
1

Copyright, 1996 © Dale Carnegie & Associates, Inc.

Dependence Testing

Solving System of Diaphatine
Equations

2

Dependence Testing
DO i1 = L1, U1, S1

DO i2 = L2, U2, S2
...

DO in = Ln, Un, Sn
S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
 ...
 ENDDO

ENDDO
 A dependence exists from S1 to S2 if and only if there exist

iteration vectors x=(x1,x2,…,xn) and y=(y1,y2,…,yn) such that
 (1) x is lexicographically less than or equal to y;
 (2) the system of diophatine equations has an integral solution:

fi(x) = gi(y) for all 1 ≤ i ≤ m
 i.e. fi(x1,…,xn)-gi(y1,…,yn)=0 for all 1 ≤ i ≤ m
 Terminology: each fi(i1,…,in) and gi(i1,…,in) is called a subscript

3

Example
DO I = 1, 10
 DO J = 1, 10
 DO K = 1, 10
S1 A(I, J, K+1) = A(I, J, K)
S2 F(I,J,K) = A(I,J,K+1)
 ENDDO
 ENDDO
ENDDO

 To determine the dependence between A(I,J,K+1) at
iteration vector (I1,J1,K1) and A(I,J,K) at iteration vector
(I2,J2,K2), solve the system of equations
 I1 = I2; J1=J2; K1+1=K2; 1 <= I1,I2,J1,J2,K1,K2 <= 10
 Distance vector is (I2-I1,J2-J1,K2-K1)=(0,0,1)
 Direction vector is (=,=,<)
 The dependence is from A(I,J,K+1) to A(I,J,K) and is a true

dependence

4

The Delta Notation
 Goal: compute iteration distance between the

source and sink of a dependence
 DO I = 1, N

A(I + 1) = A(I) + B
ENDDO

 Iteration at source/sink denoted by: I0 and I0+ΔI
 Forming an equality gets us: I0 + 1 = I0 + ΔI
 Solving this gives us: ΔI = 1

 If a loop index does not appear, its distance is *
 * means the union of all three directions <,>,=

 DO I = 1, 100
DO J = 1, 100

 A(I+1) = A(I) + B(J)

 The direction vector for the dependence is (<, *)

5

Complexity of Testing
 Find integer solutions to a system of Diophantine Equations

is NP-Complete
 Most methods consider only linear subscript expressions

 Conservative Testing
 Try to prove absence of solutions for the dependence

equations
 Conservative, but never incorrect

 Categorizing subscript testing equations
 ZIV if it contains no loop index variable
 SIV if it contains only one loop index variable
 MIV if it contains more than one loop index variables

 A(5,I+1,j) = A(1,I,k) + C
 5=1 is ZIV; I1+1=I2 is SIV; J1=K2 is MIV

6

Separability of subscripts
 A subscript is separable if the loop index

variables it contains do not occur in other
subscripts
 Two different subscripts are coupled if they contain the

same loop index variable

 Example
DO I = 1, 100
S1 A(I+1,I) = B(I,J) + C
S2 D(I,J+1) = A(I,I) * E
ENDDO

 Solving each subscript equation
independently would cause imprecision when
subscripts are coupled

7

Overview of Testing Algorithm
 Partition subscripts equations (each equation contains a

pair of array subscripts) into separable groups
 Each group contains a single subscript equation or a set of

coupled subscript equations
 Process each separable group

 If the group contains a single subscript equation, classify it is
ZIV, SIV, or MIV. Try to solve the equation and encode result
in a dependence distance/direction vector

 If the group contains multiple equations, try to solve them
collectively

 If at any point it can be proven that no solution exists for the
group, exit and report no dependence.

