
cs5363 1

Procedure and Object-
Oriented Abstraction

 Scope and storage
management

cs5363 2

Procedure abstractions
 Procedures are fundamental programming abstractions

 They are used to support dynamically nested blocks
 Paired function call and return jumps

 They have standalone semantics defined by an abstraction interface
 input parameters, return values, global side effects

 Procedures are units of separate compilation
 They represent parameterized blocks of computation

int main(int argc, char* argv[])
{
 float a;
 …
 a = foo(…)
 …
}

float foo(…)
{
 int a, b, c;
 ….
 r = bar(…);
 return r;
}

float bar(…)
{
 float r;
 ….
 return r;
}

cs5363 3

Scoping rules
 Global and local variables

 Static scoping
 Find global variables in enclosing blocks in program text

 Dynamic scoping
 Find global variables in the most recently evaluated blocks
 Easier to implement in interpreted languages

 What is the scoping rule for C/C++, Java?

program main(input,output);
 var x : integer;
 function g(z: integer) :integer;
 begin g := x+z end;
 function h(z: integer) :integer;
 var x : integer;
 begin x := 1; h:=g(z) end;

 begin x := 0; print(h(3)) end

x 0

x 1
z 3

z 3

outer block

h(3)

g(12)

cs5363 4

Simplified memory model

Activation record pointer(rarp)

Program
Counter

DataCode

Heap/
static
data

Stack……

 Runtime stack: activation records of blocks/functions
 Block entry: add new data to stack
 Block exit: remove outdated data

 Heap: data of varying lifetime
 Variables that last throughout the program
 Address may be contained by variables on the runtime stack

cs5363 5

Managing Data Storage
 Local variables --- activation records on stack

 Declared inside a block (e.g. function body)
 Enter block: allocate space
 Exit block: de-allocate space

 Local variables in an enclosing block
 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters and return value
 Allocated and initialized before entering function body
 Formal parameters dallocated after exiting function body

 Global/static variables --- static data areas
 Allocated when program is loaded to memory
 Storage remain until program exits

 Dynamically allocated variables --- heap
 Storage dynamically allocated at runtime (e.g., malloc in C)
 Storage remain until explicitly de-allocated or garbage

collected

cs5363 6

Activation Record
 Allocate storage for each block dynamically

 Allocate an activation record before evaluating each block
 Storage for each local variable determined as compile time
 Values of local variables evaluated at runtime

 Delete the activation record after block exits

May need space for intermediate results such as (x+y), (x-y)

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Allocate AR with space for x, y
Set values of x, y
 Allocate AR for inner block
 Set value of z
 Delete AR for inner block
Delete AR for outer block

cs5363 7

Activation Records For Inline Blocks

 Push activation record on stack
 Set caller ARP to rarp
 Set rarp to new AR

 Pop activation record off stack
 Reset rarp to caller’s ARP

 When making function calls
 Caller must also set return

address, return value addr,
saved registers, and parameters

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Access link
x
y

0
1

x+y
x-y

1
-1

Access link
z -1

Activation record pointer(rarp)

Caller’s ARP

Caller’s ARP

cs5363 8

Activation Records For Procedures
 Access link

 Pointer to activation record of the
enclosing block

 Return address
 Pointer to the instruction

immediately following function call
 Return-result address

 Address of the storage to put the
result to be returned

 Register save area
 Save register values before

function call
 Restore register values before

return
 Parameters

 Storage for function parameters
 Values initialized by caller

Caller’s ARP

Parameters

Local variables

Activation record pointer(rarp)

Return-result addr

Access link

Return address

Register save area

cs5363 9

Linkage Convention:
Implementing Function Calls

 Precall
 Push callee’s AR (increment rarp)
 Set caller’s ARP
 Set return address
 Set return result addr
 Save live register values
 initialize formal parameters

 Postreturn
 Restore live register values
 Pop callee’s AR(decrement rarp)

 Prologue
 Initialize local variables
 Load local environment (access

link)
 Epilogue

 Deallocate local variables
 Goto return address

Procedure q

Procedure p

prologue

precall

postreturn

epilogue

prologue

epilogue

cal
l

return

Linkage convention:
programs in different files must
follow a single contract of
function call implementation

cs5363 10

Parameter Passing
 Formal and actual parameters

 Parameter declarations and
initializations

 Pass-by-value
 Formal parameters contain values of

actual parameters
 Callee cannot change values of actual

parameters
 Pass-by-reference

 Formal parameters contain locations
of actual parameters

 Callee can change values of actual
parameters

 Formal parameters in activation
record may be aliased

 Aliasing: two names refer to same
location

 What about pass-by-pointer (in C)?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

Formal parameter

Actual parameter

cs5363 11

Example: What is the final
result?

