Enhancing Fine-Grained Parallelism

Loop vectorization, Loop distribution, Scalar expansion Scalar and array renaming

Fine-Grained Parallelism

- Theorem 2.8. A sequential loop can be converted to a parallel loop if the loop carries no dependence.
- Fine-grained parallelism (vectorization)
 - Want to convert loops like:

```
DO I=1,NX(I) = X(I) + C
```

```
ENDDO
```

- to X(1:N) = X(1:N) + C (Fortran 77 to Fortran 90)
- However:

```
DO I=1,N

X(I+1) = X(I) + C

ENDDO

is not equivalent to X(2:N+1) = X(1:N) + C
```

- Techniques to enhance fine-grained parallelism
 - Goal: make more inside loops parallelizable
 - Transform loops: Loop distribution, loop interchange
 - Transform data: scalar Expansion, scalar and array renaming

Loop Distribution

Can dependence-carrying loops be vectorized?

```
D0 I = 1, N
S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E
ENDDO
```

Leads to:

```
DO I = 1, N

S_1 A(I+1) = B(I) + C

ENDDO

DO I = 1, N

S_2 D(I) = A(I) + E

ENDDO
```

Safety of loop distribution

 $S_1 = B(1:N) + C$

 $S_{2} D(1:N) = A(1:N) + E$

There must be no dependence cycle connecting statements in different loops after distribution
 DO I = 1, N
 S1 A(I+1) = B(I) + C
 S2 B(I+1) = A(I) + E
 FNDDO

Loop Interchange

Most statements are surrounds by more than one loops

```
DO I = 1, N

DO J = 1, M

S1 A(I+1,J) = A(I,J) + B

ENDDO

ENDDO
```

Dependence from S1 to itself carried by outer loop

Inner loop can be parallelized

```
DO I = 1, N
S1 A(I+1,1:M) = A(I,1:M) + B
ENDDO
```

Loop interchange: change the nesting order of loops

Applying Loop Distribution

procedure codegen(R, k, D);

R:code to transform; k: the loop level to optimize; D:dependence graph for R

- Find strongly-connected regions {S1, S2, ..., Sm} of D;
- Rp = reduce each Si to a single node in R Dp = the dependence graph of Rp
- For each node pi in topological order of nodes in Dp
 Let Di be the dependence graph of pi at loop level k+1;
 - if Divise available them
 - if Di is cyclic then
 - generate a level-k DO statement;
 - codegen (pi, k+1, Di);
 - generate the level-k ENDDO statement;
 - else
 - Try to vectorize inner loops in pi

Loop Distribution and Vectorization

DO I = 1, 100

$$S_1 X(I) = Y(I) + 10$$

DO J = 1, 100
 $S_2 B(J) = A(J,N)$
DO K = 1, 100
 $S_3 A(J+1,K) = B(J) + C(J,K)$
ENDDO
 $S_4 Y(I+J) = A(J+1, N)$
ENDDO

ENDDO

Loop Distribution and Vectorization

- *codegen* ({ S_2, S_3, S_4 }, 2})
- level-1 dependences are stripped off

```
DO I = 1, 100

DO J = 1, 100

codegen(\{S_2, S_3\}, 3\})

ENDDO

S_4 Y(I+1:I+100) = A(2:101,N)

ENDDO
```

X(1:100) = Y(1:100) + 10

Loop Distribution and Vectorization

- *codegen* ($\{S_2, S_3\}, 3\}$)
- level-2 dependences are stripped off

```
DO I = 1, 100
DO J = 1, 100
B(J) = A(J,N)
A(J+1,1:100)=B(J)+C(J,1:100)
ENDDO
Y(I+1:I+100) = A(2:101,N)
ENDDO
X(1:100) = Y(1:100) + 10
```

```
DO I = 1, 100

S_1 \quad X(I) = Y(I) + 10

DO J = 1, 100

S_2 \quad B(J) = A(J,N)

DO K = 1, 100

S_3 \quad A(J+1,K)=B(J)+C(J,K)

ENDDO

S_4 \quad Y(I+J) = A(J+1, N)

ENDDO

ENDDO
```


