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Dependence Testing

Solving System of Diaphatine
Equations
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Dependence Testing
DO i1 = L1, U1, S1

DO i2 = L2, U2, S2
...

DO in = Ln, Un, Sn
S1    A(f1(i1,...,in),...,fm(i1,...,in)) = ...
S2     ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
   ...
 ENDDO

ENDDO
 A dependence exists from S1 to S2 if and only if there exist

iteration vectors  x=(x1,x2,…,xn) and y=(y1,y2,…,yn) such that
    (1) x is lexicographically less than or equal to  y;
    (2) the system of diophatine equations has an integral solution:

fi(x) = gi(y) for all 1 ≤ i ≤ m
     i.e. fi(x1,…,xn)-gi(y1,…,yn)=0 for all 1 ≤ i ≤ m
 Terminology: each fi(i1,…,in) and gi(i1,…,in) is called a subscript
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Example
DO I = 1, 10
   DO J = 1, 10
      DO K = 1, 10
S1      A(I, J, K+1) = A(I, J, K)
S2      F(I,J,K) = A(I,J,K+1)
      ENDDO
   ENDDO
ENDDO

 To determine the dependence between A(I,J,K+1) at
iteration vector (I1,J1,K1) and A(I,J,K) at iteration vector
(I2,J2,K2), solve the system of equations
    I1 = I2; J1=J2; K1+1=K2; 1 <= I1,I2,J1,J2,K1,K2 <= 10
 Distance vector is (I2-I1,J2-J1,K2-K1)=(0,0,1)
 Direction vector is (=,=,<)
 The dependence is from A(I,J,K+1) to A(I,J,K) and is a true

dependence
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The Delta Notation
 Goal: compute iteration distance between the

source and sink of a dependence
   DO I = 1, N

A(I + 1) = A(I) + B
ENDDO

 Iteration at source/sink denoted by: I0 and I0+ΔI
 Forming an equality gets us:  I0 + 1 = I0 + ΔI
 Solving this gives us: ΔI = 1

 If a loop index does not appear, its distance is *
 * means the union of all three directions <,>,=

   DO I = 1, 100
DO J = 1, 100

 A(I+1) = A(I) + B(J)

 The direction vector for the dependence is (<, *)
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Complexity of Testing
 Find integer solutions to a system of Diophantine Equations

is NP-Complete
 Most methods consider only linear subscript expressions

 Conservative Testing
 Try to prove absence of solutions for the dependence

equations
 Conservative, but never incorrect

 Categorizing subscript testing equations
 ZIV if it contains no loop index variable
 SIV if it contains only one loop index variable
 MIV if it contains more than one loop index variables

 A(5,I+1,j) = A(1,I,k) + C
        5=1 is ZIV; I1+1=I2 is SIV; J1=K2 is MIV
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Separability of subscripts
 A subscript is separable if the loop index

variables it contains do not occur in other
subscripts
 Two different subscripts are coupled if they contain the

same loop index variable

 Example
DO I = 1, 100
S1 A(I+1,I) = B(I,J) + C
S2 D(I,J+1) = A(I,I) * E
ENDDO

 Solving each subscript equation
independently would cause imprecision when
subscripts are coupled
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Overview of Testing Algorithm
 Partition subscripts equations (each equation contains a

pair of array subscripts) into separable groups
 Each group contains a single subscript equation or a set of

coupled subscript equations
 Process each separable group

 If the group contains a single subscript equation, classify it is
ZIV, SIV, or MIV. Try to solve the equation and encode result
in a dependence distance/direction vector

 If the group contains multiple equations, try to solve them
collectively

 If at any point it can be proven that no solution exists for the
group, exit and report no dependence.