 Merge all dependence/direction vectors computed in the
previous steps
 Result of each group contains iteration relations of different

loop levels

8

Simple Subscript Tests
 ZIV Test

 DO j = 1, 100
 A(e1) = A(e2) + B(j)
 ENDDO

 e1,e2 are constants or loop invariant symbols
 If (e1-e2)!=0, then no Dependence exists

 SIV Test
 Strong SIV Test: <a*i+c1, a*i+c2>

 a,c1,c2 are constants or loop invariant symbols
 For example, <4i+1,4i+5> <i+3,i>
 Solution: d=(c2-c1)/a is integer and |d| <= |Ui-Li|

 Weak SIV Test: <a1*i+c1, a2*i+c2>
 a1,a2,c1,c2 are constants or loop invariant symbols
 For example, <4i+1,2i+5> <i+3,2i>

 NOTE: all iteration solutions must be integers and
within respective loop bounds

9

Simple Subscript Tests (Cont.)
 Weak-zero SIV: <a1*i+c1,c2>

 Solution: i=(c2-c1)/a1 is integer and |i|<=|U-L|
 Application: loop peeling

DO i = 1, N
S1 Y(i, N) = Y(1, N) + Y(N, N)

ENDDO

 Weak Crossing SIV: <a*i+c1,-a*i+c2>
 Solution: i=(c2-c1)/2a, i is integer, and |i|<=|U-L|
 Application: loop splitting
 DO i = 1, N
S1 A(i) = A(N-i+1) + C
 ENDDO

Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1
 S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)

DO i = 1,(N+1)/2
 A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1, N
 A(i) = A(N-i+1) + C
ENDDO

10

Breaking Conditions
 Sometimes a dependence exists conditionally

DO I = 1, L
S1 A(I + N) = A(I) + B

ENDDO

 If L<=N, then there is no dependence from S1 to itself
 L<=N is called the Breaking Condition

 Separate independent code for optimization
IF (L<=N) THEN
 A(N+1:N+L) = A(1:L) + B
ELSE DO I = 1, L

S1 A(I + N) = A(I) + B
 ENDDO
ENDIF

11

Linear Diophantine Equations
 For simplicity, assume a pair of array subscripts

 f(x)=a0+a1*I1+b2*I2+…+an*In
 g(x)=b0+b1*I1+b2*I2+…+bn*In
 a0,a1,…,an,b0,b1,…,bn are loop invariant constants
 I1,I2,…,In are loop index variables

 To compute dependence between iteration
vectors x=(x1,x2,…,xn) and y=(y1,y2,…,yn)
 We need to solve h(x)=f(x)-g(y)=0 i.e.
 a1*x1-b1*y1 + … + an*xn-bn*yn = b0-a0
 which is a linear Diophantine Equation

12

Solving Linear Diophantine Equations
 GCD test: existence of integer solutions

 There exist x1,x2,…,xn,y1,y2,…,yn so that
 a1*x1-b1*y1+…+an*xn-bn*yn=b0-a0
 if and only if gcd(a1,…,an,b1,…,bn) divides b0 -

a0
 However, this does not integrate any bound information

of loop index variables, and the gcd(a1,…,an,b1,…,bn) is
often 1.

 Banerjee test: existence of real Solutions
 A solution exists iff: inf(h) <= 0 <= sup(h)

 h= a1*x1-b1*y1+…+an*xn-bn*yn + a0-b0

13

−t −u + t +l ≤ tz ≤ t +u − t −l

a+ =
a a ≥ 0
0 a < 0

a− =
a a < 0
0 a ≥ 0

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑

Banerjee Inequality
 Lemma 3.2. Let t,l,u,z be real numbers. If l <=

z <= u, then
 where

 Furthermore, there are numbers z1 and z2 in [l,u] that
make each of the inequalities true

 Theorem 3.3 (Banerjee)
 Let D be a direction vector, and h be a dependence

function. h = 0 can be solved in the region R iff

Where Hi = (ai*xi - bi*yi), Di (dep. direction for subscript i)
indicates xi=yi, xi<yi, or xi>yi

14

−(ai − bi)
−Ui + (ai − bi)

+ Li = Hi
−(=) ≤ h ≤ (ai − bi)

+Ui − (ai − bi)
− Li = Hi

+(=)

Banerjee Inequality
 Check for all cases of Di .

