
1

Dependence: Theory and
Practice

Introduction to loop
dependence and loop

transformation

2

The Big Picture
What are our goals?

 Find independent operations to evaluate in parallel
 Find operations that reuse the same data

What we will cover?
 Introduction to Dependences
 Loop-carried and Loop-independent Dependences
 Parallelization and Vectorization (details skipped)
 Simple Dependence Testing (details skipped)

 This chapter concentrates on data dependences
 Chapter 7 deals with control dependences

3

Data Dependences
 There is a data dependence from statement S1 to S2 if:

1. Both statements access the same memory location,
2. At least one of them stores onto it, and
3. There is a feasible run-time execution path from S1 to S2

 Classification of data dependence
 True dependences (Read After Write hazard)

S2 depends on S1 is denoted by S1 δ S2

 Anti dependence (Write After Read hazard)
S2 depends on S1 is denoted by S1 δ-1 S2

 Output dependence (Write After Write hazard)
S2 depends on S1 is denoted by S1 δ0 S2

 Simple example of data dependence:
 S1 PI = 3.14
 S2 R = 5.0
 S3 AREA = PI * R ** 2

4

Transformations
 A transformation is safe if the transformed code has the same

"meaning" as the original program
 Two computations are equivalent if they always produce the same

outputs on the same inputs:

 A reordering Transformation
 Changes the execution order of the code, without adding or deleting

any operations.

 Properties of Reordering Transformations
 It does not eliminate dependences, but can change the ordering

(relative source and sink) of a dependence
 If a dependence is reverted by a reordering transformation, it may

lead to incorrect behavior

 A reordering transformation is safe if it preserves the relative
direction (i.e., the source and sink) of each dependence.

5

DO I = 1, N
S1 A(I+1) = A(I) + B(I)

ENDDO

DO I = 1, N
S1 A(I+2) = A(I) + B(I)

ENDDO

Dependence in Loops

 In both cases, statement S1 depends on itself
 However, there is a significant difference

 We need to distinguish different iterations of loops
 The iteration number of a loop is equal to the value of the loop

index (loop induction variable)
 Example:

DO I = 0, 10, 2
S1 <some statement>

ENDDO
 What about nested loops?

 Need to consider the nesting level of a loop

6

Iteration Vectors
 Given a nest of n loops, iteration vector i is

 A vector of integers {i1, i2, ..., in }
where ik, 1 ≤ k ≤ n represents the iteration number for the
loop at nesting level k

 Example:
DO I = 1, 2
 DO J = 1, 2
S1 <some statement>
 ENDDO
ENDDO
 The iteration vector (2, 1) denotes the instance of S1

executed during the 2nd iteration of the I loop and the 1st
iteration of the J loop

7

The Iteration Space
 Ordering of Iteration Vectors (lexicographic order)

 Iteration i precedes iteration j, denoted i < j, iff for some
nesting level k

 1. i[i:k-1] < j[1:k-1], or
 2. i[1:k-1] = j[1:k-1] and in < jn

 Example: (1,1) < (1,2) < (2,1) < (2,2)

 Iteration Space
 The set of all possible iteration vectors for a statement
 Example:

DO I = 1, 2
 DO J = 1, 2
S1 <some statement>
 ENDDO
ENDDO

 The iteration space for S1 is { (1,1),(1,2),(2,1),(2,2) }

8

Formal Definition of Loop
Dependence
Theorem 2.1 Loop Dependence:
There exists a dependence from statement S1 to S2

in a common nest of loops if and only if
 there exist two iteration vectors i and j for the

nest, such that
 (1) i < j or i = j and there is a path from S1 to S2 in the

body of the loop,
 (2) statement S1 accesses memory location M on

iteration i and statement S2 accesses location M on
iteration j, and

 (3) one of these accesses is a write.

Follows the formal definition of dependence

9

Distance and Direction Vectors
 Consider a dependence in a loop nest of n loops

 Statement S1 on iteration i is the source of dependence
 Statement S2 on iteration j is the sink of dependence

 The distance vector is a vector of length n d(i,j) such that:
d(i,j)k = jk - Ik

 The direction Vector is a vector of length n D(i,j) such that
(Definition 2.10 in the book)

“<” if d(i,j)k > 0
D(i,j)k = “=” if d(i,j)k = 0

“>” if d(i,j)k < 0
 What is the dependence distance/direction vector?

