
cs5363 1

Instruction Selection
and Scheduling

Machine code generation

cs5363 2

Machine code generation
Intermediate
Code generator

 machine
Code generator

Code optimizer

 Input: intermediate code + symbol tables
 All variables have values that machines can directly manipulate
 Each operation has at most two operands
 Assume program is free of errors

 Type checking has taken place, type conversion done

 Output:
 Absolute/relocatable machine (assembly) code
 Architectures

 RISC machines, CISC processors, stack machines

 Issues:
 Instruction selection
 Instruction scheduling
 Register allocation and memory management

cs5363 3

Retargetable back-end

 Build retargetable compilers
 Compilers on different machines share a common IR

 Can have common front and mid ends
 Isolate machine dependent information

 Table-based back ends share common algorithms

 Table-based instruction selector
 Create a description of target machine, use back-end generator

Machine
description

Back end
generator

 Tables

Pattern-
Matching
engine

Instruction
selector

cs5363 4

*

ID(a,ARP,4) ID(b,ARP,8)

*

ID(a,ARP,4) NUM(2)

loadI 4 => r5
loadA0 rarp, r5 => r6
LoadI 8 => r7
loadA0 rarp, r7 => r8
Mult r6, r8 => r9

loadI 4 => r5
loadA0 rarp, r5 => r6
loadI 2 => r7
Mult r6, r7 => r8

loadAI rarp, 4 => r5
loadAI rarp, 8 => r6
Mult r5, r6

loadAI rarp, 4 => r5
multI r5, 2 => r6

vs. vs.

Instruction Selection

 Based on locations of operands, different instructions may be selected
 Two pattern-matching approaches

 Generate efficient instruction sequences from the AST
 Generate naïve code, then rewrite inefficient code sequences

cs5363 5

Tree-Pattern Matching
 Tiling the AST

 Use a low-level AST to expose all the impl. details
 Define a collection of (operation pattern, code generation template) pairs
 Match each AST subtree with an operation pattern, then select

instructions accordingly
 Given an AST and a collection of operation trees

 A tiling is a collection of <ASTnode, op-pattern> pairs, each specifying
the implementation for a AST node

 Storage for result of each AST operation must be consistent across
different operation trees

 low-level AST for w x – 2 + y
<-

+

arp 4

+

- M

+

arp 12

M

+

arp 8

2

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

Tiling an AST for G+12:

cs5363 6

Rules Through Tree Grammar
 Use attributed grammar to define code generation rules

 Summarize structures of AST through context-free grammar
 Each production defines a tree pattern in prefix-notation
 Each production is associated with a code generation template

(syntax-directed translation) and a cost
 Each grammar symbol is associated with a synthesized attribute

(location of value) to be used in code generation

07: Reg:=val1 (value in reg, e.g. rarp)

loadI num1 => rnew18: Reg := Num1 (constant integer value)

loadI lab1 => rnew16: Reg:=lab1 (a relocatable symbol)

storeAI r3 => r2, n115: Assign := <- (+ (num1, Reg2), Reg3)

storeAI r3 => r1, n214: Assign := <- (+ (Reg1, num2), Reg3)

storeA0 r3 => r1, r213: Assign := <- (+ (Reg1, Reg2), Reg3)

Store r2 => r112: Assign := <- (Reg1, Reg2)

01: Goal := Assign

Code templatecostproduction

cs5363 7

Tree Grammar (continued)

addI r2, n1 => rnew119: Reg := + (Num1, Reg2)

addI r1, n2 => rnew118: Reg := + (Reg1, Num2)

add r1, r2=> rnew117: Reg := +(Reg1, Reg2)

subI r1, n2 => rnew116: Reg := - (Reg1, Num2)

addI r1, l2 => rnew120: Reg := + (Reg1, Lab2)

Sub r1 r2 => rnew115: Reg := - (Reg1,Reg2)

addI r2, l1 => rnew121: Reg := + (Lab1, Reg2)

loadAI r2, l1 => rnew114: Reg := M(+ (Lab1,Reg2))

loadAI r1, l2 => rnew113: Reg := M(+ (Reg1, Lab2))

loadAi r2, n1 => rnew112: Reg := M(+ (Num1,Reg2))

loadAI r1, n2 => rnew111: Reg := M(+ (Reg1,Num2))

loadA0 r1, r2 => rnew110: Reg := M(+ (Reg1,Reg2))

Load r1 => rnew19: Reg := M(Reg1)

Code templatecostproduction

cs5363 8

Tree Matching Approach
 Need to select lowest-cost instructions in bottom-

up traversal of AST
 Need to determine lowest-cost match for each storage

class

 Automatic tools
 Hand-coding of tree matching
 Encode the tree-matching problem as a finite automata
 Use parsing techniques

