Preliminary Transformations

Auxiliary Induction Variable Substitution and Loop Normalization

Overview

ㅁ Goal: improve accuracy of dependence testing

- Conventional testing methods assume a closed form of
- loop index variables (aka, loop induction variables)
- loop invariants (which can be treated as constants)
- Transformations to put more subscripts into standard form
- Induction Variable Substitution: remove unknown variables
- Loop Normalization: testing is easier if loop strides are 1
- Related optimizations
- redundancy elimination, dead code elimination, constant propagation
- Help find more loop invariant expressions
- Optimizations by programmers often confuse compilers
- Leave optimizations to compilers?

```
INC=2 KI = 0
DO I = 1, 100
            DO J = 1, 100
                KI = KI + INC
                U(KI) = U(KI) + W(J)
            ENDDO
            S(I) = U(KI)
ENDDO
```


Example: Auxiliary Induction Variable Substitution

Original code

$\mathrm{INC}=2 \mathrm{KI}=0$
$\mathrm{DO} \mathrm{I}=1,100$
$\mathrm{DO} \mathrm{J}=1,100$
$\mathrm{KI}=\mathrm{KI}+\mathrm{INC}$
$\mathrm{U}(\mathrm{KI})=\mathrm{U}(\mathrm{KI})+\mathrm{W}(\mathrm{J})$
ENDDO
$\mathrm{S}(\mathrm{I})=\mathrm{U}(\mathrm{KI})$
ENDDO

KI is a function of loop index variable I

KI is a function of loop index variable J

```
INC = 2 KI = 0
DO I = 1, 100
    DO J = 1,100
        ! Deleted: KI = KI + INC
        U(KI + J*INC) = U(KI + J*INC) + W(J)
    ENDDO
    KI = KI + 100 * INC
    S(I) = U(KI)
ENDDO
```

```
INC \(=2 \mathrm{KI}=0\)
DO I = 1, 100
    DO J = 1, 100
            \(\mathrm{U}\left(\mathrm{KI}+(\mathrm{I}-1)^{*} 100 * \mathrm{INC}+\mathrm{J} * \mathrm{INC}\right)=\)
                        \(\mathrm{U}(\mathrm{KI}+(\mathrm{I}-1) * 100 * \mathrm{INC}+\mathrm{J}\) INC \()+\mathrm{W}(\mathrm{J})\)
    ENDDO
    ! Deleted: KI = KI + 100 * INC
    \(\mathrm{S}(\mathrm{I})=\mathrm{U}(\mathrm{KI}+\mathrm{I} *(100 * \mathrm{INC}))\)
ENDDO
\(\mathrm{KI}=\mathrm{KI}+100 * 100 *\) INC
```

Now KI is loop invariant (no longer modified inside the loops)

Example: Constant Propagation

```
\(\mathrm{INC}=2 \quad \mathrm{KI}=0\)
DO I = 1, 100
    DO J = 1, 100
        \(\mathrm{U}(\mathrm{KI}+(\mathrm{I}-1) * 100 * \mathrm{INC}+\mathrm{J} * \mathrm{INC})=\)
        \(\mathrm{U}(\mathrm{KI}+(\mathrm{I}-1) * 100 * \mathrm{INC}+\mathrm{J} * \mathrm{INC})+\mathrm{W}(\mathrm{J})\)
    ENDDO
    ! Deleted: KI = KI + 100 * INC
    \(\mathrm{S}(\mathrm{I})=\mathrm{U}(\mathrm{KI}+\mathrm{I} *(100 * \mathrm{INC}))\)
ENDDO
\(\mathrm{KI}=\mathrm{KI}+100 * 100 * \mathrm{INC}\)
```

```
INC = 2
! Deleted: KI = 0
DO I = 1, 100
    DO J = 1,100
        U(I*200 + J*2 - 200) =
        U(I*200 + J*2 -200) + W(J)
    ENDDO
    S(I) = U(I*200)
    ENDDO
    KI = 20000
```


