Dependence Testing

Solving System of Diaphatine Equations

Dependence Testing

DO i1 = L1, U1, S1
DO i2 = L2, U2, S2

```
        DO in = Ln, Un, Sn
```

 S1 A(f1(i1,..,in),...,fm(i1,...,in)) = ...
 S2 \(\ldots=A(g 1(i 1, \ldots, i n), \ldots, g m(i 1, \ldots, i n))\)

ENDDO

ENDDO

ENDDO

- A dependence exists from S1 to S2 if and only if there exist iteration vectors $x=(x 1, x 2, \ldots, x n)$ and $y=(y 1, y 2, \ldots, y n)$ such that (1) x is lexicographically less than or equal to y;
(2) the system of diophatine equations has an integral solution: $\mathrm{fi}(x)=\mathrm{gi}(\mathrm{y})$ for all $1 \leq \mathrm{i} \leq \mathrm{m}$
i.e. $f i(x 1, \ldots, x n)-g i(y 1, \ldots, y n)=0$ for all $1 \leq i \leq m$

ㅁ Terminology: each fi(i1,..,in) and gi(i1,...,in) is called a subscript

Example

```
DO I = 1, 10
        DO J = 1, 10
        DO K = 1, 10
Si A(I, J, K+1) = A(I, J, K)
S2 F(I,J,K) = A(I,J,K+1)
        ENDDO
```

 ENDDO
 ENDDO

- To determine the dependence between $A(I, J, K+1)$ at iteration vector ($\mathrm{I} 1, \mathrm{~J} 1, \mathrm{~K} 1$) and $\mathrm{A}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ at iteration vector (I2, J2,K2), solve the system of equations

```
I1 = I2; J1=J2; K1+1=K2; 1 <= I1,I2,J1,J2,K1,K2 <= 10
```

- Distance vector is (I2-I1,J2-J1,K2-K1)=(0,0,1)
- Direction vector is $(=,=,<)$
- The dependence is from $A(I, J, K+1)$ to $A(I, J, K)$ and is a true dependence

The Delta Notation

- Goal: compute iteration distance between the source and sink of a dependence

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1, \mathrm{~N} \\
& \quad \mathrm{~A}(\mathrm{I}+1)=\mathrm{A}(\mathrm{I})+\mathrm{B} \\
& \text { ENDDO }
\end{aligned}
$$

- Iteration at source/sink denoted by: IO and IO $+\Delta \mathrm{I}$
- Forming an equality gets us: $\mathrm{IO}+1=\mathrm{IO}+\Delta \mathrm{I}$
- Solving this gives us: $\Delta \mathrm{I}=1$
- If a loop index does not appear, its distance is *
- * means the union of all three directions $<,>$, $=$

$$
\begin{aligned}
& \text { DO } I=1,100 \\
& \text { DO } \mathrm{J}=1,100 \\
& \quad \mathrm{~A}(\mathrm{I}+1)=A(\mathrm{I})+B(\mathrm{~J})
\end{aligned}
$$

- The direction vector for the dependence is $(<, *)$

Complexity of Testing

ㅁ Find integer solutions to a system of Diophantine Equations is NP-Complete

- Most methods consider only linear subscript expressions
- Conservative Testing
- Try to prove absence of solutions for the dependence equations
- Conservative, but never incorrect
- Categorizing subscript testing equations
- ZIV if it contains no loop index variable
- SIV if it contains only one loop index variable
- MIV if it contains more than one loop index variables

$$
\begin{aligned}
& \mathrm{A}(5, \mathrm{I}+1, \mathrm{j})=\mathrm{A}(1, \mathrm{I}, \mathrm{k})+\mathrm{C} \\
& 5=1 \text { is ZIV; } \mathrm{I} 1+1=\mathrm{I} 2 \text { is SIV; } J 1=\mathrm{K} 2 \text { is MIV }
\end{aligned}
$$

Separability of subscripts

- A subscript is separable if the loop index variables it contains do not occur in other subscripts
- Two different subscripts are coupled if they contain the same loop index variable
- Example

```
DO I = 1, 100
S1 A(I+1,I) = B(I,J) + C
S2
D(I,J+1) = A(I,I) * E
```

ENDDO
Solving each subscript equation independently would cause imprecision when subscripts are coupled

