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Enhancing Fine-
Grained Parallelism

Loop vectorization,
Loop distribution,
Scalar expansion

Scalar and array renaming
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Fine-Grained Parallelism
 Theorem 2.8. A sequential loop can be converted to a

parallel loop if the loop carries no dependence.
 Fine-grained parallelism (vectorization)

 Want to convert loops like:
DO I=1,N

X(I) = X(I) + C
ENDDO
to X(1:N) = X(1:N) + C    (Fortran 77 to Fortran 90)

 However:
DO I=1,N

X(I+1) = X(I) + C
ENDDO

 Techniques to enhance fine-grained parallelism
 Goal: make more inside loops parallelizable
 Transform loops: Loop distribution, loop interchange
 Transform data: scalar Expansion, scalar and array renaming

is not equivalent to X(2:N+1) = X(1:N) + C
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Loop Distribution
 Can dependence-carrying loops be vectorized?

  D0 I = 1, N
S1   A(I+1) = B(I) + C
S2   D(I) = A(I) + E

ENDDO

 Safety of loop distribution
 There must be no dependence cycle connecting

statements in different loops after distribution
DO I = 1, N
S1 A(I+1) = B(I) + C
S2 B(I+1) = A(I) + E
ENDDO

DO I = 1, N
S1  A(I+1) = B(I) + C

ENDDO
DO I = 1, N

S2      D(I) = A(I) + E
ENDDOLeads to:

S1  A(2:N+1) = B(1:N) + C
S2  D(1:N) = A(1:N) + E
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Loop Interchange
 Most statements are surrounds by more than one

loops
DO I = 1, N
   DO J = 1, M

S1    A(I+1,J) = A(I,J) + B
   ENDDO
ENDDO

 Dependence from S1 to itself carried by outer loop
 Inner loop can be parallelized

DO I = 1, N
S1   A(I+1,1:M) = A(I,1:M) + B

ENDDO
 Loop interchange: change the nesting order of loops
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Applying Loop Distribution
 procedure codegen(R, k, D);

   R:code to transform; k: the loop level to optimize;
D:dependence graph for R

 Find strongly-connected regions {S1, S2, ... , Sm} of D;
 Rp = reduce each Si to a single node in R

Dp = the dependence graph of Rp
 For each node pi in topological order of nodes in Dp

 Let Di be the dependence graph of pi at loop level k+1;
 if Di is cyclic then

 generate a level-k DO statement;
 codegen (pi, k+1, Di);
 generate the level-k ENDDO statement;

 else
 Try to vectorize inner loops in pi
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Loop Distribution and Vectorization

DO I = 1, 100
S1  X(I) = Y(I) + 10

 DO J = 1, 100
S2     B(J) = A(J,N)

 DO K = 1, 100
S3       A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4     Y(I+J) = A(J+1, N)

 ENDDO
ENDDO
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Loop Distribution and Vectorization

DO I = 1, 100
  DO J = 1, 100
     codegen({S2, S3}, 3})
  ENDDO
S4  Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

•  codegen ({S2, S3, S4}, 2})

•  level-1 dependences are stripped
off
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Loop Distribution and Vectorization
•  codegen ({S2, S3}, 3})

•  level-2 dependences are stripped
off

DO I = 1, 100
  DO J = 1, 100
    B(J) = A(J,N)
    A(J+1,1:100)=B(J)+C(J,1:100)

  ENDDO

  Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

DO I = 1, 100
S1   X(I) = Y(I) + 10

 DO J = 1, 100
S2     B(J) = A(J,N)

   DO K = 1, 100
S3       A(J+1,K)=B(J)+C(J,K)

   ENDDO
S4     Y(I+J) = A(J+1, N)

 ENDDO
ENDDO
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Loop Interchange
 A reordering transformation that

 Changes the nesting order of loops
 Example

 DO I = 1, N
    DO J = 1, M
S       A(I,J+1) = A(I,J) + B           • Direction vector:  (=, <)
     ENDDO
  ENDD

 After loop interchange
 DO J = 1, M
    DO I = 1, N
S      A(I,J+1) = A(I,J) + B             • Direction vector: (<, =)
    ENDDO
 ENDDO