DO I = 1, N
 DO J = 1, M
 DO K = 1, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10

10

Direction Vector Transformation
 A dependence cannot exist if it has a direction

vector whose leftmost non "=" component is “>”
 as this would imply that the sink of the dependence

occurs before the source.

 Theorem 2.3. Direction Vector Transformation.
 Let T be a loop reordering transformation that does not

rearrange the statements in the loop body. The
transformation is valid if, after it is applied, none of the
dependence direction vectors has a leftmost non- “=”
component that is “>”.

 Follows Fundamental Theorem of Dependence:
 All dependences remain after transformation
 None of the dependences have been reversed

11

Loop-carried and Loop-independent
Dependences
 If in a loop statement S2 on iteration j depends on S1 on

iteration i, the dependence is
 Loop-carried (Definition 2.11) if any of the following equivalent

conditions is satisfied
 S1 and S2 execute on different iterations i.e., i≠ j
 d(i,j) > 0 i.e. D(i,j) contains a “<” as leftmost non “=” component

 Loop-independent (Definition 2.14) if any of the following
equivalent conditions is satisfied

 S1 and S2 execute on the same iteration i.e., i=j
 d(i,j) = 0, i.e. D(i,j) contains only “=” component
 NOTE: there must be a control-flow path from S1 to S2 within the

same iteration

 Example:
DO I = 1, N
S1 A(I+1) = F(I)+ A(I)
S2 F(I) = A(I+1)
ENDDO

12

Level of loop dependence
 The level of a loop-carried dependence is the index of the

leftmost non-“=” of D(i,j)
 A level-k dependence from S1 to S2 is denoted S1 δk S2

 A loop independent dependence from S1 to S2 is denoted S1δ∞S2

 Example:
DO I = 1, 10
 DO J = 1, 10
 DO K = 1, 10
S1 A(I, J, K+1) = A(I, J, K)
S2 F(I,J,K) = A(I,J,K+1)
 ENDDO
 ENDDO
ENDDO

 Loop-carried Transformations(Theorem 2.4)
 Any reordering transformation that
 (1) does not alter the relative nesting order of loops and
 (2) preserves the iteration order of the level-k loop
 preserves all level-k dependences.

13

Parallelization and Vectorization
 Theorem 2.8. It is valid to convert a sequential

loop to a parallel loop if the loop carries no
dependence.

 It is safe to convert loop:
DO I=1,N

X(I) = X(I) + C
ENDDO

 to X(1:N) = X(1:N) + C (Fortran 77 to Fortran 90)
 However:

DO I=1,N
X(I+1) = X(I) + C

ENDDO

 is not equivalent to X(2:N+1) = X(1:N) + C

14

Simple Dependence Testing
DO i1 = L1, U1, S1

DO i2 = L2, U2, S2
...

DO in = Ln, Un, Sn
S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
 ...
 ENDDO

ENDDO

 A dependence exists from S1 to S2 if and only if there exist
values of a and b such that

 (1) a is lexicographically less than or equal to b and
 (2) the system of dependence equations is satisfied:

fi(a) = gi(b) for all i, 1 ≤ i ≤ m
 Direct application of Loop Dependence Theorem

15

Summary
 Introducing data dependence

 What is the meaning of S2 depends on S1?
 What is the meaning of S1 δ S2, S1 δ

-1 S2, S1 δ0 S2 ?
 What is the safety constraint of reordering transformations?

 Loop dependence
 What is the meaning of iteration vector (3,5,7)?
 What is the iteration space of a loop nest?
 What is the meaning of iteration vector I < J?
 What is the distance/direction vector of a loop dependence?
 What is the relation between dependence distance and direction?
 What is the safety constraint of loop reordering transformations?

 Level of loop dependence and transformations
 What is the meaning of loop carried/independent dependences?
 What is the level of a loop dependence or loop transformation?
 What is the safety constraint of loop parallelization?

 Dependence testing theory