Loop Interchange

- A reordering transformation that
 - Changes the nesting order of loops

Example

```
DOI = 1, N
     DOJ = 1, M
   S A(I,J+1) = A(I,J) + B • Direction vector: (=, <)
      ENDDO
    ENDD
After loop interchange
```

- DOJ = 1, MDO I = 1, N
- S A(I,J+1) = A(I,J) + B Direction vector: (<, =) **ENDDO**

- **ENDDO**
- Leads to DO J = 1, M S A(1:N,J+1) = A(1:N,J) + B**ENDDO**

Safety of Loop Interchange

Not all loop interchanges are safe

```
DOJ = 1, M
 DO I = 1, N
   A(I,J+1) = A(I+1,J) + B Direction vector: (<, >)
  ENDDO
ENDDO
```

J = 4S(1,4)S(2,4)S(3,4) S(4,4)J = 3S(1,3)(S(2,3))(S(3,3))S(4,3)J = 2S(1,2) S(2,2) S(3,2) S(4,2) J = 1S(1,1)S(2,1) S(3,1)S(4,1)I = 1I = 2I = 3I = 4

10

Loop Interchange: Safety

Direction matrix of a loop nest contains

A row for each dependence direction vector between statements contained in the nest.

```
DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO

ENDDO

ENDDO
```

```
ENDDO

The direction matrix for the loop nest is: \begin{pmatrix} < & < & = \\ < & = & > \end{pmatrix}
```

- Theorem 5.2 A permutation of the loops in a perfect nest is legal if and only if
 - the direction matrix, after the same permutation is applied to its columns, has no ">" direction as the leftmost non-"=" direction in any row.

Loop Interchange: Profitability

```
Profitability depends on architecture
       DOI = 1, N
         DO J = 1, M
           DO K = 1, L
       S
             A(I+1,J+1,K) = A(I,J,K) + B
For SIMD machines with large number of FU's:
        DOI = 1, N
           A(I+1,2:M+1,1:L) = A(I,1:M,1:L) + B
       S
For Vector machines: vectorize loops with stride-one access
       DO J = 1, M
          DO K = 1, L
              A(2:N+1,J+1,K) = A(1:N,J,K) + B
       S
For MIMD machines with vector execution units: cut down
  synchronization costs
        PARALLEL DO K = 1, L
          DOJ = 1, M
            A(2:N+1,J+1,K) = A(1:N,J,K) + B
```

Loop Shifting

Goal: move loops to "optimal" nesting levels

- Apply loop interchange repeatedly when safe
- Theorem 5.3 In a perfect loop nest, if loops at level i, i+1,...,i+n carry no dependence, it is always legal to shift these loops inside of loop i+n+1. Furthermore, these loops will not carry any dependences in their new position.

Loop Selection

Consider:
 DO I = 1, N
 DO J = 1, M
 S A(I+1,J+1) = A(I,J) + A(I+1,J)
 ENDDO
 ENDDO
 ENDDO
 Interchanging the loops can lead to:
 DO J = 1, M
 A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
 ENDDO

- Which loop to shift?
 - Select a loop at nesting level p ≥ k that can be safely moved outward to level k and shift the loops at level k, k+1, ..., p-1 inside it

Heuristics for selecting loop level

- **Goal:** maximize *#* of parallel loops inside
 - If the level-k loop carries no dependence,
 - let p be the level of the outermost loop that carries a dependence
 - If the level-k loop carries a dependence,
 - let p be the outermost loop that can be safely shifted outward to position k and that carries a dependence direction vector d which has "=" in every position but the pth. If no such loop exists, let p = k.