 Merge all dependence/direction vectors computed in the
previous steps
 Result of each group contains iteration relations of different

loop levels
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Simple Subscript Tests
 ZIV Test

   DO j = 1, 100
    A(e1) = A(e2) + B(j)
 ENDDO

 e1,e2 are constants or loop invariant symbols
 If (e1-e2)!=0, then no Dependence exists

 SIV Test
 Strong SIV Test: <a*i+c1, a*i+c2>

 a,c1,c2 are constants or loop invariant symbols
 For example, <4i+1,4i+5>  <i+3,i>
 Solution: d=(c2-c1)/a is integer and |d| <= |Ui-Li|

 Weak SIV Test: <a1*i+c1, a2*i+c2>
 a1,a2,c1,c2 are constants or loop invariant symbols
 For example, <4i+1,2i+5>  <i+3,2i>

 NOTE: all iteration solutions must be integers and
within respective loop bounds
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Simple Subscript Tests (Cont.)
 Weak-zero SIV: <a1*i+c1,c2>

 Solution: i=(c2-c1)/a1 is integer and |i|<=|U-L|
 Application: loop peeling

DO i = 1, N
S1   Y(i, N) = Y(1, N) + Y(N, N)

ENDDO

 Weak Crossing SIV: <a*i+c1,-a*i+c2>
 Solution: i=(c2-c1)/2a, i is integer, and |i|<=|U-L|
 Application: loop splitting
  DO i = 1, N
S1 A(i) = A(N-i+1) + C
  ENDDO

Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1
    S1  Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)

DO i = 1,(N+1)/2
   A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1, N
   A(i) = A(N-i+1) + C
ENDDO
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Breaking Conditions
 Sometimes a dependence exists conditionally

DO I = 1, L
S1   A(I + N) = A(I) + B

ENDDO

 If L<=N, then there is no dependence from S1 to itself
 L<=N is called the Breaking Condition

 Separate independent code for optimization
IF (L<=N) THEN
   A(N+1:N+L) = A(1:L) + B
ELSE DO I = 1, L

S1          A(I + N) = A(I) + B
        ENDDO
ENDIF
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Linear Diophantine Equations
 For simplicity, assume a pair of array subscripts

   f(x)=a0+a1*I1+b2*I2+…+an*In
   g(x)=b0+b1*I1+b2*I2+…+bn*In
 a0,a1,…,an,b0,b1,…,bn are loop invariant constants
 I1,I2,…,In are loop index variables

 To compute dependence between iteration
vectors x=(x1,x2,…,xn) and y=(y1,y2,…,yn)
 We need to solve h(x)=f(x)-g(y)=0 i.e.
   a1*x1-b1*y1 + … + an*xn-bn*yn = b0-a0
  which is a linear Diophantine Equation
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Solving Linear Diophantine Equations
 GCD test: existence of integer solutions

 There exist x1,x2,…,xn,y1,y2,…,yn so that
    a1*x1-b1*y1+…+an*xn-bn*yn=b0-a0
  if and only if gcd(a1,…,an,b1,…,bn) divides b0 -

a0
 However, this does not integrate any bound information

of loop index variables, and the gcd(a1,…,an,b1,…,bn) is
often 1.

 Banerjee test: existence of real Solutions
 A solution exists iff: inf(h) <= 0 <= sup(h)

 h= a1*x1-b1*y1+…+an*xn-bn*yn + a0-b0
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−t −u + t +l ≤ tz ≤ t +u − t −l

a+ =
a a ≥ 0
0 a < 0
 
 
 

a− =
a a < 0
0 a ≥ 0
 
 
 

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑

Banerjee Inequality
 Lemma 3.2.  Let t,l,u,z be real numbers.  If  l <=

z <= u, then
 where

 Furthermore, there are numbers z1 and z2 in [l,u] that
make each of the inequalities true

 Theorem 3.3 (Banerjee)
 Let D be a direction vector, and h be a dependence

function. h = 0 can be solved in the region R iff

Where Hi = (ai*xi - bi*yi), Di (dep. direction for subscript i)
indicates xi=yi, xi<yi, or xi>yi
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−(ai − bi )
−Ui + (ai − bi )

+ Li = Hi
−(=) ≤ h ≤ (ai − bi)

+Ui − (ai − bi)
− Li = Hi

+(=)

Banerjee Inequality
 Check for all cases of Di .

 If Di = ‘=‘, then xi=yi and hi=(ai-bi)*xi. 