Induction Variable Substitution

- Definition: auxiliary induction variable
- Any variable that can be expressed as cexpr * I + iexpr everywhere it is used in a loop, where
\square I is the loop index variable
cexpr and iexpr are loop-invariant expressions (their values do not vary in the loop)
- Different locations in the loop may require substitution of different values of iexpr
- Example:

$$
\begin{aligned}
& \mathrm{DO} I=1, N \\
& \quad \mathrm{~A}(\mathrm{I})=\mathrm{B}(\mathrm{~K})+1 \\
& \mathrm{~K}=\mathrm{K}+4 \\
& \ldots \\
& \mathrm{D}(\mathrm{~K})=\mathrm{D}(\mathrm{~K})+\mathrm{A}(\mathrm{I}) \\
& \text { ENDDO }
\end{aligned}
$$

cs6363

Induction Variable Substitution

- Recognizing auxiliary induction variables
- Use data-flow analysis to build def-use chain or SSA representation
- Connect each variable use with possible definitions that produce its value
- Connect each variable definition with possible uses of the produced value
- The algorithm in the textbook uses SSA
- For each loop L, recognize loop invariant variables and expressions
- Variables and expressions whose values never change inside L
- For each loop L, Recognize auxiliary induction variables
- Variables modified at each iteration of L by incrementing/decrementing it with a loop invariant value
- Substitute auxiliary induction variables
- For each loop L:do $I=L, U, S$ from inside out and each AIV iv of L
- Let s: iv=iv+cexpr be the statement that modifies iv inside L
- For each expression exp in L that uses iv before s:
replace exp with $\exp +(\mathrm{I}-\mathrm{L}) / \mathrm{S}^{*}$ cexpr
- For each expression exp in L that uses iv after s:
replace exp with exp+(I-L+S)/S*cexpr
- Delete s and modify def-use chain/SSA accordingly
- If iv is used after loop L: insert iv=iv+ (U-L+S)/S * cexpr after loop L

Are We Missing Something?

- More complex example

```
DO I = 1, N, 2
    K = K + 1
    A(K) = A(K) + 1
    K = K + 1
    A(K) = A(K) +1
ENDDO
```

- Solution: forward substitute the use of a variable v in stmt S if
- There is a single definition def(v) that can reach S
- The value assigned to v does not change between $\operatorname{def}(v)$ and S
- If RHS of $\operatorname{def}(v)$ includes v, need to remove $\operatorname{def}(v)$ after substitution

DO I = 1, N, 2
$\mathrm{A}(\mathrm{K}+1)=\mathrm{A}(\mathrm{K}+1)+1$
$K=K+1+1$
$A(K)=A(K)+1$
ENDDO

Forward Expression Substitution

$$
\begin{aligned}
& \text { DO } I=1,100 \\
& K=I+2 \\
& A(K)=A(K)+5 \\
& \text { ENDDO }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1,100 \\
& \mathrm{~A}(\mathrm{I}+2)=\mathrm{A}(\mathrm{I}+2)+5 \\
& \text { ENDDO }
\end{aligned}
$$

- Need definition-use edges and control flow analysis
- Need to guarantee
- The definition does not have unknown side-effect (e.g.,I/O)
- The definition is always evaluated before the use (i.e., it is the only def that can reach the use)
- The RHS of definition does not change before the uses
- Approximation: RHS includes only loop index variables and loop invariants
- Would like to substitute a definition S only if it is in loop L
- Test whether level-K loop containing S is equal to L
- Modify the definition: reorder def and uses if necessary
- If substitution has been applied to all uses: remove the definition
- If substitution has been applied to all uses inside loop: move definition outside of the loop

Induction Variable Substitution

```
procedure IVDrive(L);
    // \(L\) is the loop being processed, assume SSA graph available
    // IVDrive performs forward substitution and induction variable
    // substitution on the loop \(L\), recursively calling itself where
    // necessary.
    foreach statement \(S\) in \(L\) in order do
        case ( \(\operatorname{kind}(S)\) )
            assignment:
                FS_not_done := ForwardSub(S,L);
                if \(F S\) _not_done then \(\operatorname{IVSub}(S, L)\);
                DO-loop:
                    IVDrive(S);
                default:
        end case
    end do
end IVDrive;
```