Loop Shifting Example

DOI = 1, NDOJ = 1, NDO K = 1, NA(I,J) = A(I,J) + B(I,K)*C(K,J)S S has true, anti and output dependences on itself Vectorization fails as recurrence exists at innermost level Use loop shifting to move K-loop to the outermost DO K= 1, N DOI = 1, NDOJ = 1, NA(I,J) = A(I,J) + B(I,K)*C(K,J)S Parallelization is now possible DO K = 1, NFORALL J=1,N A(1:N,J) = A(1:N,J) + B(1:N,K)*C(K,J)

Vectorization with Loop Shifting

if **p**, is cyclic then if k is the deepest loop in p, then try recurrence breaking (p_i, D, k) else begin select loop and interchange(p, D, k); generate a level-k DO statement; let D_i be the dependence graph consisting of all dependence edges in D that are at level k+1 or greater and are internal to p_i ; codegen $(p_i, k+1, D_i);$ generate the level-k ENDDO statement end

end

Scalar Expansion

□ Goal: remove anti-dependences inside loops

- Use a different memory location (indexed by loop iterations) for each new value
- Can eliminate dependence cycles inside loops
- Not profitable is scalar variables carry true dependences
 - Dependences due to reuse of values must be preserved

Profitability of Scalar Expansion

Consider:

```
DO I = 1, N

T = T + A(I) + A(I+1)

A(I) = T

ENDDO
```


Scalar expansion gives us:

```
T$(0) = T

DO I = 1, N

S_{1} T$(I) = T$(I-1) + A(I) + A(I+1)

S_{2} A(I) = T$(I)

ENDDO

T = T$(N)
```

Cannot eliminate the dependence cycle

Scalar Expansion: Tradeoffs

- Expansion increases memory requirements
- Solutions:
 - Expand in a single loop
 - Strip mine loop before expansion
 - Forward substitution:

```
DO I = 1, N

T = A(I) + A(I+1)

A(I) = T + B(I)

ENDDO
```

DO I = 1, N A(I) = A(I) + A(I+1) + B(I) ENDDO After strip-mining DO I1 = 1, N, 10DO I = 11 I1 + 0

```
DO I=I1,I1+9

T = A(I) + A(I+1)

A(I) = T + B(I)

ENDDO

ENDDO
```

Scalar Expansion: Covering Definitions

- A definition S of variable x is a covering definition for loop L
 - If no other definition of x at the beginning of L can reach uses of x(S) in L
 - That is, if inside L, all uses of x reachable from S has a single definition S (can we apply forward expression substitution?)

```
DO I = 1, 100

S1 T = X(I) \checkmark

S2 Y(I) = T

ENDDO

DO I = 1, 100

IF (A(I) .GT. 0) THEN

S1 T = X(I) \checkmark

S2 Y(I) = T

ENDIF

Y(I) = T

ENDDO
```

Scalar Expansion: Covering Definitions

- A single covering definition may not exist for a loop L
 - To form a collection of covering definitions, we can insert dummy assignments:

```
DO I = 1, 100
IF (A(I) .GT. 0) THEN
S1 T = X(I)
ELSE
S2 T = T
ENDIF
S3 Y(I) = T
ENDDO
```

D To compute a set of covering definitions for variable x in L

- Find the first definition S1 of x in L
- Find all the paths that circumvent S1 to reach uses of x
- Insert a dummy assignment for x in each of the path found

Scalar Expansion Using Covering Definitions

- Given a set C of covering definitions for variable T, assuming loop L has been normalized
 - Create an array T\$ of appropriate length
 - For each S in the covering definition collection C,
 replace T on the left-hand side by T\$(I).
 - For every use of T in the loop body reachable by C
 If the use is after C in the loop body, replace T by T\$(I)
 If the use is before C in the loop body, replace T by T\$(I-1)
 - If definitions before the loop L can reach use of T in L, insert T\$(0) = T before the loop L
 - If T is used after loop L, insert T=T\$(U) after the loop, where U is the loop upper bound

