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Enhancing Fine-
Grained Parallelism

Loop vectorization,
Loop distribution,
Scalar expansion

Scalar and array renaming
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Fine-Grained Parallelism
 Theorem 2.8. A sequential loop can be converted to a

parallel loop if the loop carries no dependence.
 Fine-grained parallelism (vectorization)

 Want to convert loops like:
DO I=1,N

X(I) = X(I) + C
ENDDO
to X(1:N) = X(1:N) + C    (Fortran 77 to Fortran 90)

 However:
DO I=1,N

X(I+1) = X(I) + C
ENDDO

 Techniques to enhance fine-grained parallelism
 Goal: make more inside loops parallelizable
 Transform loops: Loop distribution, loop interchange
 Transform data: scalar Expansion, scalar and array renaming

is not equivalent to X(2:N+1) = X(1:N) + C
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Loop Distribution
 Can dependence-carrying loops be vectorized?

  D0 I = 1, N
S1   A(I+1) = B(I) + C
S2   D(I) = A(I) + E

ENDDO

 Safety of loop distribution
 There must be no dependence cycle connecting

statements in different loops after distribution
DO I = 1, N
S1 A(I+1) = B(I) + C
S2 B(I+1) = A(I) + E
ENDDO

DO I = 1, N
S1  A(I+1) = B(I) + C

ENDDO
DO I = 1, N

S2      D(I) = A(I) + E
ENDDOLeads to:

S1  A(2:N+1) = B(1:N) + C
S2  D(1:N) = A(1:N) + E
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Loop Interchange
 Most statements are surrounds by more than one

loops
DO I = 1, N
   DO J = 1, M

S1    A(I+1,J) = A(I,J) + B
   ENDDO
ENDDO

 Dependence from S1 to itself carried by outer loop
 Inner loop can be parallelized

DO I = 1, N
S1   A(I+1,1:M) = A(I,1:M) + B

ENDDO
 Loop interchange: change the nesting order of loops
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Applying Loop Distribution
 procedure codegen(R, k, D);

   R:code to transform; k: the loop level to optimize;
D:dependence graph for R

 Find strongly-connected regions {S1, S2, ... , Sm} of D;
 Rp = reduce each Si to a single node in R

Dp = the dependence graph of Rp
 For each node pi in topological order of nodes in Dp

 Let Di be the dependence graph of pi at loop level k+1;
 if Di is cyclic then

 generate a level-k DO statement;
 codegen (pi, k+1, Di);
 generate the level-k ENDDO statement;

 else
 Try to vectorize inner loops in pi
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Loop Distribution and Vectorization

DO I = 1, 100
S1  X(I) = Y(I) + 10

 DO J = 1, 100
S2     B(J) = A(J,N)

 DO K = 1, 100
S3       A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4     Y(I+J) = A(J+1, N)

 ENDDO
ENDDO
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Loop Distribution and Vectorization

DO I = 1, 100
  DO J = 1, 100
     codegen({S2, S3}, 3})
  ENDDO
S4  Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

•  codegen ({S2, S3, S4}, 2})

•  level-1 dependences are stripped
off
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Loop Distribution and Vectorization
•  codegen ({S2, S3}, 3})

•  level-2 dependences are stripped
off

DO I = 1, 100
  DO J = 1, 100
    B(J) = A(J,N)
    A(J+1,1:100)=B(J)+C(J,1:100)

  ENDDO

  Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

DO I = 1, 100
S1   X(I) = Y(I) + 10

 DO J = 1, 100
S2     B(J) = A(J,N)

   DO K = 1, 100
S3       A(J+1,K)=B(J)+C(J,K)

   ENDDO
S4     Y(I+J) = A(J+1, N)

 ENDDO
ENDDO
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Loop Interchange
 A reordering transformation that

 Changes the nesting order of loops
 Example

 DO I = 1, N
    DO J = 1, M
S       A(I,J+1) = A(I,J) + B           • Direction vector:  (=, <)
     ENDDO
  ENDD

 After loop interchange
 DO J = 1, M
    DO I = 1, N
S      A(I,J+1) = A(I,J) + B             • Direction vector: (<, =)
    ENDDO
 ENDDO

 Leads to DO J = 1, M
S   A(1:N,J+1) = A(1:N,J) + B
ENDDO
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Safety of Loop Interchange
 Not all loop interchanges are safe

DO J = 1, M
   DO I = 1, N
      A(I,J+1) = A(I+1,J) + B     Direction vector: (<, >)
   ENDDO
ENDDO
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Loop Interchange: Safety
 Direction matrix of a loop nest contains

 A row for each dependence direction vector between
statements contained in the nest.
   DO I = 1, N

              DO J = 1, M
                    DO K = 1, L
                        A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)
                    ENDDO
                ENDDO
         ENDDO

 The direction matrix for the loop nest is:

 Theorem 5.2 A permutation of the loops in a
perfect nest is legal if and only if
 the direction matrix, after the same permutation is

applied to its columns, has no ">" direction as the
leftmost non-"=" direction in any row.

