIR

Matcher
LLIR->ASM

IR LLIR LLIR ASM

cs5363 14

Peephole optimization example
mult 2 y => t1
sub x t1 => w

r10 := 2
r11 := @G
r12 := 12
r13 := r11 + r12
r14 := M(r13)
r15 :=r10 * r14
r16 := -16
r17 := rarp + r16
r18 := M(r17)
r19 := M(r18)
r20 := r19 – r15
r21 := 4
r22 := rarp + r21
M(r22) := r20

expand

r10 := 2
r11 := @G
r14 := M(r11+12)
r15 :=r10 * r14
r18 := M(rarp + -16)
r19 := M(r18)
r20 := r19 – r15
M(rarp+4) := r20

loadI 2 => r10
loadI @G => r11
loadAI r11 12=>r14
Mult r10 r14 => r15
loadAI rarp -16=>r18
Load r18 => r19
Sub r19 r15 => r20
storeAI r20 => rarp 4

simplify match

r1 := n1
r2 := r3 + r1

R2:=r3+n1

r1:=r2+n1
r3:=M(r1)

r3:=M(r2+n1)

r1:=r2+n1
M(r1):=r3

M(r2+n1):=r3

Optimizations:

cs5363 15

Efficiency of Peephole Optimization
 Design issues

 Dead values
 May intervene with valid simplifications
 Need to be recognized in the expansion process

 Control flow operations
 Complicates simplifier

 Clear window vs. special-case handling

 Physical vs. logical windows
 Adjacent operations may be irrelevant
 Sliding window includes ops that define or use common values

 RISC vs. CISC architectures
 RISC architectures makes instruction selection easier

 Additional issues
 Automatic tools to generate large pattern libraries for different

architectures
 Front ends that generate LLIR make compilers more portable

