Preliminary
Transformations

Auxiliary Induction Variable
Substitution and Loop
Normalization

cs6363

Overview

o Goal: improve accuracy of dependence testing

= Conventional testing methods assume a closed form of
loop index variables (aka, loop induction variables)
loop invariants (which can be treated as constants)

o Transformations to put more subscripts into standard form
= Induction Variable Substitution: remove unknown variables
= Loop Normalization: testing is easier if loop strides are 1

= Related optimizations
redundancy elimination, dead code elimination, constant propagation
Help find more loop invariant expressions

o Optimizations by programmers often confuse compilers

= Leave optimizations to compilers?
INC=2 KI =0
DOI=1, 100
DOJ =1, 100
KI = KI + INC
U(KI) = U(KI) + W(J)
ENDDO
S(I) = U(KI)

ENDDO cs6363

Example: Auxiliary Induction
Variable Substitution

Original code

INC=2 KI=0
DOI =1, 100
DOJ=1, 100

KI = KI + INC
U(KI) = U(KT) + W)

ENDDO
S(I) = U(KI)
ENDDO

KI is a function of loop index variable J

INC=2 KI=0
DOI =1, 100
DOJ=1, 100

ENDDO
KI = KI + 100 * INC
S(I) = U(KI)

ENDDO

| Deleted: KI = KI + INC
U(KI + J¥INC) = U(KI + J¥INC) + W(J)

KI is a function of loop index variable I

INC=2 KI=0
DOI =1, 100
DOJ=1, 100

U(KT + (I-1)*100*INC + J*INC) =
U(KT + (I-1)*100*INC + J*INC) + W(J)
ENDDO
| Deleted: KI = KI + 100 * INC
S(I) = U(KT + I * (100*INC))
ENDDO
KI = KI + 100 * 100 * INC

Now KI is loop invariant (no longer modified inside the loops)

cs6363 3

Example: Constant Propagation

INC=2 KI=0 INC=2
DOI=1, 100 I Deleted: KI =0
DOJ =1, 100 DOI=1, 100
U(KT + (I-1)*100*INC + J*INC) = DOJ =1, 100
U(KT + (I-1)*100*INC + J*INC) + W(J) U(1*200 + J*2 - 200) =
ENDDO ‘ U(1*200 + J*2 -200) + W(J)
I Deleted: KI = KI + 100 * INC ENDDO
S(I) = U(KI + I * (100*INC)) S(I) = U(I*200)
ENDDO ENDDO
KI = KI + 100 * 100 * INC KI = 20000

cs6363 4

Induction Variable Substitution

o Definition: auxiliary induction variable
= Any variable that can be expressed as cexpr * I + iexpr
everywhere it is used in a loop, where
I is the loop index variable
cexpr and iexpr are loop-invariant expressions (their values do not
vary in the loop)
= Different locations in the loop may require substitution of
different values of iexpr

0o Example:
DOI=1, N
A(I) = B(K) + 1 o
K=K+ 4

B(K)=D(K)+A(I) K=I;(+4)
ENDDO
(D(K) = D(K) + A(ID‘/(___J

cs6363 5

Induction Variable Substitution

O Recognizing auxiliary induction variables

= Use data-flow analysis to build def-use chain or SSA representation
Connect each variable use with possible definitions that produce its value
Connect each variable definition with possible uses of the produced value
The algorithm in the textbook uses SSA

= For each loop L, recognize loop invariant variables and expressions
Variables and expressions whose values never change inside L

m For each loop L, Recognize auxiliary induction variables

Variables modified at each iteration of L by incrementing/decrementing it with a loop
invariant value

o Substitute auxiliary induction variables
m For each loop L:do I=L,U,S from inside out and each AIV iv of L

Let s: iv=iv+cexpr be the statement that modifies iv inside L

For each expression exp in L that uses iv before s:
replace exp with exp+(I-L)/S*cexpr

For each expression exp in L that uses iv after s:
replace exp with exp+(I-L+S)/S*cexpr