Loop Normalization

- Goal: modify loops to have lower bound 1 with stride 1
- To make dependence testing as simple as possible
- Serves as information gathering phase
- Algorithm for normalizing a loop LO: do $I=L, U, S$
- $\mathrm{i}=\mathrm{a}$ unique compiler-generated LIV
- Replace the loop header for LO with

$$
\text { do } i=1,(U-L+S) / S, 1
$$

- Replace each reference to I within the loop by i * S - S + L;
- insert a finalization assignment I = i * S - S + L; immediately after the end of the loop

Tradeoff of Applying Loop Normalization

Un-normalized:
DO I $=1, M$
DO J = I, N
$A(J, I)=A(J, I-1)+5$
ENDDO
ENDDO
Has a direction vector of $(<,=)$

Normalized:
DO I = 1, M
DO J = $1, \mathrm{~N}-\mathrm{I}+1$

$$
A(J+I-1, I)=
$$

$$
\mathrm{A}(\mathrm{~J}+\mathrm{I}-1, \mathrm{I}-1)+5
$$

ENDDO

ENDDO
Has a direction vector of $(<,>)$

ㅁ Consider interchanging loops

- $(<,=)$ becomes $(=,>)$ OK
$\square(<,>)$ becomes $(>,<)$ Problem
\square What if the step size is symbolic?
- Prohibits dependence testing
\square Workaround: use step size 1
\square Less precise, but allow dependence testing

IV Substitution and Loop Normalization

- IVSub without loop normalization
- Problem: inefficient code; nonlinear subscript

| DO $\mathrm{I}=\mathrm{L}, \mathrm{U}, \mathrm{S}$ |
| :--- | :--- |
| $\mathrm{K}=\mathrm{K}+\mathrm{N}$ |
| $\ldots=\mathrm{A}(\mathrm{K})$ |
| ENDDO |\quad| $\mathrm{DO} \mathrm{I}=\mathrm{L}, \mathrm{U}, \mathrm{S}$ |
| :--- |
| \ldots |
| $\ldots \mathrm{A}(\mathrm{K}+(\mathrm{I}-\mathrm{L}+\mathrm{S}) / \mathrm{S} * \mathrm{~N})$ |
| ENDDO |
| $\mathrm{K}=\mathrm{K}+(\mathrm{U}-\mathrm{L}+\mathrm{S}) / \mathrm{S} * \mathrm{~N}$ |

- IVSub with Loop Normalization

$$
\begin{aligned}
& \mathrm{I}=1 \\
& \text { DO } \mathrm{i}=1,(\mathrm{U}-\mathrm{L}+\mathrm{S}) / \mathrm{S}, 1 \\
& \mathrm{~K}=\mathrm{K}+\mathrm{N} \\
& \ldots=\mathrm{A}(\mathrm{~K}) \\
& \mathrm{I}=\mathrm{I}+1 \\
& \text { ENDDO }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}=1 \\
& \text { DO } \mathrm{i}=1,(\mathrm{U}-\mathrm{L}+\mathrm{S}) / \mathrm{S}, 1 \\
& \quad \ldots=\mathrm{A}(\mathrm{~K}+\mathrm{i} * \mathrm{~N}) \\
& \text { ENDDO } \\
& \mathrm{K}=\mathrm{K}+(\mathrm{U}-\mathrm{L}+\mathrm{S}) / \mathrm{S} * \mathrm{~N} \\
& \mathrm{I}=\mathrm{I}+(\mathrm{U}-\mathrm{L}+\mathrm{S}) / \mathrm{S}
\end{aligned}
$$

Summary

- Transformations to put more subscripts into standard form
- Induction Variable Substitution
- Loop Normalization
- Related optimizations
\square Constant Propagation, redundancy elimination, deadcode elimination
\square Do loop normalization before inductionvariable substitution
- Try eliminate symbolic loop steps
\square Leave optimizations to compilers?

