Dependence Testing

Solving System of Diaphatine
Equations

Dependence Testing

DO i1 = L1, U1, S1
DO i2 =12, U2, S2

DO in = Ln, Un, Sn
S1 A(f1(i1,...,in),...,fm(il1,...,in)) = ...

S2 ... =A(g1(i1,...,in),...,gm(il,...,in))
ENDDO
ENDDO
ENDDO

0 A dependence exists from S1 to S2 if and only if there exist
iteration vectors x=(x1,x2,...,xn) and y=(y1,y2,...,yn) such that

(1) x is lexicographically less than or equal to vy;

(2) the system of diophatine equations has an integral solution:
filx) =qgi(y) foralll <i<m

i.e. fi(x1,...,xn)-qgi(y1,...,.yn)=0forall 1 <i=<m
o Terminology: each fi(il,...,in) and qi(il,...,in) is called a subscript

Example

DO I =1, 10
DO Jg =1, 10
DOK=1, 10

S, A(I, J, K+1) = A(I, J, K)
S2 F(I,J,K) = A(I,J,K+1)
ENDDO
ENDDO
ENDDO

o To determine the dependence between A(I,]J,K+1) at
iteration vector (I1,J1,K1) and A(I,],K) at iteration vector
(I12,]2,K2), solve the system of equations

I1 =12;]J1=]2; K1+1=K2; 1 <=11,12,]1,]2,K1,K2 <= 10
= Distance vector is (I12-11,]2-]J1,K2-K1)=(0,0,1)
= Direction vectoris (=,=,<)
= The dependence is from A(I,]J,K+1) to A(1,],K) and is a true
dependence

The Delta Notation

o Goal: compute iteration distance between the

source and sink of a dependence
DOI=1,N
A(I+1)=A(1)+B
ENDDO
= Iteration at source/sink denoted by: 10 and I0+AI

= Forming an equality gets us: 10 + 1 =10 + Al
= Solving this gives us: Al = 1

o If a loop index does not appear, its distance is *
= * means the union of all three directions <,>,=
DOI=1, 100
DOJ =1, 100
A(I+1) = A(I) + B(J)
= The direction vector for the dependence is (<, *)

Complexity of Testing

o Find integer solutions to a system of Diophantine Equations
is NP-Complete
= Most methods consider only linear subscript expressions

o Conservative Testing

= Try to prove absence of solutions for the dependence
equations

= Conservative, but never incorrect

o Categorizing subscript testing equations
= ZIV if it contains no loop index variable
= SIV if it contains only one loop index variable
= MIV if it contains more than one loop index variables
A(5,I+1,j) = A(1,1,k) + C
5=1is ZIV; 11+1=12 is SIV; J1=K2 is MIV

Separability of subscripts

0 A subscript is separable if the loop index
variables it contains do not occur in other
subscripts

= Two different subscripts are coupled if they contain the
same loop index variable

o Example
DO I =1, 100
S1 A(I+1,I) = B(I,J) + C
S2 D(I,J+1) = A(I,I) * E
ENDDO

Solving each subscript equation
independently would cause imprecision when
subscripts are coupled

Partition subscripts equations (each equation contains a
pair of array subscripts) into separable groups

Each group contains a single subscript equation or a set of
coupled subscript equations

Process each separable group

If the group contains a single subscript equation, classify it is
ZIV, SIV, or MIV. Try to solve the equation and encode result
in @ dependence distance/direction vector

If the group contains multiple equations, try to solve them
collectively

If at any point it can be proven that no solution exists for the
group, exit and report no dependence.
Merge all dependence/direction vectors computed in the
previous steps

Result of each group contains iteration relations of different
loop levels

Simple Subscript Tests

o ZIV Test
DOj =1, 100
A(el) = A(e2) + B(j)
ENDDO

= el,e2 are constants or loop invariant symbols
= If (el-e2)!=0, then no Dependence exists

o SIV Test

= Strong SIV Test: <a*i+cl, a*i+c2>
a,cl,c2 are constants or loop invariant symbols
For example, <4i+1,4i+5> <i+3,i>
Solution: d=(c2-cl)/a is integer and |d| <= |Ui-Li|
= Weak SIV Test: <al*i+cl, a2*i+c2>
al,a2,cl,c2 are constants or loop invariant symbols
For example, <4i+1,2i+5> <i+3,2i>

o NOTE: all iteration solutions must be integers and
within respective loop bounds

Simple Subscript Tests (Cont.)

o Weak-zero SIV: <al*i+cl,c2>
= Solution: i=(c2-cl1)/al is integer and |i|<=]|U-L]|

= Application: loop peeling Y(1, N) = Y(1, N) + Y(N, N)
DOi=1,N DOi =2, N-1

S1 Y(i, N) =Y(1, N) + Y(N, N) = ENSEOY(" = Y Y
ENDDO Y(N, N) = Y(1, N) + Y(N, N)

o Weak Crossing SIV: <a*i+cl,-a*i+c2>
= Solution: i=(c2-cl1)/2a, i is integer, and |i|<=|U-L|

= Application: loop splitting DO i = 1,(N+1)/2
DO i =1, N A(i) = A(N-i+l) + C
S, A(i) = A(N-i+l) + ¢ @ |ENDPDO
ENDDO DO i = (N+1)/2 + 1, N
A(i) = A(N-i+l1l) + C
ENDDO

Breaking Conditions

0 Sometimes a dependence exists conditionally
DOI=1,L
S1 A(I+N)=A()+B
ENDDO
= If L<=N, then there is no dependence from S1 to itself