Delete s and modify def-use chain/SSA accordingly

If iv is used after loop L : insert iv=iv+ (U-L+S)/S * cexpr after loop L

cs6363

Are We Missing Something?

o More complex example
DOI=1,N,2
K=K+ 1
A(K) = AK) + 1
K=K+ 1
A(K) = AK) + 1
ENDDO
o Solution: forward substitute the use of a variable v in stmt S if
= There is a single definition def(v) that can reach S
= The value assigned to v does not change between def(v) and S
= If RHS of def(v) includes v, need to remove def(v) after substitution

DOI=1,N,?2
A(K+1) = A(K+1) + 1
K=K+1+1

A(K) = A(K) + 1
ENDDO

cs6363

Forward Expression Substitution

DOI=1, 100 DOI=1, 100
K=1+2 > A(I+2) = A(I+2) + 5
A(K) = A(K) + 5 ENDDO

ENDDO

O

Need definition-use edges and control flow analysis

0 Need to guarantee
= The definition does not have unknown side-effect (e.g.,I/0)

= The definition is always evaluated before the use (i.e., it is the only def
that can reach the use)

= The RHS of definition does not change before the uses
Approximation: RHS includes only loop index variables and loop invariants
o Would like to substitute a definition S only if it is in loop L
= Test whether level-K loop containing S is equal to L
0 Modify the definition: reorder def and uses if necessary

= If substitution has been applied to all uses: remove the definition

= If substitution has been applied to all uses inside loop: move definition
outside of the loop cs6363 8

Induction Variable Substitution

procedure /VDrive(L);
/I L is the loop being processed, assume SSA graph available
/I IVDrive performs forward substitution and induction variable
/1 substitution on the loop L, recursively calling itself where
// necessary.

foreach statement S in L in order do
case(kind(S))
assignment:
FS_not_done = ForwardSub(S,L);
if I'S_not_done then IVSub(S,L);
DO-loop:
IVDrive(S);
default:
end case
end do
end /VDrive;

cs6363

o Goal: modify loops to have lower bound 1 with
stride 1
To make dependence testing as simple as possible
Serves as information gathering phase

o Algorithm for normalizing a loop LO: do I=L,U,S
| = a unique compiler-generated LIV
Replace the loop header for LO with
doi=1,(U-L+S)/S,1
Replace each reference to I within the loop by
| *S -S +L;
insert a finalization assignmentI =i * S-S + L;
immediately after the end of the loop

cs6363

10

Tradeoff of Applying LLoop Normalization

Un-normalized: Normalized:
DOI=1, M
DOI=1, M
DOJ=1, N-I+1
POJ = LN AO+1-1,1
A(J,I) =A@Q,I1-1)+5 (1)
AD+I-1,1-1)+5
ENDDO
ENDDO
ENDDO
Has a direction vector of (<,=) ENDDO_ _
Has a direction vector of (<,>)

o Consider interchanging loops
(<,=) becomes (=,>) OK
(<,>) becomes (>,<) Problem

o What if the step size is symbolic?

= Prohibits dependence testing
Workaround: use step size 1

Less precise, but allow dependence testing

cs6363

IV Substitution and L.oop Normalization

o IVSub without loop normalization
= Problem: inefficient code; nonlinear subscript

DOI=L,U,S
K=K+N
. = A(K)

ENDDO

—)

DOI=L,U,S

L =AK+(I-L+S)/S*N)
ENDDO
K=K+ U-L+S)/S*N

o IVSub with Loop Normalization

I=1

DO =1, (U-L+S)/S, 1
K=K+N
.= A (K)
I=1+1

ENDDO

4

cs6363

I=1
DOi=1,(U-L+S)/S,1

= A(K+i*N)
ENDDO

K=K+ U-L+S)/S*N
I=I+(U-L+S)/S

12

o Transformations to put more subscripts
into standard form
Induction Variable Substitution
Loop Normalization

Related optimizations

Constant Propagation, redundancy elimination,
deadcode elimination

o Do loop normalization before induction-
variable substitution

Try eliminate symbolic loop steps
0 Leave optimizations to compilers?

cs6363

13

