
cs6363 1

Preliminary
Transformations

Auxiliary Induction Variable
Substitution and Loop

Normalization

cs6363 2

Overview
 Goal: improve accuracy of dependence testing

 Conventional testing methods assume a closed form of
 loop index variables (aka, loop induction variables)
 loop invariants (which can be treated as constants)

 Transformations to put more subscripts into standard form
 Induction Variable Substitution: remove unknown variables
 Loop Normalization: testing is easier if loop strides are 1
 Related optimizations

 redundancy elimination, dead code elimination, constant propagation
 Help find more loop invariant expressions

 Optimizations by programmers often confuse compilers
 Leave optimizations to compilers?

INC=2 KI = 0
DO I = 1, 100
 DO J = 1, 100
 KI = KI + INC
 U(KI) = U(KI) + W(J)
 ENDDO
 S(I) = U(KI)
ENDDO

cs6363 3

Example: Auxiliary Induction
Variable Substitution

INC = 2 KI = 0
DO I = 1, 100
 DO J = 1, 100
 ! Deleted: KI = KI + INC
 U(KI + J*INC) = U(KI + J*INC) + W(J)
 ENDDO
 KI = KI + 100 * INC
 S(I) = U(KI)
ENDDO

INC = 2 KI = 0
DO I = 1, 100
 DO J = 1, 100
 U(KI + (I-1)*100*INC + J*INC) =
 U(KI + (I-1)*100*INC + J*INC) + W(J)
 ENDDO
 ! Deleted: KI = KI + 100 * INC
 S(I) = U(KI + I * (100*INC))
ENDDO
KI = KI + 100 * 100 * INC

KI is a function of loop index variable J

INC=2 KI = 0
DO I = 1, 100
 DO J = 1, 100
 KI = KI + INC
 U(KI) = U(KI) + W(J)
 ENDDO
 S(I) = U(KI)
ENDDO

Original code

KI is a function of loop index variable I

Now KI is loop invariant (no longer modified inside the loops)

cs6363 4

Example: Constant Propagation

INC = 2
! Deleted: KI = 0
DO I = 1, 100
 DO J = 1, 100
 U(I*200 + J*2 - 200) =
 U(I*200 + J*2 -200) + W(J)
 ENDDO
 S(I) = U(I*200)
ENDDO
KI = 20000

INC = 2 KI = 0
DO I = 1, 100
 DO J = 1, 100
 U(KI + (I-1)*100*INC + J*INC) =
 U(KI + (I-1)*100*INC + J*INC) + W(J)
 ENDDO
 ! Deleted: KI = KI + 100 * INC
 S(I) = U(KI + I * (100*INC))
ENDDO
KI = KI + 100 * 100 * INC

cs6363 5

Induction Variable Substitution
 Definition: auxiliary induction variable

 Any variable that can be expressed as cexpr * I + iexpr
everywhere it is used in a loop, where

 I is the loop index variable
 cexpr and iexpr are loop-invariant expressions (their values do not

vary in the loop)
 Different locations in the loop may require substitution of

different values of iexpr
 Example:

DO I = 1, N
 A(I) = B(K) + 1
 K = K + 4
 …
 D(K) = D(K) + A(I)
ENDDO

cs6363 6

Induction Variable Substitution
 Recognizing auxiliary induction variables

 Use data-flow analysis to build def-use chain or SSA representation
 Connect each variable use with possible definitions that produce its value
 Connect each variable definition with possible uses of the produced value
 The algorithm in the textbook uses SSA

 For each loop L, recognize loop invariant variables and expressions
 Variables and expressions whose values never change inside L

 For each loop L, Recognize auxiliary induction variables
 Variables modified at each iteration of L by incrementing/decrementing it with a loop

invariant value

 Substitute auxiliary induction variables
 For each loop L:do I=L,U,S from inside out and each AIV iv of L