Scalar Expansion: Covering Definitions

DO I = 1, 100
IF (A(I) .GT. 0) THEN

$$S_1$$
 T = X(I)
ENDIF
 S_2 Y(I) = T
ENDDO

After inserting covering definitions:

```
DO I = 1, 100

IF (A(I) .GT. 0) THEN

S_1 T = X(I)

ELSE

S_2 T = T

ENDIF

S_3 Y(I) = T

ENDDO
```

```
After scalar expansion:

T$(0) = T

DO I = 1, 100

IF (A(I) .GT. 0) THEN

S_1 	T$(I) = X(I)

ELSE

T$(I) = T$(I-1)

ENDIF

S_2 	Y(I) = T$(I)

ENDDO
```

Scalar Renaming

- Goal: partition defs/uses into equivalent classes, each of which can occupy different memory locations:
 - Pick a definition S, add all uses that S reaches
 - Add all definitions that reach any of the uses...
 - ..until fixed point is reached
- Often done by compilers when calculating live ranges for register allocation

Array Renaming

```
DO I = 1, N
  A(I) = A(I-1) + X
S_1
S_2
   Y(I) = A(I) + Z
   A(I) = B(I) + C
S<sub>3</sub>
  ENDDO
   = S_1 \delta_{\infty} S_2 S_2 \delta_{\infty}^{-1} S_3 S_3 \delta_1 S_1 S_1 \delta_{\infty}^{0} S_3
\square Rename A(I) to A$(I):
   DO I = 1, N
S_1
   A$(I) = A(I-1) + X
S_2
   Y(I) = A\$(I) + Z
S_3
     A(I) = B(I) + C
   ENDDO
   • Dependences remaining: S_1 \delta_{\infty} S_2 and S_3 \delta_1 S_1
```

Array Renaming: Profitability

- Examining dependence graph and determining minimum set of critical edges to break a recurrence is NP-complete!
- Solution:
 - Determine edges that are removed by array renaming
 - Analyze effects on dependence graph
- Algorithm (assumes no control flow in loop body)
 - Identify collections of array references which refer to the same value
 - Identify output and anti-dependences to eliminate
 - When renaming arrays, minimize amount of copying back to the "original" array at the beginning and the end

So Far...

Uncovering potential vectorization in loops by

- Loop Distribution
- Loop Interchange
- Scalar Expansion
- Scalar and Array Renaming
- More transformations
 - Loop Skewing
 - Node Splitting
 - Recognition of Reductions
 - Index-Set Splitting
 - Run-time Symbolic Resolution
- Putting it together

Loop Skewing

- Reshape Iteration Space to uncover parallelism DO I = 1, N DO J = 1, N (=,<) S: A(I,J)=A(I-1,J)+A(I,J-1) (<,=) ENDDO ENDDO

 - Parallelism not apparent

Loop Skewing Transformation

- Skew iterations of inner loop based on outer loop
 J goes from I+1,I+N instead of 1,N
 DO I = 1, N
 DO j = I+1, I+N
 (=,<)
 S: A(I,j-I)=A(I-1,j-I)+A(I,j-I-1)
 (<,<)
 ENDDO
 ENDDO
- NOTE: dependence matrix changes

$$\left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right) * \left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right) = \left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right)$$

Loop Skewing + Loop Interchange

DO I = 1, N DO j = I+1, I+N S: A(I,j-I) = A(I-1,j-I) + A(I,j-I-1) ENDDO

```
ENDD
```

Loop interchange to..

DO j = 2, N+N DO I = max(1,j-N), min(N,j-1) S: A(I,j-I) = A(I-1,j-I) + A(I,j-I-1) ENDDO

ENDDO

Vectorize to..