 If Di = ‘<`, we have that Li <= xi < yi <= Ui.
   Rewrite as Li <= xi <= yi -1 <= Ui - 1
   Rewrite h as
   Use 3.2 to minimize aixi and get:

   Minimizing the bi(yi-1) term then gives us:

 If Di = `>`, the computation is similar

hi = aixi − biyi = aixi − bi(yi −1) − bi

−ai
−(yi −1) + ai

+Li − bi(yi −1) − bi ≤ hi ≤ ai
+(yi −1) − ai

−Li − bi(yi −1) − bi

−(ai
− + bi )

+(Ui −1) + (ai
− + bi)

− Li + ai
+ Li − bi = Hi

−(<) ≤ hi
≤ (ai+ − bi)+(Ui −1) − (ai+ − bi)− Li − ai− Li − bi = Hi

+(<)
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H1
−(=) + H2

−(<) = −(1− 0)−N + (1−1)+1 − (0− +1)+(M −1) + [(0− +1)− + 0+]1− 1 = −M ≤ 0
≤ H1

+(=) + H2+ (<) = (1 −1)+ N − (1 −1)−1+ (0+ −1)+ (M − 1) − [(0+ −1)− + 0−]1 −1 ≤ −2

Example
DO I = 1, N
   DO J = 1, M
      DO K = 1, 100
         A(I,K) = A(I+J,K) + B
      ENDDO
   ENDDO
ENDDO

 Testing (I, I+J) for D = (=,<,*):

 This is impossible, so the dependency doesn’t
exist.
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Complex Iteration Spaces
 The iteration space is not always rectangular

 Triangular: One of the loop bounds is a function of at
least one other loop index

 Trapezoidal: Both the loop bounds are functions of at
least one other loop index

 Example
DO I = 1,N
    DO J = L0 + L1*I, U0 + U1*I

S1 A(J + d) = ……
S2 …… = A(J) + B

    ENDDO
ENDDO

 Strong SIV test gives dependence if
       |d|<=|U0-L0+(U1-L1)*I| for any iteration of I
 Banerjee test also assumes independence of loop index

variables



17

Ui =Ui 0 + Uij ij
j=1

i−1

∑

Li = Li0 + Lijij
j=1

i−1

∑

Hi
−(<) = −(ai

− + bi )
+ Ui 0 −1 + Uijyj

j=1

i−1

∑
 

 
 
 

 

 
 
 + (ai

− + bi)
− Li0 + Lijyj

j=1

i−1

∑
 

 
 
 

 

 
 
 

+ai
+ Li 0 + Lijx j

j=1

i−1

∑
 

 
  

 

 
  − bi

Trapezoidal Banerjee Test
 Assume that:

 Now, our bounds must change.  For
example:
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Testing Direction Vectors
 To use Banerjee test

 Must test pair of statements for all direction
vectors

 Potentially exponential in loop nesting.
 Can save time by pruning:

(<,<,*)

(<,=,<) (<,=,=) (<,>,=)

(<,=,*) (<,>,*)

(<,*,*) (=,*,*) (>,*,*)

(*,*,*)
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Coupled Groups
 So far, we’ve assumed separable subscripts.

 We can glean information from separable subscripts,
and use it to split coupled groups.

 Most subscripts tend to be SIV in practice, where this
works pretty well.

 Delta test for coupled subscript groups
 Maintain one constraint for each loop index variable in

the group.
 Derive and propagate constraints from SIV subscripts.
 Constraints are also propagated from MIV subscripts of

the form < a1i + c1,a2 j + c2 >
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Delta Example
DO I
  DO J
    DO K

A(J-I, I+1, J+K) = A(J-I,I,J+K)
    ENDDO
  ENDDO
ENDDO

 The delta test gives us a distance vector of (1,1,-
1) for this loop nest
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More Techniques
 Solving h(x) = 0 is essentially an integer

programming problem.  Linear programming
techniques can be used
 The Omega test, I-test, etc.

 Techniques for solving systems of linear
equations (e.g., Gaussian elimination) can also
be adapted to compute integer solutions