 Leads to DO J = 1, M
S   A(1:N,J+1) = A(1:N,J) + B
ENDDO
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Safety of Loop Interchange
 Not all loop interchanges are safe

DO J = 1, M
   DO I = 1, N
      A(I,J+1) = A(I+1,J) + B     Direction vector: (<, >)
   ENDDO
ENDDO
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Loop Interchange: Safety
 Direction matrix of a loop nest contains

 A row for each dependence direction vector between
statements contained in the nest.
   DO I = 1, N

              DO J = 1, M
                    DO K = 1, L
                        A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)
                    ENDDO
                ENDDO
         ENDDO

 The direction matrix for the loop nest is:

 Theorem 5.2 A permutation of the loops in a
perfect nest is legal if and only if
 the direction matrix, after the same permutation is

applied to its columns, has no ">" direction as the
leftmost non-"=" direction in any row.

<  <  =
<  =  >
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Loop Interchange: Profitability
 Profitability depends on architecture

 DO I = 1, N
    DO J = 1, M
       DO K = 1, L
S          A(I+1,J+1,K) = A(I,J,K) + B

 For SIMD machines with large number of FU’s:
  DO I = 1, N
S     A(I+1,2:M+1,1:L) = A(I,1:M,1:L) + B

 For Vector machines: vectorize loops with stride-one access
DO J = 1, M
   DO K = 1, L
S      A(2:N+1,J+1,K) = A(1:N,J,K) + B

 For MIMD machines with vector execution units:  cut down
synchronization costs

 PARALLEL DO K = 1, L
     DO J = 1, M
         A(2:N+1,J+1,K) = A(1:N,J,K) + B
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Loop Shifting
 Goal: move loops to “optimal” nesting levels

 Apply loop interchange repeatedly when safe

 Theorem 5.3 In a perfect loop nest, if loops at
level i, i+1,...,i+n  carry no dependence, it is
always legal to shift these loops inside of loop
i+n+1. Furthermore, these loops will not carry
any dependences in their new position.
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Loop Selection
 Consider:

    DO I = 1, N
      DO J = 1, M
S        A(I+1,J+1) = A(I,J) + A(I+1,J)
      ENDDO
  ENDDO

 Direction matrix:
 Interchanging the loops can lead to:

   DO J = 1, M
       A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
   ENDDO

 Which loop to shift?
 Select a loop at nesting level p ≥ k that can be safely moved

outward to level k and shift the loops at level k, k+1, …, p-1
inside it

<   <
=   <
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Heuristics for selecting loop level
 Goal: maximize # of parallel loops inside

 If the level-k loop carries no dependence,
 let p be the level of the outermost loop that carries a

dependence
 If the level-k loop carries a dependence,

 let p be the outermost loop that can be safely shifted
outward to position k and that carries a dependence
direction vector d which has "=" in every position but the
pth. If no such loop exists, let p = k.

             =    =    <   >   = . . .
            =    =    =   <   < . . .
            =    =    <   =   = . . . Direction vector

Loop p
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Loop Shifting Example
 DO I = 1, N
   DO J = 1, N
      DO K = 1, N
S         A(I,J) = A(I,J) + B(I,K)*C(K,J)

 S has true, anti and output dependences on itself
 Vectorization fails as recurrence exists at innermost level

 Use loop shifting to move K-loop to the outermost
 DO K= 1, N
    DO I = 1, N
      DO J = 1, N
S        A(I,J) = A(I,J) + B(I,K)*C(K,J)

  Parallelization is now possible
  DO K = 1, N
    FORALL J=1,N
       A(1:N,J) = A(1:N,J) + B(1:N,K)*C(K,J)
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Vectorization with Loop Shifting
if pi is cyclic then
     if k is the deepest loop in pi
        then try_recurrence_breaking(pi, D, k)
     else begin
        select_loop_and_interchange(pi, D, k);
        generate a level-k DO statement;
        let Di be the dependence graph consisting of
           all dependence edges in D that are at level
           k+1 or greater and are internal to pi;
        codegen (pi, k+1, Di);
        generate the level-k ENDDO statement
     end
 end
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Scalar Expansion
DO I = 1, N
S1     T$(I) = A(I)
S2     A(I) = B(I)
S3     B(I) = T$(I)
    ENDDO
    T = T$(N)