 Let s: iv=iv+cexpr be the statement that modifies iv inside L
 For each expression exp in L that uses iv before s:
 replace exp with exp+(I-L)/S*cexpr
 For each expression exp in L that uses iv after s:
 replace exp with exp+(I-L+S)/S*cexpr
 Delete s and modify def-use chain/SSA accordingly
 If iv is used after loop L : insert iv=iv+ (U-L+S)/S * cexpr after loop L

cs6363 7

Are We Missing Something?
 More complex example

DO I = 1, N, 2
 K = K + 1
 A(K) = A(K) + 1
 K = K + 1
 A(K) = A(K) + 1
ENDDO

 Solution: forward substitute the use of a variable v in stmt S if
 There is a single definition def(v) that can reach S
 The value assigned to v does not change between def(v) and S
 If RHS of def(v) includes v, need to remove def(v) after substitution
DO I = 1, N, 2
 A(K+1) = A(K+1) + 1
 K = K+1 + 1
 A(K) = A(K) + 1
ENDDO

cs6363 8

Forward Expression Substitution
 DO I = 1, 100
 K = I + 2
 A(K) = A(K) + 5
 ENDDO

DO I = 1, 100
 A(I+2) = A(I+2) + 5
ENDDO

 Need definition-use edges and control flow analysis
 Need to guarantee

 The definition does not have unknown side-effect (e.g.,I/O)
 The definition is always evaluated before the use (i.e., it is the only def

that can reach the use)
 The RHS of definition does not change before the uses

 Approximation: RHS includes only loop index variables and loop invariants

 Would like to substitute a definition S only if it is in loop L
 Test whether level-K loop containing S is equal to L

 Modify the definition: reorder def and uses if necessary
 If substitution has been applied to all uses: remove the definition
 If substitution has been applied to all uses inside loop: move definition

outside of the loop

cs6363 9

Induction Variable Substitution

cs6363 10

Loop Normalization
 Goal: modify loops to have lower bound 1 with

stride 1
 To make dependence testing as simple as possible
 Serves as information gathering phase

 Algorithm for normalizing a loop L0: do I=L,U,S
 i = a unique compiler-generated LIV
 Replace the loop header for L0 with
 do i = 1, (U – L + S) / S, 1
 Replace each reference to I within the loop by
 i * S – S + L;
 insert a finalization assignment I = i * S – S + L;

immediately after the end of the loop

cs6363 11

Tradeoff of Applying Loop Normalization

 Consider interchanging loops
 (<,=) becomes (=,>) OK
 (<,>) becomes (>,<) Problem

 What if the step size is symbolic?
 Prohibits dependence testing

 Workaround: use step size 1
 Less precise, but allow dependence testing

Un-normalized:
 DO I = 1, M
 DO J = I, N
 A(J, I) = A(J, I - 1) + 5
 ENDDO
 ENDDO
 Has a direction vector of (<,=)

Normalized:
 DO I = 1, M
 DO J = 1, N – I + 1
 A(J + I – 1, I) =
 A(J + I – 1, I – 1) + 5
 ENDDO
 ENDDO
 Has a direction vector of (<,>)

cs6363 12

IV Substitution and Loop Normalization

 IVSub without loop normalization
 Problem: inefficient code; nonlinear subscript

 IVSub with Loop Normalization

DO I = L, U, S
 K = K + N
 … = A(K)
ENDDO

DO I = L, U, S
 … = A(K + (I – L + S) / S * N)
ENDDO
K = K + (U – L + S) / S * N

I = 1
DO i = 1, (U-L+S)/S, 1
 K = K + N
 … = A (K)
 I = I + 1
ENDDO

I = 1
DO i = 1, (U – L + S) / S, 1
 … = A (K + i * N)
ENDDO
K = K + (U – L + S) / S * N
I = I + (U – L + S) / S

cs6363 13

Summary
 Transformations to put more subscripts

into standard form
 Induction Variable Substitution
 Loop Normalization
 Related optimizations

 Constant Propagation, redundancy elimination,
deadcode elimination

 Do loop normalization before induction-
variable substitution
 Try eliminate symbolic loop steps

 Leave optimizations to compilers?