DO j = 2, N+N FORALL I = max(1,j-N), min(N,j-1) S: A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)END FORALL ENDDO Disadvantages:

- After interchange, inner loop evaluates different numbers of iterations
 - Outer loop needs twice as much number of iterations
 - Not profitable if N is small
- If vector startup time is more than speedup time, this is not profitable
- Vector bounds must be recomputed on each iteration of outer loop
- Apply loop skewing if everything else fails

Node Splitting

DO I = 1, N
S1:
$$A(I) = X(I+1) + X(I)$$

S2: X(I+1) = B(I) + 32ENDDO

- Recurrence kept intact by renaming algorithm
 - Antidependence and true dependence involving the same statement
- Make copy of the source data of antidependence
 - Anti-dependence now involves a different stmt
 - Goal: break dependence cycle

Vectorized to

$$X$(1:N) = X(2:N+1)$$

 $X(2:N+1) = B(1:N) + 32$
 $A(1:N) = X$(1:N) + X(1:N)$

Node Splitting

- Determining minimal set of critical antidependences is in NP-C
 - Perfect job of Node Splitting is difficult
- Heuristic:
 - Select antidependences
 - Delete it to see if acyclic
 - If acyclic, apply Node Splitting

Recognition of Reductions

- Reducing an array of values into a single value
 - Sum, min/max, count reductions S = 0.0DOI = 1, NS = S + A(I)

Not directly vectorizable

```
ENDDO
```

Assuming commutativity and associativity

```
S = 0.0
DO k = 1, 4
 SUM(k) = 0.0
FNDDO
DO I = 1, N, 4
  SUM(1:3) = SUM(1:3) + A(I:I+3)
ENDDO
               Useful for vector machines with 4 stage pipeline
DO k = 1, 4
 S = S + SUM(k)
ENDDO
```

Recognition of Reductions

Reduction recognized by

- Presence of self true, output and anti dependences
- Absence of other true dependences

DO I = 1, N

$$S = S + A(I)$$

ENDDO

DO I = 1, N

$$S = S + A(I)$$

 $T(I) = S$
ENDDO

Index-set Splitting

- Subdivide loop into different iteration ranges to achieve partial parallelization
 - Loop Peeling [Weak Zero SIV]
 - Threshold Analysis
 [Strong SIV, Weak Crossing SIV]
 - Section Based Splitting [Variation of loop peeling]

Loop Peeling

 Source of dependence is a single iteration

```
DO I = 1, N
```

```
A(I) = A(I) + A(1)
```

ENDDO

Loop peeled to..

```
A(1) = A(1) + A(1)

DO I = 2, N

A(I) = A(I) + A(1)

ENDDO

Vectorize to..

A(1) = A(1) + A(1)
```

```
A(2:N) = A(2:N) + A(1)
```

Threshold Analysis

```
Threshold Analysis
   DO I = 1, 100
       A(I+20) = A(I) + B
   ENDDO
   Strip mine to..
   DO I = 1, 100, 20
     DO i = I, I+19
       A(i+20) = A(i) + B
      ENDDO
   ENDDO
   Vectorize to ...
   DO I = 1, 100, 20
     A(I+20:I+39) =
     A(I:I+19)+B
```

```
Crossing thresholds
   DO I = 1, 100
       A(100-I) = A(I) + B
   ENDDO
   Strip mine to..
   DO I = 1, 100, 50
      DO i = I, I+49
       A(101-i) = A(i) + B
      ENDDO
   ENDDO
   Vectorize to..
   DO I = 1, 100, 50
     A(101-I:51-I) = A(I:I+49)+B
   ENDDO
```

Section-based Splitting

```
DO I = 1, N
DO J = 1, N/2
S1: B(J,I) = A(J,I) + C
ENDDO
DO J = 1, N
S2: A(J,I+1) = B(J,I) + D
ENDDO
ENDDO
```

- J Loop bound by recurrence due to B
- Only a portion of B is responsible for it

```
Partition second loop into
  loop that uses result of S1
  and loop that does not
   DO I = 1, N
     DO J = 1, N/2
   S1: B(J,I) = A(J,I) + C
      FNDDO
     DO J = 1, N/2
   S2: A(J,I+1) = B(J,I) + D
     ENDDO
      DO J = N/2+1, N
   S3: A(J,I+1) = B(J,I) + D
      FNDDO
   ENDDO
```