DO I = 1, N
S1     T = A(I)
S2     A(I) = B(I)
S3     B(I) = T
    ENDDO

 Goal: remove anti-dependences inside loops
 Use a different memory location (indexed by loop iterations)

for each new value
 Can eliminate dependence cycles inside loops

 Not profitable is scalar variables carry true dependences
 Dependences due to reuse of values must be preserved

S1     T$(1:N) = A(1:N)
S2     A(1:N) = B(1:N)
S3     B(1:N) = T$(1:N)
       T = T$(N)
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Profitability of Scalar Expansion
 Consider:
    DO I = 1, N
      T = T + A(I) + A(I+1)
      A(I) = T
  ENDDO

 Scalar expansion gives us:
   T$(0) = T
   DO I = 1, N
S1      T$(I) = T$(I-1) + A(I) + A(I+1)
S2      A(I) = T$(I)
   ENDDO
   T = T$(N)

 Cannot eliminate the dependence cycle
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Scalar Expansion: Tradeoffs
 Expansion increases memory requirements
 Solutions:

 Expand in a single loop
 Strip mine loop before expansion
 Forward substitution:

 DO I = 1, N
    T = A(I) + A(I+1)
    A(I) = T + B(I)
 ENDDO

 DO I = 1, N
    A(I) = A(I) + A(I+1) + B(I)
 ENDDO

DO I1 = 1, N, 10
   DO I=I1,I1+9
      T = A(I) + A(I+1)
      A(I) = T + B(I)
   ENDDO
 ENDDO

After strip-mining
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covering

not covering

Scalar Expansion:
Covering Definitions
 A definition S of variable x is a covering definition for loop L

 If no other definition of x at the beginning of L can reach uses
of x(S) in L

 That is, if inside L, all uses of x reachable from S has a single
definition S (can we apply forward expression substitution?)

   DO I = 1, 100
S1     T = X(I)
S2     Y(I) = T
   ENDDO
   DO I = 1, 100
      IF (A(I) .GT. 0) THEN
S1        T = X(I)
S2        Y(I) = T
      ENDIF
      Y(I) = T
   ENDDO
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Scalar Expansion: Covering
Definitions
 A single covering definition may not exist for a loop L

 To form a collection of covering definitions, we can insert
dummy assignments:

    DO I = 1, 100
       IF (A(I) .GT. 0) THEN
S1           T = X(I)
       ELSE
S2           T = T
       ENDIF
S3     Y(I) = T
    ENDDO

 To compute a set of covering definitions for variable x in L
 Find the first definition S1 of x in L
 Find all the paths that circumvent S1 to reach uses of x
 Insert a dummy assignment for x in each of the path found
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Scalar Expansion Using
Covering Definitions
 Given a set C of covering definitions for variable T,

assuming loop L has been normalized
 Create an array T$ of appropriate length
 For each S in the covering definition collection C,

 replace T on the left-hand side by T$(I).

 For every use of T in the loop body reachable by C
 If the use is after C in the loop body, replace T by T$(I)
 If the use is before C in the loop body, replace T by T$(I-1)

 If definitions before the loop L can reach use of T in L,
insert T$(0) = T before the loop L

 If T is used after loop L, insert T=T$(U) after the loop,
where U is the loop upper bound
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Scalar Expansion: Covering
Definitions
   DO I = 1, 100

   IF (A(I) .GT. 0) THEN
S1      T = X(I)
      ENDIF
S2    Y(I) = T
    ENDDO

DO I = 1, 100
       IF (A(I) .GT. 0) THEN
S1           T = X(I)
       ELSE
S2           T = T
       ENDIF
S3     Y(I) = T
    ENDDO

T$(0) = T
DO I = 1, 100
      IF (A(I) .GT. 0) THEN
S1          T$(I) = X(I)
      ELSE
            T$(I) = T$(I-1)
      ENDIF
S2    Y(I) = T$(I)
ENDDO

After inserting covering definitions:

After scalar expansion:
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Scalar Renaming
DO I = 1, 100
S1    T1 = A(I) + B(I)
S2    C(I) = T1 + T1
S3    T2 = D(I) - B(I)
S4    A(I+1) = T2 * T2
  ENDDO

