
cs5363 1

Project1: Build A Small
Scanner/Parser

Introducing Lex, Yacc, and
POET

cs5363 2

Project1:
Building A Scanner/Parser
 Parse a subset of the C language

 Support two types of atomic values: int float
 Support one type of compound values: arrays
 Support a basic set of language concepts

 Variable declarations (int, float, and array variables)
 Expressions (arithmetic and boolean operations)
 Statements (assignments, conditionals, and loops)

 You can choose a different but equivalent language
 Need to make your own test cases

 Options of implementation (links available at class web site)
 Manual in C/C++/Java (or whatever other lang.)
 Lex and Yacc (together with C/C++)
 POET: a scripting compiler writing language
 Or any other approach you choose --- must document how to

download/use any tools involved

cs5363 3

This is just starting…
 There will be two other sub-projects

 Type checking
 Check the types of expressions in the input program

 Optimization/analysis/translation
 Do something with the input code, output the result

 The starting project is important because it
determines which language you can use for the
other projects
 Lex+Yacc ===> can work only with C/C++
 POET ==> work with POET
 Manual ==> stick to whatever language you pick

 This class: introduce Lex/Yacc/POET to you

cs5363 4

lex/flexMyLex.l
lex.yy.c

gcc/cc
lex.yy.c a.out

a.out Input stream tokens

Using Lex to build scanners

 Write a lex specification
 Save it in a file (MyLex.l)

 Compile the lex specification file by invoking lex/flex
 lex MyLex.l
 A lex.yy.c file is generated by lex
 Rename the lex.yy.c file if desired (> mv lex.yy.c MyLex.c)

 Compile the generated C file
 gcc -c lex.yy.c (or gcc -c MyLex.c)

cs5363 5

The structure of a lex specification
file

 Before the first %%
 Variable and Regular expression

pairs
 Each name Ni is matched to a

regular expression

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 Lex configurations
 Starts with a single %

 After the first %%
 RE {action} pairs

 A block of C code is matched to
each RE

 RE may contain variables
defined before %%

 After the second %%
 C functions to be copied to the

generated file

N1 RE1
…
Nm REm
%{
typedef enum {…} Tokens;
%}
% Lex configurations

%%
P1 {action_1}
P2 {action_2}
……
Pn {action_n}

%%
int main() {…}

declar
ations

Token
classes

Help
functions

cs5363 6

Example Lex Specification(MyLex.l)
cconst '([^\']+|\\\')'
sconst \"[^\"]*\"

%pointer

%{
 /* put C declarations here*/
%}

%%
foo { return FOO; }
bar { return BAR; }
{cconst} { yylval=*yytext;
 return CCONST; }
{sconst} { yylval=mk_string(yytext,yyleng);
 return SCONST; }
[\t\n\r]+ {}
. { return ERROR; }

Each RE variable must be surrounded by {}

cs5363 7

Exercise
 How to recognize C comments using Lex?

 “/*"([^“*”]|(“*”)+[^“*”“/”])*(“*”)+”/”

cs5363 8

YACC: LR parser generators
 Yacc: yet another parser generator

 Automatically generate LALR parsers (more powerful than LR(0),
less powerful than LR(1))

 Created by S.C. Johnson in 1970’s

Yacc compiler

C compiler

a.out

Yacc specification
Translate.y

y.tab.c

y.tab.c a.out

input output

Compile your yacc specification file by invoking yacc/bison
 yacc Translate.y
A y.tab.c file is generated by yacc
Rename the y.tab.c file if desired (> mv y.tab.c Translate.c)

Compile the generated C file: gcc -c y.tab.c (or gcc -c Translate.c)

cs5363 9

The structure of a YACC
specification file

 Before the first %%
 Token declarations

 Starts with %token %left
%right %nonassoc …

 In increasing order of token
precedence

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 After the first %%
 BNF or BNF + action pairs

 An optional block of C code is
matched to each BNF

 Additional actions may be
embedded within BNF

 After the second %%
 C functions to be copied to the

generated file

%token t1 t2 …
%left l1 l2…
%right r1 r2 …
%nonassoc n1 n2 …
%{
 /* C declarations */
%}
%%
BNF_1
BNF_2
……
BNF_n
%%
int main() {…}

declar
ations

Token
classes

Help
functions

cs5363 10

Example Yacc Specification
 Assign precedence and

associativity to terminals
(tokens)
 Precedence of productions =

precedence of rightmost
token

 left, right, noassoc
 Tokens in lower declarations

have higher precedence
 Reduce/reduce conflict

 Choose the production listed
first

 Shift/reduce conflict
 In favor of shift

 Can include the lex generated
file as part of the YACC file

%token NUMBER
%left ‘+’ ‘-’
%left ‘*’ ‘/’
%right UMINUS

%%
expr : expr ‘+’ expr
 | expr ‘-’ expr
 | expr ‘*’ expr
 | expr ‘/’ expr
 | ‘(‘ expr ‘)’
 | ‘-’ expr %prec UMINUS
 | NUMBER
 ;
%%
 #include <lex.yy.c>

cs5363 11

Debugging output of YACC
 Invoke yacc with debugging configuration

yacc/bison -v Translate.y
 A debugging output y.output is produced

state 699

 code5 -> code5 . AND @105 code5 (rule 259)
 code5 -> code5 . OR @106 code5 (rule 261)
 replRHS -> COMMA @152 code5 . RP (rule 351)

 OR shift, and go to state 161
 AND shift, and go to state 162
 RP shift, and go to state 710

Sample content of y.output

cs5363 12

The POET Language
 Questions to answer

 Why POET?
 What is POET?
 How POET works?
 POET in our class project

 Resources
 ttp://bigbend.cs.utsa.edu

cs5363 13

The POET Language
 Why POET?