Run-time Symbolic Resolution

Breaking conditions
Identifying minimum

```
DO I = 1, N
```

```
A(I+L) = A(I) + B(I)
ENDDO
```

```
Transformed to..
```

```
IF(L.LE.0) THEN
```

```
A(L:N+L)=A(1:N)+B(1:N)
ELSE
```

```
DO I = 1, N
```

```
A(I+L) = A(I) + B(I)
ENDDO
```

```
ENDIF
```

- Identifying minimum number of breaking conditions to break a recurrence is in NP-Complete
- Heuristic:
 - Identify when a critical dependence can be conditionally eliminated via a breaking condition

Putting It All Together

- Good Part
 - Many transformations imply more choices to exploit parallelism
- Bad Part
 - Choosing the right transformation
 - How to automate transformation selection?
 - Interference between transformations
- An effective optimization algorithm must
 - Take a global view of transformed code
 - Know the architecture of the target machine

D Example of Interference

```
DO I = 1, N
  DO J = 1, M
    S(I) = S(I) + A(I,J)
  ENDDO
ENDDO
Sum Reduction gives..
DO I = 1, N
  S(I) = S(I) + SUM(A(I,1:M))
ENDDO
While Loop Interchange and
  Vectorization gives..
DO J = 1, N
  S(1:N) = S(1:N) + A(1:N,J)
ENDDO
```

Performance on Benchmark

Vectorizing	Total			Dependence			Vectorization			Idioms			Completeness		
Compiler	V	Р	Ν	V	Р	Ν	v	Р	Ν	V	Р	Ν	V	Р	Ν
PFC	70	6	24	17	0	7	25	4	5	5	0	10	23	2	2
Alliant FX/8, Fortran V4.0	68	5	27	19	0	5	20	5	9	10	0	5	19	0	8
Amdahl VP-E, Fortran 77	62	11	27	16	1	7	21	8	5	11	1	3	14	1	12
Ardent Titan-1	62	6	32	18	0	6	19	5	10	9	0	6	16	1	10
CDC Cyber 205, VAST-2	62	5	33	16	0	8	20	5	9	7	0	8	19	0	8
CDC Cyber 990E/995E	25	11	64	8	0	16	6	8	20	3	1	11	8	2	17
Convex C Series, FC 5.0	69	5	26	17	0	7	25	4	5	11	0	4	16	1	10
Cray series, CF77 V3.0	69	3	28	20	0	4	18	3	13	9	0	6	22	0	5
CRAX X-MP, CFT V1.15	50	1	49	16	0	8	12	1	21	10	0	5	12	0	15
Cray Series, CFT77 V3.0	50	1	49	17	0	7	8	1	25	7	0	8	18	0	9
CRAY-2, CFT2 V3.1a	27	1	72	5	0	19	3	1	30	8	0	7	11	0	16
ETA-10, FTN 77 V1.0	62	7	31	18	0	6	18	7	9	7	0	8	19	0	8
Gould NP1, GCF 2.0	60	7	33	14	0	10	19	7	8	8	0	7	19	0	8
Hitachi S-810/820,	67	4	29	14	0	10	24	4	6	14	0	1	15	0	12
IBM 3090/VF, VS Fortran	52	4	44	12	0	12	19	3	12	5	1	9	16	0	11
Intel iPSC/2-VX, VAST-2	56	8	36	15	0	9	17	8	9	6	0	9	18	0	9
NEC SX/2, F77/SX	66	5	29	17	0	7	21	5	8	12	0	3	16	0	11
SCS-40, CFT x13g	24	1	75	7	0	17	6	1	27	5	0	10	6	0	21
Stellar GS 1000, F77	48	11	41	14	0	10	20	9	5	4	1	10	10	1	16
Unisys ISP, UFTN 4.1.2	67	13	20	21	3	0	19	8	7	10	2	3	17	0	10

41