 Need to be extended to handle ambiguity

 Use string-matching techniques
 Linearize the tree into a prefix string
 Apply string pattern matching algorithms

cs5363 9

Tiling the AST
 Given an AST and a collection of operation trees, tiling the

AST maps each AST subtree to an operation tree
 A tiling is a collection of <ASTnode, op-tree> pairs, each

specifying the implementation for a AST node
 Storage for result of each AST operation must be consistent

across different operation trees

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

cs5363 10

Finding a tiling

Tile(n)
 Label(n) := ∅
 if n is a binary node then
 Tile(left(n))
 Tile(right(n))
 for each rule r that matches n’s operation
 if left(r) ∈ Label(left(n)) and right(r) ∈ Label(right(n))
 then Lable(n) := Label(n) ∪ {r}
 else if n is a unary node then
 Tile(left(n))
 for each rule r that matches n’s operation
 if (left(r) ∈ Label(left(n))
 then Label(n) := Label(n) ∪ {r}
 else /* n is a AST leaf */
 Label(n) := {all rules that match the operation in n}

 Bottom-up walk of the AST, for each node n
 Label(n) contains the set of all applicable tree patterns

cs5363 11

Finding The Low-cost Tiling
 Tiling can find all the matches in the pattern set

 Multiple matches exist because grammar is ambiguous
 To find the one with lowest cost, must keep track of the

cost in each matched translation

Example: low-level AST for w x – 2 + y

<-
+

arp 4

+

- M

+

arp 12

M

+
arp 8

2(7,0)

(18,1)
(17,2)

(8,1)
(9,2)(10,2)
 (11,1) (8,1)

(15,3)
(16,2)

(9.2)
(11,1)

(17,4)

(7,0) (8,1)

(18,1)
(17,2)

(7,0) (8,1)

(18,1)
(17,2)

(4,5) (2,6) loadAI rarp,8=>r1
subI r1, 2=> r2
loadAI rarp,12=>r3
Add r2, r3 => r4
storeAI r4=>rarp, 4

cs5363 12

Peephole optimization
 Use simple scheme to match IR to machine code

 Discover local improvements by examining short
sequences of adjacent operations

StoreAI r1 => rarp, 8
loadAI rarp,8 => r15

storeAI r1 => rarp 8
I2i r1 => r15

addI r2, 0 => r7
Mult r4, r7 => r10 Mult r4, r2 => r10

 jumpI -> L10
L10: jumpI -> L11

 jumpI -> L11
L10: jumpI -> L11

cs5363 13

Systematic Peephole Optimization

 Expander
 Rewrites each assembly instruction to a sequence of low-level

IRs that represent all the direct effects of operation
 Simplifier

 Examine and improve LLIR operations in a small sliding
window

 Forward substitution, algebraic simplification, constant evaluation,
eliminating useless effects

 Matcher
 Match simplified LLIR against pattern library for instructions

that best captures the LLIR effects

Expander
ASM->LLIR

Simplifier
LLIR->LLIR

Matcher
LLIR->ASM

IR LLIR LLIR ASM

cs5363 14

Peephole optimization example
mult 2 y => t1
sub x t1 => w

r10 := 2
r11 := @G
r12 := 12
r13 := r11 + r12
r14 := M(r13)
r15 :=r10 * r14
r16 := -16
r17 := rarp + r16
r18 := M(r17)
r19 := M(r18)
r20 := r19 – r15
r21 := 4
r22 := rarp + r21
M(r22) := r20

expand

r10 := 2
r11 := @G
r14 := M(r11+12)
r15 :=r10 * r14
r18 := M(rarp + -16)
r19 := M(r18)
r20 := r19 – r15
M(rarp+4) := r20

loadI 2 => r10
loadI @G => r11
loadAI r11 12=>r14
Mult r10 r14 => r15
loadAI rarp -16=>r18
Load r18 => r19
Sub r19 r15 => r20
storeAI r20 => rarp 4

simplify match

r1 := n1
r2 := r3 + r1

R2:=r3+n1

r1:=r2+n1
r3:=M(r1)

r3:=M(r2+n1)

r1:=r2+n1
M(r1):=r3

M(r2+n1):=r3

Optimizations:

cs5363 15

Efficiency of Peephole Optimization
 Design issues

 Dead values
 May intervene with valid simplifications
 Need to be recognized in the expansion process

 Control flow operations
 Complicates simplifier

 Clear window vs. special-case handling

 Physical vs. logical windows
 Adjacent operations may be irrelevant
 Sliding window includes ops that define or use common values

 RISC vs. CISC architectures
 RISC architectures makes instruction selection easier

 Additional issues
 Automatic tools to generate large pattern libraries for different

architectures
 Front ends that generate LLIR make compilers more portable