DO I = 1, 100
S1    T = A(I) + B(I)
S2    C(I) = T + T
S3    T = D(I) - B(I)
S4    A(I+1) = T * T
  ENDDO

 Goal: partition defs/uses into equivalent classes, each of
which can occupy different memory locations:
 Pick a definition S, add all uses that S reaches
 Add all definitions that reach any of the uses…
 ..until fixed point is reached

 Often done by compilers when calculating live ranges for
register allocation

S3      T2$(1:100) = D(1:100) - B(1:100)
S4      A(2:101) = T2$(1:100) * T2$(1:100)
S1      T1$(1:100) = A(1:100) + B(1:100)
S2      C(1:100) = T1$(1:100) + T1$(1:100)
        T = T2$(100)
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Array Renaming
  DO I = 1, N
S1      A(I) = A(I-1) + X
S2      Y(I) = A(I) + Z
S3      A(I) = B(I) + C
  ENDDO

 S1 δ∞ S2    S2 δ∞-1 S3    S3 δ1 S1   S1 δ∞0 S3

 Rename A(I) to A$(I):
   DO I = 1, N
S1      A$(I) = A(I-1) + X
S2      Y(I) = A$(I) + Z
S3      A(I) = B(I) + C
   ENDDO

 Dependences remaining:   S1 δ∞ S2   and  S3 δ1 S1
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Array Renaming: Profitability
 Examining dependence graph and determining

minimum set of critical edges to break a
recurrence is NP-complete!

 Solution:
 Determine edges that are removed by array renaming
 Analyze effects on dependence graph

 Algorithm (assumes no control flow in loop body)
 Identify collections of array references which refer to the

same value
 Identify output and anti-dependences to eliminate
 When renaming arrays, minimize amount of copying

back to the “original” array at the beginning and the end
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So Far...
 Uncovering potential vectorization in loops by

 Loop Distribution
 Loop Interchange
 Scalar Expansion
 Scalar and Array Renaming

 More transformations
 Loop Skewing
 Node Splitting
 Recognition of Reductions
 Index-Set Splitting
 Run-time Symbolic Resolution

 Putting it together



29

Loop Skewing
 Reshape Iteration

Space to uncover
parallelism
DO I = 1, N

DO J = 1, N
(=,<)

S:A(I,J)=A(I-1,J)+A(I,J-1)
(<,=)

ENDDO
ENDDO
 Dependence Matrix

 Parallelism not apparent

1 0
0 1
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Loop Skewing Transformation
 Skew iterations of inner loop

based on outer loop
 J goes from I+1,I+N instead of

1,N
DO I = 1, N
   DO j = I+1, I+N

  (=,<)
S:  A(I,j-I)=A(I-1,j-I)+A(I,j-I-1)

  (<,<)
ENDDO

ENDDO
 NOTE: dependence matrix

changes

1 0
0 1

1 1
0 1*

1 1
0 1=
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Loop Skewing + Loop Interchange
DO I = 1, N

DO j = I+1, I+N
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO
ENDDO
Loop interchange to..
DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO
ENDDO
Vectorize to..
DO j = 2, N+N

FORALL I = max(1,j-N), min(N,j-1)
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

END FORALL
ENDDO

 Disadvantages:
 After interchange, inner

loop evaluates different
numbers of iterations

 Outer loop needs twice
as much number of
iterations

 Not profitable if N is
small

 If vector startup time is
more than speedup
time, this is not
profitable

 Vector bounds must be
recomputed on each
iteration of outer loop

 Apply loop skewing if
everything else fails
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Node Splitting
DO I = 1, N 
S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32
ENDDO

 Recurrence kept intact by
renaming algorithm
 Antidependence and true

dependence involving the
same statement

 Make copy of the source
data of antidependence
 Anti-dependence now

involves a different stmt
 Goal: break dependence

cycle

DO I = 1, N
S1’:X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32
ENDDO

Vectorized to

X$(1:N) = X(2:N+1)
X(2:N+1) = B(1:N) + 32
A(1:N) = X$(1:N) + X(1:N)
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Node Splitting
 Determining minimal set of critical

antidependences is in NP-C
 Perfect job of Node Splitting is difficult

 Heuristic:
 Select antidependences
 Delete it to see if acyclic
 If acyclic, apply Node Splitting
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Recognition of Reductions
 Reducing an array of values into a single value