= L<=N is called the Breaking Condition

0 Separate independent code for optimization
IF (L<=N) THEN
A(N+1:N+L) = A(1:L) + B
ELSEDOI=1,L
S1 A(I +N)=A{)+B
ENDDO
ENDIF

10

Linear Diophantine Equations

o For simplicity, assume a pair of array subscripts
f(x)=a0+al*I1+b2*I2+...+an*In

g(x)=b0+b1*I1+b2*I2+...+bn*In

= a0,al,...,an,b0,bl,...,bn are loop invariant constants
w I1,12,...,.In are loop index variables

0 To compute dependence between iteration
vectors x=(x1,x2,...,xn) and y=(y1,y2,...,yn)
= We need to solve h(x)=f(x)-g(y)=0 i.e.
al*x1-bl1*yl + ... + an*xn-bn*yn = b0-a0
which is a linear Diophantine Equation

11

Solving Linear Diophantine Equations

0 GCD test: existence of integer solutions
= There exist x1,x2,...,xn,y1,y2,...,yn so that
al*x1l-bl*yl+...+an*xn-bn*yn=b0-a0
ifgnd only if gcd(al,...,an,bl,...,bn) divides b0 -
a

= However, this does not integrate any bound information
of loop index variables, and the gcd(al,...,an,bl,...,bn) is
often 1.

0 Banerjee test: existence of real Solutions

= A solution exists iff: inf(h) <= 0 <= sup(h)
h= al*x1-bl*yl+...+an*xn-bn*yn + a0-b0

12

o Lemma 3.2. Lett,l,u,z be real numbers. If | <=
z<=u,then ¢t y+t'l<tz<t'u-tl

where 4 a=0) 4 a<0
a+= a =

O a<0 0 a=0

Furthermore, there are numbers z1 and z2 in [|l,u] that
make each of the inequalities true

o Theorem 3.3 (Banerjee)

Let D be a direction vector, and h be a dependence
function. h = 0 can be solved in the region R iff

Y H (D) sh, -a,<Y H; (D)
i=1 i=1
Where Hi = (ai*xi - bi*yi), Di (dep. direction for subscript i)

indicates xi=yi, xi<yi, or Xi>vyi
13

Banerjee Inequality

0o Check for all cases of Di .
= If Di = '=", then xi=yi and hi=(ai-bi)*xi.
~(a-b)YU+(a-b) L =H (=)<h<(a-b)U-(a-b)L =H ()
= If D, ="<", we have that |, <= x, <y, <= U..
Rewriteas L, <= X, <=y,-1<=U, -1
Rewrite h as h, =ax, -by =ax, -b(y,—1)-b,
Use 3.2 to minimize a)x; and get:
—~a(y,-)+a’L-b(y,-1)-b <h <a (y.-1)-a L -b(y-1)-b,
Minimizing the b;(y;-1) term then gives us:
~(a& +b)' (U -1)+(a +b) L +a L-b =H (<)sh,
<(a’ -b) (U -1)-(a -b) L -aL-b=H'(<)
= If Di = ">, the computation is similar

14

Example

DOI=1,N
DOJ=1, M
DO K = 1, 100
A(IK) = A(I+],K) + B
ENDDO
ENDDO
ENDDO

o Testing (I, I+]) for D = (=,<,*):
H(=)+H (<)=-(1-0y N+(1-D)T-0"+1)"(M-1)+[(0" +1) +0"1-1=-M <0
<H(=)4 H (<) = (L= N=(1=17 T+ (0* = 1f" (M = D=[(0" =1 + 0']1 1 5 -2

o This is impossible, so the dependency doesn’t
exist.

15

Complex Iteration Spaces

o0 The iteration space is not always rectangular

= Triangular: One of the loop bounds is a function of at
least one other loop index

= Trapezoidal: Both the loop bounds are functions of at
least one other loop index

o Example
DOI = 1,N
DO J =L0 + L1*I, UO + U1*I
S1 AQJ+d) = ...
S2 . = AQJ) + B
ENDDO
ENDDO

= Strong SIV test gives dependence if
|d|<=|UO0-LO+(U1-L1)*I| for any iteration of I

= Banerjee test also assumes independence of loop index
variables 6

Trapezoidal Banerjee Test

o Assume that: v, -u,, + Elfijij

i—1
L, =Ly+ > Ly,
=1

o Now, our bounds must change. For

example:

i-1
H (<) =-(a; +b,)’ Uog -1+ EUijyj
7=

i-1
+(a, +b) | L,+ Y Ly,

17

Testing Direction Vectors

O To use Banerjee test

= Must test pair of statements for all direction
vectors

= Potentially exponential in loop nesting.
= Can save time by pruning:

18

o So far, we've assumed separable subscripts.

We can glean information from separable subscripts,
and use it to split coupled groups.

Most subscripts tend to be SIV in practice, where this
works pretty well.

o Delta test for coupled subscript groups
Maintain one constraint for each loop index variable in
the group.
Derive and propagate constraints from SIV subscripts.
Constraints are also propagated from MIV subscripts of
the form <al+c,a,j+c, >

19

Delta Example

DO I
DO]
DO K
A(J-1, 1+1, J+K) = A(J-1,1,1+K)
ENDDO
ENDDO
ENDDO

o The delta test gives us a distance vector of (1,1,-
1) for this loop nest

20

More Techniques

o Solving h(x) = 0 is essentially an integer
programming problem. Linear programming
techniques can be used
= The Omega test, I-test, etc.

o Techniques for solving systems of linear
equations (e.g., Gaussian elimination) can also
be adapted to compute integer solutions

21