Overview of Testing Algorithm

- Partition subscripts equations (each equation contains a pair of array subscripts) into separable groups
- Each group contains a single subscript equation or a set of coupled subscript equations
- Process each separable group
- If the group contains a single subscript equation, classify it is ZIV, SIV, or MIV. Try to solve the equation and encode result in a dependence distance/direction vector
- If the group contains multiple equations, try to solve them collectively
- If at any point it can be proven that no solution exists for the group, exit and report no dependence.
- Merge all dependence/direction vectors computed in the previous steps
- Result of each group contains iteration relations of different loop levels

Simple Subscript Tests

- ZIV Test

$$
\begin{aligned}
& \mathrm{DO} \mathrm{j}=1,100 \\
& \quad \mathrm{~A}(\mathrm{e} 1)=\mathrm{A}(\mathrm{e} 2)+\mathrm{B}(\mathrm{j}) \\
& \text { ENDDO }
\end{aligned}
$$

- e1,e2 are constants or loop invariant symbols
- If (e1-e2)!=0, then no Dependence exists
- SIV Test
- Strong SIV Test: <a*i+c1, a*i+c2>
a a,c1,c2 are constants or loop invariant symbols
- For example, <4i+1,4i+5> <i+3,i>
- Solution: $\mathrm{d}=(\mathrm{c} 2-\mathrm{c} 1) / \mathrm{a}$ is integer and $|\mathrm{d}|<=|U i-\mathrm{Li}|$
- Weak SIV Test: <a1*i+c1, a2*i+c2>
-a1,a2,c1,c2 are constants or loop invariant symbols
- For example, <4i+1,2i+5> <i+3,2i>
- NOTE: all iteration solutions must be integers and within respective loop bounds

Simple Subscript Tests (Cont.)

- Weak-zero SIV: <a1*i+c1,c2>
- Solution: $i=(c 2-c 1) / a 1$ is integer and $|i|<=|U-L|$
- Application: loop peeling DO $i=1, N$
S1 $Y(i, N)=Y(1, N)+Y(N, N)$ ENDDO

```
Y(1,N) = Y(1,N) + Y(N,N )
DO i = 2,N-1
    S1 Y(i,N)=Y(1,N)+Y(N,N)
ENDDO
Y(N,N) = Y(1,N) + Y(N,N)
```

- Weak Crossing SIV: <a*i+c1,-a*i+c2>
- Solution: $\mathrm{i}=(\mathrm{c} 2-\mathrm{c} 1) / 2 \mathrm{a}$, i is integer, and $|\mathrm{i}|<=|\mathrm{U}-\mathrm{L}|$
- Application: loop splitting DO $\mathrm{i}=1, \mathrm{~N}$
$S_{1} A(i)=A(N-i+1)+C \Rightarrow$
ENDDO

```
DO i = 1,(N+1)/2
    A(i) = A(N-i+1) + C
ENDDO
DO i = (N+1)/2 + 1,N
    A(i) = A(N-i+1) + C
ENDDO
```


Breaking Conditions

- Sometimes a dependence exists conditionally

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1, \mathrm{~L} \\
& \mathrm{~S} 1 \quad \mathrm{~A}(\mathrm{I}+\mathrm{N})=\mathrm{A}(\mathrm{I})+\mathrm{B} \\
& \text { ENDDO }
\end{aligned}
$$

- If $\mathrm{L}<=\mathrm{N}$, then there is no dependence from S 1 to itself
- $\mathrm{L}<=\mathrm{N}$ is called the Breaking Condition
- Separate independent code for optimization

```
    IF (L<=N) THEN
        A(N+1:N+L) = A(1:L) + B
    ELSE DO I = 1, L
S1 A(I + N) = A(I) + B
            ENDDO
    ENDIF
```


Linear Diophantine Equations

- For simplicity, assume a pair of array subscripts

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{a} 0+\mathrm{a} 1 * \mathrm{I} 1+\mathrm{b} 2 * \mathrm{I} 2+\ldots+\mathrm{an} * \mathrm{In} \\
& \mathrm{~g}(\mathrm{x})=\mathrm{b} 0+\mathrm{b} 1 * \mathrm{I} 1+\mathrm{b} 2 * \mathrm{I} 2+\ldots+\mathrm{bn} * \mathrm{In}
\end{aligned}
$$

- a0,a1,...,an,b0,b1,...,bn are loop invariant constants
- I1,I2,...,In are loop index variables
- To compute dependence between iteration vectors $x=(x 1, x 2, \ldots, x n)$ and $y=(y 1, y 2, \ldots, y n)$
- We need to solve $h(x)=f(x)-g(y)=0$ i.e. $a 1^{*} x 1-b 1 * y 1+\ldots+a n * x n-b n * y n=b 0-a 0$ which is a linear Diophantine Equation