 Sum, min/max, count reductions
S = 0.0
DO I = 1, N 

S = S + A(I)
ENDDO

 Assuming commutativity and associativity
S = 0.0
DO k = 1, 4

SUM(k) = 0.0
ENDDO
DO I = 1, N, 4

 SUM(1:3) = SUM(1:3) + A(I:I+3)
ENDDO
DO k = 1, 4

S = S + SUM(k)
ENDDO

Not directly vectorizable

Useful for vector machines with 4 stage pipeline
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DO I = 1, N
   S = S + A(I)
   T(I) = S
ENDDO

Recognition of Reductions
 Reduction recognized by

 Presence of self true, output and anti
dependences

 Absence of other true dependences

DO I = 1, N

S = S + A(I)

ENDDO
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Index-set Splitting
 Subdivide loop into

different iteration
ranges to achieve
partial parallelization
 Loop Peeling [Weak Zero

SIV]

 Threshold Analysis
[Strong SIV, Weak Crossing SIV]

 Section Based Splitting
[Variation of loop peeling]

 Loop Peeling
 Source of dependence is

a single iteration
DO I = 1, N 

A(I) = A(I) + A(1)
ENDDO
Loop peeled to..
A(1) = A(1) + A(1)
DO I = 2, N 

A(I) = A(I) + A(1)
ENDDO
Vectorize to..
A(1) = A(1) + A(1)
A(2:N)= A(2:N) + A(1)
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Threshold Analysis
 Threshold Analysis

DO I = 1, 100 
A(I+20) = A(I) + B

ENDDO
Strip mine to..
DO I = 1, 100, 20

DO i = I, I+19 
A(i+20) = A(i) + B

ENDDO
ENDDO
Vectorize to..
DO I = 1, 100, 20
  A(I+20:I+39) =

A(I:I+19)+B

 Crossing thresholds
DO I = 1, 100 

A(100-I) = A(I) + B
ENDDO
Strip mine to..
DO I = 1, 100, 50

DO i = I, I+49 
A(101-i) = A(i) + B

ENDDO
ENDDO
Vectorize to..
DO I = 1, 100, 50 
  A(101-I:51-I) = A(I:I+49)+B
ENDDO
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Section-based Splitting
DO I = 1, N

DO J = 1, N/2 
S1:  B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N 

S2:  A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

 J Loop bound by
recurrence due to B

 Only a portion of B is
responsible for it

 Partition second loop into
loop that uses result of S1
and loop that does not
DO I = 1, N

DO J = 1, N/2 
S1:  B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2 

S2:  A(J,I+1) = B(J,I) + D
ENDDO
DO J = N/2+1, N 

S3:  A(J,I+1) = B(J,I) + D
ENDDO

ENDDO
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Run-time Symbolic Resolution
 Breaking conditions

DO I = 1, N 
A(I+L) = A(I) + B(I)

ENDDO
Transformed to..
IF(L.LE.0) THEN

A(L:N+L)=A(1:N)+B(1:N)
ELSE

DO I = 1, N 
A(I+L) = A(I) + B(I)

ENDDO
ENDIF

 Identifying minimum
number of breaking
conditions to break a
recurrence is in NP-
Complete

 Heuristic:
 Identify when a critical

dependence can be
conditionally eliminated
via a breaking condition
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Putting It All Together
 Good Part

 Many transformations
imply more choices to
exploit parallelism

 Bad Part
 Choosing the right

transformation
 How to automate

transformation selection?
 Interference between

transformations
 An effective optimization

algorithm must
 Take a global view of

transformed code
 Know the architecture of

the target machine

 Example of Interference
DO I = 1, N

DO J = 1, M 
S(I) = S(I) + A(I,J)

ENDDO
ENDDO
Sum Reduction gives..
DO I = 1, N 

S(I) = S(I) + SUM(A(I,1:M))
ENDDO
While Loop Interchange and

Vectorization gives..
DO J = 1, N 

S(1:N) = S(1:N) + A(1:N,J)
ENDDO
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Performance on Benchmark