 Draw the activation
records for the
evaluation

 What parameter
passing is supported
by the languages you
know?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

pseudo-code

pas
s-b
y-re
f

=>
2

pass-by-value
=>1

cs5363 12

Exercise:
Managing Function Calls

1: program main(input,output)
2: var x : integar;
3: function f(y : integer)
4: begin
5: f = (x + y) - 2
6: end
7: function g(function h(b:integer):integer)
8: begin
9: var x : integer;
10: x := 7;
11: g = h(x);
12: end
13: begin
14: x := 5;
15: g(f);
16: end

cs5363 13

Accessing Variables In Memory
 Each memory store has an

address
 Base address: the starting

address of a data area
 Local variables of current block
 activation record pointer (rarp)

 Offset: the number of bytes
after the base address

 Local variables of current block
 predetermined at compile time

 Address of variable
 base address + offset

LoadAI rarp, @a => r1

loadI @a => r1
loadA0 rarp, r1 => r2

loadI @a => r1
Add rarp, r1 => r2
load r2 => r3

Accessing local variable a:

cs5363 14

Accessing Global/Static Variables
 Allocated separately in static

data area
 Base address unknown until

program is loaded into memory
 Use symbolic labels to substitute

at compile time
 Symbolic labels replaced with

runtime value by assembler and
loader

 Offset calculated at compile time
 Individual variables: offset=0
 Group of data

 layout pre-determined

LoadI &fee => r1
Load r1 => r2

Accessing global variable fee:

LoadI &foo => r1
LoadAI r1, @foo_a => r3

Accessing foo.a:

LoadI &foo => r1
Add r1, @foo_a => r2
Load r2 => r3

cs5363 15

Variables of Enclosing Blocks
int x=1;
int g(int z) { return x+z; }
int h(int z) {
 int x = 1;
 return g(z); }
print h(3);

x 1

x 1
z 3

z 3

Outer block

h(3)

g(3)
control link
access link

access link
control link

 Use access link to find AR of an
enclosing block (static scoping)

 Access link is always set to frame
of closest enclosing lexical block

access link
control link

h(3)

cs5363 16

Coordinates of Variables
 Accessing local variables

 Offset calculated at compile time
 Need to find the base address

 The AR that contains the variable

 Lexical level of a block
 Number of enclosing scopes

 g: 1; h: 1; outer-block: 0

 For each variable x
 Coordinate of x is <n, o>, where

 n: lexical level of block that
defines x

 O: offset of x in it’s AR
 If a block at lexical level m

references x
 Follow access link m-n times to

find the base address for x

int x=1;
int g(int z) { return x+z; }
int h(int z) {
 int x = 1;
 return g(z); }
print h(3);

Coordinate for x: <0,8>
Lexical level of g: 1
Load instructions:
 loadAI rarp, 4 => r1
 loadAI r1, 8 => r2

cs5363 17

Global Display
 Allocate a global array

(global display)
 hold the address of most

recent ARs at each lexical
level

 When pushing a new AR,
save the previous AR at
the same lexical level,
modify global display

 When popping an AR,
restore the global display
with saved AR at the
current lexical level

 To access variable <n,o>
 use the ARP at element n

of the global display

Display

level0

level1

level2

level3

Runtime stack

Level0 AR

…

Level1 AR

Level2 AR

…

…
Level3 AR

…

cs5363 18

Global Display vs. Access Links
 Maintenance

 Constant cost for global display
 When entering every block at lexical level n, save the level-n ARP

from global display, replace it with new ARP
 When exiting the block, restore the old level-n ARP into display

 Varying cost for access links
 If a level-m block invokes a level-n block
 m==n–1 callee’s access link points to caller’s AR
 m==n callee’s access link = caller’s access link
 m > n callee’s access link = caller’s level (n-1) access link