 Conventional approach: yacc + bison

cs5363 14

The POET Language
 Why POET?

 Conventional approach: yacc + bison

Source => token => AST => AST’ => …

Lex: *.lex
Syntax: *.y
AST: ast_class.cpp
Driver: driver.cpp, Makefile, …

cs5363 15

The POET Language
 Lex + yacc

 Separate lex and grammar file
 flex, bison, gcc, makefile, …
 Mix algorithms with implementation details
 Difficult to debug

In a word: Complicated!

cs5363 16

The POET Language
 Why poet

 Combine lex and grammar in to one syntax file
 Integrated framework
 Interpreted

 Dynamic typed
 Debugging

 Transformation oriented
 Code template
 Annotation
 Advanced libraries

Less freedom but fast and convenient!

cs5363 17

The POET Language
 What is POET?

 Parameterized Optimizations for Empirical
Tuning

 Language
 Script language

bigbend.cs.utsa.edu/wiki/POET

cs5363 18

The POET Language
 Hello world!

<eval
 PRINT "Hello, world!“
 />

cs5363 19

The POET Language
 Another example
<eval
 a = 10;
 b = 20;
 errmsg = "a should be larger than b!";
 if (a > b) {
 PRINT("a+b is" ^ (a+b));
 } else {
 ERROR errmsg;
 }
/>

cs5363 20

The POET Language
 What is POET?

 Grammar
 C: arithmetic, control flow, variables, functions, …
 PHP: dynamic typed, XML-style code template, …

 Goal
 Source to source transformation

 Feature
 Interpreted
 Built-in libraries specialized for compilers
 Annotation

cs5363 21

The POET Language
 How POET works?

 Source-to-source transformation
 SED: sed
 AWK: word
 GREP: line
 POET: AST node

 Source1=>AST1=>AST2=>Source2
 Source <=> AST: grammar, annotation
 AST1 <=> AST2: C like transformation code

cs5363 22

The POET Language
 Advantages

 Grammar
 Interpreted
 Dynamic typed, debugging, …

 Framework
 Lex + Syntax => Grammar
*.lex, *.y => grammar.pt
 Split algorithm out of implementation detail

 Disadvantages
 Performance
 Learning curve
 Freedom VS convenience

cs5363 23

The POET Language
 POET and our class project

 Driver
 Grammar

pcg driver.pt
 –syntaxFile grammar.code
 –inputFile input.c

PCG: interpreter (mac, linux, windows, …)

cs5363 24

The POET Language
 Driver.pt
<input to=inputCode from="input.txt" />
<eval PRINT inputCode />

 Grammar.code
<define Exp INT | BinaryExp />

<code BinaryExp pars=(left:Exp, right:Exp,
op:"+"|"-"|"*"|"/")>

@left@ @op@ @right@
</code>

cs5363 25

The POET Language
 POET and our class project

 Built-in binaries
 poet/lib/Cfront.code

NO: Direct use Cfront.code
YES: copy, rewrite, ask questions, …

cs5363 26

Thanks!

cs5363 27

The POET Language
 POET is a scripting compiler writing language that can

 Parse/transform/output arbitrary languages
 Have tried subsets of C/C++, Cobol, Java; Fortran

 Easily express arbitrary program transformations
 Built-in support for AST construction, traversal, pattern matching,

replacement,etc.
 Have implemented a large collection of compiler optimizations

 Easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates(AST)

 Support arbitrary control flow
 loops, conditionals, function calls, recursion

 Predefined library of code transformation routines
 Currently support many compiler transformations

cs5363 28

POET: Describing Syntax of
Programming Languages

 Syntax of input/output languages
expressed in a collection of code
templates
 Defines the grammar of a target

language

 Defines the data structure (AST)
used to store the input code

 Each code template is a
combination of BNF+AST
 Code template name: lhs of BNF

production

 Code template body: rhs of BNF
production

 Code template parameters:
terminals/non-terminals that have
values (need to be kept in AST)

 Top-down predictive recursive
descent parsing of the input

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl pars=(type:Type,
name:Name,
 params :
TypeDeclList) >
@type@ @name@(@params@)
</code>

<code FunctionDefn pars=(decl : FunctionDecl,
 body : StmtList) >
@decl@
{
 @body@
}

</code>

Example code templates for C

cs5363 29

An Example Translator Using
POET
<parameter inputFile message="input file name"/>
<parameter outputFile message="output file name"/>

<code StmtList/> <<* StmtList is a code template
<input from=(inputFile) syntax=“InputSyntax.code” parse=StmtList

to=inputCode/> <<* start non-terminal is StmtList
<********* For project1, stop here *****************>
<eval …… your operations to the input code ……/>

<output to=(outputFile) syntax=“OutputSyntax.code”
from=resultCode/>

To run your POET code (MyParser.pt)
 > POET/src/pcg -pinputFile=<myTestFile> -LPOET/lib MyParser.pt

cs5363 30

To start you on the syntax
definitions
include utils.incl <<*utilities to help you
<*** content of InputSyntax.code **>
<define TOKEN (("+" "+") ("-" "-") ("=""=") ("<""=") (">""=") ("!""=")

("+""=") ("-""=") ("&""&") ("|""|") ("-"">") ("*""/") CODE.INT_UL
CODE.FLOAT CODE.Char CODE.String)/>

<define PARSE CODE.StmtList/>
<define KEYWORDS ("case" "for" "if" "while" "float")/>
<define BACKTRACK FALSE/>

<code Comment pars=(content:(~"*/")...) >
/*@content@*/
</code>
<code StmtList pars=(content) parse=LIST(Stmt,"\n") />
<code Stmt parse=(content:StmtBlock|WhileStmt|IfElseStmt|ExpStmt)/>

<*For more details, see the POET tutorial ****>