Solving Linear Diophantine Equations

\square GCD test: existence of integer solutions

- There exist $x 1, x 2, \ldots, x n, y 1, y 2, \ldots, y n$ so that a1*x1-b1*y1+...+an*xn-bn*yn=b0-a0 if and only if $\operatorname{gcd}(a 1, \ldots, a n, b 1, \ldots, b n)$ divides $b 0-$ a0
- However, this does not integrate any bound information of loop index variables, and the $\operatorname{gcd}(\mathrm{a} 1, \ldots, \mathrm{an}, \mathrm{b} 1, \ldots, \mathrm{bn})$ is often 1.
- Banerjee test: existence of real Solutions
- A solution exists iff: inf(h) <= $0<=\sup (h)$
-h=a1*x1-b1*y1+...+an*xn-bn*yn + a0-b0

Banerjee Inequality

- Lemma 3.2. Let t, l, u, z be real numbers. If $\mid<=$ $\mathrm{z}<=\mathrm{u}$, then $-t^{-} u+t^{+} l \leq t z \leq t^{+} u-t^{-} l$
- where

$$
a^{+}=\left\{\begin{array}{ll}
a & a \geq 0 \\
0 & a<0
\end{array} \quad a^{-}= \begin{cases}a & a<0 \\
0 & a \geq 0\end{cases}\right.
$$

- Furthermore, there are numbers z1 and z2 in $[1, \mathrm{u}]$ that make each of the inequalities true
- Theorem 3.3 (Banerjee)
- Let D be a direction vector, and h be a dependence function. $\mathrm{h}=0$ can be solved in the region R iff

$$
\sum_{i=1}^{n} H_{i}^{-}\left(D_{i}\right) \leq b_{0}-a_{0} \leq \sum_{i=1}^{n} H_{i}^{+}\left(D_{i}\right)
$$

Where $\mathrm{Hi}=\left(a i^{*} x i-b i * y i\right)$, Di (dep. direction for subscript i) indicates $x i=y i, x i<y i$, or $x i>y i$

Banerjee Inequality

- Check for all cases of Di .
- If $\mathrm{Di}={ }^{\prime}={ }^{\prime}$, then $x i=y i$ and $\mathrm{hi}=(a i-b i)^{*} x i$.

$$
-\left(a_{i}-b_{i}\right)^{-} U_{i}+\left(a_{i}-b_{i}\right)^{+} L_{i}=H_{i}^{-}(=) \leq h \leq\left(a_{i}-b_{i}\right)^{+} U_{i}-\left(a_{i}-b_{i}\right)^{-} L_{i}=H_{i}^{+}(=)
$$

- If $D_{i}=$ ' $<$ ', we have that $L_{i}<=x_{i}<y_{i}<=U_{i}$.

Rewrite as $\mathrm{L}_{\mathrm{i}}<=\mathrm{x}_{\mathrm{i}}<=\mathrm{y}_{\mathrm{i}}-1<=\mathrm{U}_{\mathrm{i}}-1$
Rewrite h as $h_{i}=a_{i} x_{i}-b_{i} y_{i}=a_{i} x_{i}-b_{i}\left(y_{i}-1\right)-b_{i}$
Use 3.2 to minimize $\mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ and get:

$$
-a_{i}^{-}\left(y_{i}-1\right)+a_{i}^{+} L_{i}-b_{i}\left(y_{i}-1\right)-b_{i} \leq h_{i} \leq a_{i}^{+}\left(y_{i}-1\right)-a_{i}^{-} L_{i}-b_{i}\left(y_{i}-1\right)-b_{i}
$$

Minimizing the $b_{i}\left(y_{i}-1\right)$ term then gives us:

$$
\begin{aligned}
& -\left(a_{i}^{-}+b_{i}\right)^{+}\left(U_{i}-1\right)+\left(a_{i}^{-}+b_{i}\right)^{-} L_{i}+a_{i}^{+} L_{i}-b_{i}=H_{i}^{-}(<) \leq h_{i} \\
& \leq\left(a_{i}^{+}-b_{i}\right)^{+}\left(U_{i}-1\right)-\left(a_{i}^{+}-b_{i}\right)^{-} L_{i}-a_{i}^{-} L_{i}-b_{i}=H_{i}^{+}(<)
\end{aligned}
$$