 Referencing variables in enclosing scope
 Constant cost through global display
 Varying cost through access links

 The tradeoff depends on the ratio of non-local references
 If ARs can outlive their invocation, access link must be used

 The chosen approach by functional programming languages

cs5363 19

Managing memory
 Registers

 Data need to be loaded to registers before being operated on
 If a variable can be kept in register throughout its lifetime, it

does not need a storage
 Register-to-register model

 Try to keep as many variables in registers as possible
 Allocate memory storage later if not enough register

 Alignment and padding
 Target machines may restrain where data can be stored

 Needs to be at 32/64 bit boundaries, etc.

 Cache and variable layout
 Data in memory can be loaded into cache and reused

 Managing the heap: dynamically allocate/free storage

cs5363 20

Object-Orientation
 Abstraction: information hiding

 Separate interface and implementation details
 Function and data abstractions

 Object-oriented programming
 Organize concepts into objects and classes
 Build extensible systems

 Language concepts
 Encapsulation (access control): members can be private

only a few functions can access private data
 Dynamic lookup definitions of functions (function pointers)

Object behavior can change dynamically

 Subtyping polymorphism (relations between types)
Operations can be applied to multiple types of values

 Inheritance (reuse of implementation)
Subclasses can modify and inherit behavior of base classes

cs5363 21

Static vs. dynamic lookup
 What about operator overloading (ad hoc polymorphism)?

int add(int x, int y) { return x + y; }
float add(float x, float y) { return x + y; }

 Static lookup: overloading is resolved at compile time
 Examples: C++ non-virtual functions, Java static functions

 Dynamic lookup: resolved at run time
 C++ virtual functions, Java non-static functions
 Difference: flexibility vs. efficiency

class vehicle {
 protected: double speed, fuel;
 public: virtual void run() = 0;
};
class car : public vehicle {
 public: virtual void run() { if (fuel > 0) fuel = fuel – 1;}
};
vehicle* a = new car; a->run();

cs5363 22

Static Binding of Methods
 C++ class: non-virtual member functions

 Essentially global functions with an extra object pointer
parameter
class vehicle {
 protected: double speed, fuel;
 public: vehicle() : speed(0),fuel(0) {}
 void start(double x) {speed = x;}
};
vehicle* a = new vehicle; a->start(5);

 Java/C++: Static Methods/Variables
 Essentially global functions/variables in a name space
 A single instance of member for all class objects
class vehicle {
 static protected double speed, fuel;
 public static void start(double x) {speed = x;}
};
Vehicle::start(3.0);

cs5363 23

Implementing Dynamic Objects
 An object consists of

 Hidden data
 instance variables, also called member data
 hidden functions also possible

 Public operations
 methods or member functions
 can also have public variables in some languages

 Dynamic binding
 Put all the name-value bindings into a table
 Table can be changed, just like the activation record of a function

 Example: the vehecle/car objects

 Object-oriented program:
 Send messages to objects

hidden data

method1msg1

.

methodnmsgn

cs5363 24

C++:
Object Layout and Single Inheritance
class A { int x; public: virtual int f() { return x;} };

Object a of type A

vptr

x 3

class A vtable:

Code for A::f

Object b of type B

vptr

x 3

class B vtable:

Code for B::f

5y
Code for B::f2

class B : public A { int y; public: virtual int f() { return y; }
 virtual void f2() { … } };

b used as an object of A

f

f

f2

cs5363 25

Looking up methods

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); // (*(p->vptr[0]))(p,2)

cs5363 26

C++ method lookup
 C++ compiler knows all the base classes

 Offset of data and function pointer are same in
subclass and base class

 Offset of data and function pointer known at
compile time

 Code p->move(x) compiles to equivalent of
(*(p->vptr[move_offset]))(p,x)

cs5363 27

Exercise: OO Memory Layout
 Draw the memory layout for the following

C++ code immediately before the main
function returns.

class A { int x; public: virtual void f(); };
class B: public A { int y; public: virtual void f(); };
class C: public B { int z; public: virtual void g(); };
int main() { C *pc = new C; B *pb = pc; A *pa = pc; }