 If Di = ‘=‘, then xi=yi and hi=(ai-bi)*xi.

 If Di = ‘<`, we have that Li <= xi < yi <= Ui.
 Rewrite as Li <= xi <= yi -1 <= Ui - 1
 Rewrite h as
 Use 3.2 to minimize aixi and get:

 Minimizing the bi(yi-1) term then gives us:

 If Di = `>`, the computation is similar

hi = aixi − biyi = aixi − bi(yi −1) − bi

−ai
−(yi −1) + ai

+Li − bi(yi −1) − bi ≤ hi ≤ ai
+(yi −1) − ai

−Li − bi(yi −1) − bi

−(ai
− + bi)

+(Ui −1) + (ai
− + bi)

− Li + ai
+ Li − bi = Hi

−(<) ≤ hi
≤ (ai+ − bi)+(Ui −1) − (ai+ − bi)− Li − ai− Li − bi = Hi

+(<)

15

H1
−(=) + H2

−(<) = −(1− 0)−N + (1−1)+1 − (0− +1)+(M −1) + [(0− +1)− + 0+]1− 1 = −M ≤ 0
≤ H1

+(=) + H2+ (<) = (1 −1)+ N − (1 −1)−1+ (0+ −1)+ (M − 1) − [(0+ −1)− + 0−]1 −1 ≤ −2

Example
DO I = 1, N
 DO J = 1, M
 DO K = 1, 100
 A(I,K) = A(I+J,K) + B
 ENDDO
 ENDDO
ENDDO

 Testing (I, I+J) for D = (=,<,*):

 This is impossible, so the dependency doesn’t
exist.

16

Complex Iteration Spaces
 The iteration space is not always rectangular

 Triangular: One of the loop bounds is a function of at
least one other loop index

 Trapezoidal: Both the loop bounds are functions of at
least one other loop index

 Example
DO I = 1,N
 DO J = L0 + L1*I, U0 + U1*I

S1 A(J + d) = ……
S2 …… = A(J) + B

 ENDDO
ENDDO

 Strong SIV test gives dependence if
 |d|<=|U0-L0+(U1-L1)*I| for any iteration of I
 Banerjee test also assumes independence of loop index

variables

17

Ui =Ui 0 + Uij ij
j=1

i−1

∑

Li = Li0 + Lijij
j=1

i−1

∑

Hi
−(<) = −(ai

− + bi)
+ Ui 0 −1 + Uijyj

j=1

i−1

∑

 + (ai

− + bi)
− Li0 + Lijyj

j=1

i−1

∑

+ai
+ Li 0 + Lijx j

j=1

i−1

∑

 − bi

Trapezoidal Banerjee Test
 Assume that:

 Now, our bounds must change. For
example:

18

Testing Direction Vectors
 To use Banerjee test

 Must test pair of statements for all direction
vectors

 Potentially exponential in loop nesting.
 Can save time by pruning:

(<,<,*)

(<,=,<) (<,=,=) (<,>,=)

(<,=,*) (<,>,*)

(<,*,*) (=,*,*) (>,*,*)

(*,*,*)

19

Coupled Groups
 So far, we’ve assumed separable subscripts.

 We can glean information from separable subscripts,
and use it to split coupled groups.

 Most subscripts tend to be SIV in practice, where this
works pretty well.

 Delta test for coupled subscript groups
 Maintain one constraint for each loop index variable in

the group.
 Derive and propagate constraints from SIV subscripts.
 Constraints are also propagated from MIV subscripts of

the form < a1i + c1,a2 j + c2 >

20

Delta Example
DO I
 DO J
 DO K

A(J-I, I+1, J+K) = A(J-I,I,J+K)
 ENDDO
 ENDDO
ENDDO

 The delta test gives us a distance vector of (1,1,-
1) for this loop nest

21

More Techniques
 Solving h(x) = 0 is essentially an integer

programming problem. Linear programming
techniques can be used
 The Omega test, I-test, etc.

 Techniques for solving systems of linear
equations (e.g., Gaussian elimination) can also
be adapted to compute integer solutions

