
cs6363 1

Preliminary
Transformations

Auxiliary Induction Variable
Substitution and Loop

Normalization



cs6363 2

Overview
 Goal: improve accuracy of dependence testing

 Conventional testing methods assume a closed form of
 loop index variables (aka, loop induction variables)
 loop invariants (which can be treated as constants)

 Transformations to put more subscripts into standard form
 Induction Variable Substitution: remove unknown variables
 Loop Normalization: testing is easier if loop strides are 1
 Related optimizations

 redundancy elimination, dead code elimination, constant propagation
 Help find more loop invariant expressions

 Optimizations by programmers often confuse compilers
 Leave optimizations to compilers?

INC=2  KI = 0
DO I = 1, 100
   DO J = 1, 100
       KI = KI + INC
       U(KI) = U(KI) + W(J)
   ENDDO
   S(I) = U(KI)
ENDDO



cs6363 3

Example: Auxiliary Induction
Variable Substitution

INC = 2     KI = 0
DO I = 1, 100
   DO J = 1, 100
      ! Deleted: KI = KI + INC
        U(KI + J*INC) = U(KI + J*INC) + W(J)
   ENDDO
   KI = KI + 100 * INC
   S(I) = U(KI)
ENDDO

INC = 2   KI = 0
DO I = 1, 100
  DO J = 1, 100
       U(KI + (I-1)*100*INC + J*INC) = 
          U(KI + (I-1)*100*INC + J*INC) + W(J)
  ENDDO
  ! Deleted: KI = KI + 100 * INC
  S(I) = U(KI + I * (100*INC) )
ENDDO
KI = KI + 100 * 100 * INC

KI is a function of loop index variable J

INC=2  KI = 0
DO I = 1, 100
   DO J = 1, 100
       KI = KI + INC
       U(KI) = U(KI) + W(J)
   ENDDO
   S(I) = U(KI)
ENDDO

Original code 

KI is a function of loop index variable I

Now KI is loop invariant (no longer modified inside the loops)



cs6363 4

Example: Constant Propagation

INC = 2
! Deleted: KI = 0
DO I = 1, 100
  DO J = 1, 100
      U(I*200 + J*2 - 200) = 
          U(I*200 + J*2 -200) + W(J)
  ENDDO
  S(I) = U(I*200)
ENDDO
KI = 20000

INC = 2   KI = 0
DO I = 1, 100
  DO J = 1, 100
       U(KI + (I-1)*100*INC + J*INC) = 
          U(KI + (I-1)*100*INC + J*INC) + W(J)
  ENDDO
  ! Deleted: KI = KI + 100 * INC
  S(I) = U(KI + I * (100*INC) )
ENDDO
KI = KI + 100 * 100 * INC



cs6363 5

Induction Variable Substitution
 Definition: auxiliary induction variable

 Any variable that can be expressed as cexpr * I + iexpr
everywhere it is used in a loop, where

 I is the loop index variable
 cexpr and iexpr are loop-invariant expressions (their values do not

vary in the loop)
 Different locations in the loop may require substitution of

different values of iexpr
 Example:

DO I = 1, N
    A(I) = B(K) + 1
    K = K + 4
    …
    D(K) = D(K) + A(I)
ENDDO



cs6363 6

Induction Variable Substitution
 Recognizing auxiliary induction variables

 Use data-flow analysis to build def-use chain or SSA representation
 Connect each variable use with possible definitions that produce its value
 Connect each variable definition with possible uses of the produced value
 The algorithm in the textbook uses SSA

 For each loop L, recognize loop invariant variables and expressions
 Variables and expressions whose values never change inside L

 For each loop L, Recognize auxiliary induction variables
 Variables modified at each iteration of L by incrementing/decrementing it with a loop

invariant value

 Substitute auxiliary induction variables
 For each loop L:do I=L,U,S from inside out and each AIV iv of L