- If $\mathrm{Di}=$ ' $>$ ', the computation is similar

Example

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1, \mathrm{~N} \\
& \text { DO } \mathrm{J}=1, \mathrm{M} \\
& \text { DO } \mathrm{K}=1,100 \\
& \mathrm{~A}(\mathrm{I}, \mathrm{~K})=\mathrm{A}(\mathrm{I}+\mathrm{J}, \mathrm{~K})+\mathrm{B} \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

ㅁ Testing $(\mathrm{I}, \mathrm{I}+\mathrm{J})$ for $\mathrm{D}=(=,<, *)$:

$$
\begin{aligned}
& H_{1}^{-}(=)+H_{2}^{-}(<)=-(1-0)^{-} N+(1-1)^{+} 1-\left(0^{-}+1\right)^{+}(M-1)+\left[\left(0^{-}+1\right)^{-}+0^{+}\right] 1-1=-M \leq 0 \\
& \leq H_{1}^{+}(=)+H_{2}^{+}(<)=(1-1)^{+} N-(1-1)^{-} 1+\left(0^{+}-1\right)^{+}(M-1)-\left[\left(0^{+}-1\right)^{-}+0^{-}\right] 1-1 \leq-2
\end{aligned}
$$

\square This is impossible, so the dependency doesn't exist.

Complex Iteration Spaces

- The iteration space is not always rectangular
- Triangular: One of the loop bounds is a function of at least one other loop index
- Trapezoidal: Both the loop bounds are functions of at least one other loop index
- Example

```
    DO I = 1,N
        \(\mathrm{DO} \mathrm{J}=\mathrm{LO}+\mathrm{L} 1 * \mathrm{I}, \mathrm{U} 0+\mathrm{U} 1 * \mathrm{I}\)
S1 \(A(J+d)=\ldots \ldots\)
S2 \(\ldots \ldots=A(J)+B\)
```

 ENDDO
 ENDDO

- Strong SIV test gives dependence if

$$
|\mathrm{d}|<=|\mathrm{UO}-\mathrm{L} 0+(\mathrm{U} 1-\mathrm{L} 1) * \mathrm{I}| \text { for any iteration of I }
$$

- Banerjee test also assumes independence of loop index variables

Trapezoidal Banerjee Test

\square Assume that: $U_{i}=U_{i 0}+\sum_{j=1}^{H U_{i}} U_{i} i_{j}$

$$
L_{i}=L_{i 0}+\sum_{j=1}^{i-1} L_{i j} i_{j}
$$

\square Now, our bounds must change. For example:

$$
\begin{aligned}
& H_{i}^{-}(<)=-\left(a_{i}^{-}+b_{i}\right)^{+}\left(U_{i 0}-1+\sum_{j=1}^{i-1} U_{i j} y_{j}\right)+\left(a_{i}^{-}+b_{i}\right)^{-}\left(L_{i 0}+\sum_{j=1}^{i-1} L_{i j} y_{j}\right) \\
& +a_{i}^{+}\left(L_{i 0}+\sum_{j=1}^{i-1} L_{i j} x_{j}\right)-b_{i}
\end{aligned}
$$

Testing Direction Vectors

- To use Banerjee test
- Must test pair of statements for all direction vectors
- Potentially exponential in loop nesting.
- Can save time by pruning:

Coupled Groups

- So far, we've assumed separable subscripts.
- We can glean information from separable subscripts, and use it to split coupled groups.
- Most subscripts tend to be SIV in practice, where this works pretty well.
- Delta test for coupled subscript groups
- Maintain one constraint for each loop index variable in the group.
- Derive and propagate constraints from SIV subscripts.
- Constraints are also propagated from MIV subscripts of the form

$$
\left\langle a_{1} i+c_{1}, a_{2} j+c_{2}>\right.
$$

Delta Example

```
DO I
    DO J
        DO K
                        A(J-I,I+1,J+K) = A(J-I,I,J+K)
        ENDDO
```

 ENDDO
 ENDDO
\square The delta test gives us a distance vector of $(1,1,-$ 1) for this loop nest

More Techniques

- Solving $h(x)=0$ is essentially an integer programming problem. Linear programming techniques can be used
- The Omega test, I-test, etc.
- Techniques for solving systems of linear equations (e.g., Gaussian elimination) can also be adapted to compute integer solutions