 Let s: iv=iv+cexpr be the statement that modifies iv inside L
 For each expression exp in L that uses iv before s:
        replace exp with exp+(I-L)/S*cexpr
 For each expression exp in L that uses iv after s:
        replace exp with exp+(I-L+S)/S*cexpr
 Delete s and modify def-use chain/SSA accordingly
 If iv is used after loop L : insert iv=iv+ (U-L+S)/S * cexpr after loop L



cs6363 7

Are We Missing Something?
 More complex example

DO I = 1, N, 2
    K = K + 1
    A(K) = A(K) + 1
    K = K + 1
    A(K) = A(K) + 1
ENDDO

 Solution: forward substitute the use of a variable v in stmt S if
 There is a single definition def(v) that can reach S
 The value assigned to v does not change between def(v) and S
 If RHS of def(v) includes v, need to remove def(v) after substitution
DO I = 1, N, 2
    A(K+1) = A(K+1) + 1
    K = K+1 + 1
    A(K) = A(K) + 1
ENDDO



cs6363 8

Forward Expression Substitution
   DO I = 1, 100
      K = I + 2
      A(K) = A(K) + 5
   ENDDO

DO I = 1, 100
   A(I+2) = A(I+2) + 5
ENDDO

 Need definition-use edges and control flow analysis
 Need to guarantee

 The definition does not have unknown side-effect (e.g.,I/O)
 The definition is always evaluated before the use (i.e., it is the only def

that can reach the use)
 The RHS of definition does not change before the uses

 Approximation: RHS includes only loop index variables and loop invariants

 Would like to substitute a definition S only if it is in loop L
 Test whether level-K loop containing S is equal to L

 Modify the definition: reorder def and uses if necessary
 If substitution has been applied to all uses: remove the definition
 If substitution has been applied to all uses inside loop: move definition

outside of the loop



cs6363 9

Induction Variable Substitution



cs6363 10

Loop Normalization
 Goal: modify loops to have lower bound 1 with

stride 1
 To make dependence testing as simple as possible
 Serves as information gathering phase

 Algorithm for normalizing a loop L0: do I=L,U,S
 i = a unique compiler-generated LIV
 Replace the loop header for L0 with
          do i = 1, (U – L + S) / S, 1
 Replace each reference to I within the loop by
        i * S – S + L;
 insert a finalization assignment I = i * S – S + L;

immediately after the end of the loop



cs6363 11

Tradeoff of Applying Loop Normalization

 Consider interchanging loops
 (<,=) becomes (=,>) OK
 (<,>) becomes (>,<) Problem

 What if the step size is symbolic?
 Prohibits dependence testing

 Workaround: use step size 1
 Less precise, but allow dependence testing

Un-normalized:
    DO I = 1, M
       DO J = I, N
          A(J, I) = A(J, I - 1) + 5
       ENDDO
    ENDDO
    Has a direction vector of (<,=)

Normalized:
    DO I = 1, M
       DO J = 1, N – I + 1
          A(J + I – 1, I) = 
                A(J + I – 1, I – 1) + 5
       ENDDO
    ENDDO
    Has a direction vector of (<,>)



cs6363 12

IV Substitution and Loop Normalization

 IVSub without loop normalization
 Problem: inefficient code; nonlinear subscript

 IVSub with Loop Normalization

DO I = L, U, S
   K = K + N
   … = A(K)
ENDDO

DO I = L, U, S
   … = A(K + (I – L + S) / S * N)
ENDDO
K = K + (U – L + S) / S * N

I = 1
DO i = 1, (U-L+S)/S, 1
   K = K + N
   … = A (K)
   I = I + 1
ENDDO

I = 1
DO i = 1, (U – L + S) / S, 1
   … = A (K + i * N)
ENDDO
K = K + (U – L + S) / S * N
I = I + (U – L + S) / S



cs6363 13

Summary
 Transformations to put more subscripts

into standard form
 Induction Variable Substitution
 Loop Normalization
 Related optimizations

 Constant Propagation, redundancy elimination,
deadcode elimination

 Do loop normalization before induction-
variable substitution
 Try eliminate symbolic loop steps

 Leave optimizations to compilers?