<  <  =
<  =  >



12

Loop Interchange: Profitability
 Profitability depends on architecture

 DO I = 1, N
    DO J = 1, M
       DO K = 1, L
S          A(I+1,J+1,K) = A(I,J,K) + B

 For SIMD machines with large number of FU’s:
  DO I = 1, N
S     A(I+1,2:M+1,1:L) = A(I,1:M,1:L) + B

 For Vector machines: vectorize loops with stride-one access
DO J = 1, M
   DO K = 1, L
S      A(2:N+1,J+1,K) = A(1:N,J,K) + B

 For MIMD machines with vector execution units:  cut down
synchronization costs

 PARALLEL DO K = 1, L
     DO J = 1, M
         A(2:N+1,J+1,K) = A(1:N,J,K) + B
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Loop Shifting
 Goal: move loops to “optimal” nesting levels

 Apply loop interchange repeatedly when safe

 Theorem 5.3 In a perfect loop nest, if loops at
level i, i+1,...,i+n  carry no dependence, it is
always legal to shift these loops inside of loop
i+n+1. Furthermore, these loops will not carry
any dependences in their new position.
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Loop Selection
 Consider:

    DO I = 1, N
      DO J = 1, M
S        A(I+1,J+1) = A(I,J) + A(I+1,J)
      ENDDO
  ENDDO

 Direction matrix:
 Interchanging the loops can lead to:

   DO J = 1, M
       A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
   ENDDO

 Which loop to shift?
 Select a loop at nesting level p ≥ k that can be safely moved

outward to level k and shift the loops at level k, k+1, …, p-1
inside it

<   <
=   <
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Heuristics for selecting loop level
 Goal: maximize # of parallel loops inside

 If the level-k loop carries no dependence,
 let p be the level of the outermost loop that carries a

dependence
 If the level-k loop carries a dependence,

 let p be the outermost loop that can be safely shifted
outward to position k and that carries a dependence
direction vector d which has "=" in every position but the
pth. If no such loop exists, let p = k.

             =    =    <   >   = . . .
            =    =    =   <   < . . .
            =    =    <   =   = . . . Direction vector

Loop p
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Loop Shifting Example
 DO I = 1, N
   DO J = 1, N
      DO K = 1, N
S         A(I,J) = A(I,J) + B(I,K)*C(K,J)

 S has true, anti and output dependences on itself
 Vectorization fails as recurrence exists at innermost level

 Use loop shifting to move K-loop to the outermost
 DO K= 1, N
    DO I = 1, N
      DO J = 1, N
S        A(I,J) = A(I,J) + B(I,K)*C(K,J)

  Parallelization is now possible
  DO K = 1, N
    FORALL J=1,N
       A(1:N,J) = A(1:N,J) + B(1:N,K)*C(K,J)
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Vectorization with Loop Shifting
if pi is cyclic then
     if k is the deepest loop in pi
        then try_recurrence_breaking(pi, D, k)
     else begin
        select_loop_and_interchange(pi, D, k);
        generate a level-k DO statement;
        let Di be the dependence graph consisting of
           all dependence edges in D that are at level
           k+1 or greater and are internal to pi;
        codegen (pi, k+1, Di);
        generate the level-k ENDDO statement
     end
 end
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Scalar Expansion
DO I = 1, N
S1     T$(I) = A(I)
S2     A(I) = B(I)
S3     B(I) = T$(I)
    ENDDO
    T = T$(N)

DO I = 1, N
S1     T = A(I)
S2     A(I) = B(I)
S3     B(I) = T
    ENDDO

 Goal: remove anti-dependences inside loops
 Use a different memory location (indexed by loop iterations)

for each new value
 Can eliminate dependence cycles inside loops

 Not profitable is scalar variables carry true dependences
 Dependences due to reuse of values must be preserved

S1     T$(1:N) = A(1:N)
S2     A(1:N) = B(1:N)
S3     B(1:N) = T$(1:N)
       T = T$(N)
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Profitability of Scalar Expansion
 Consider:
    DO I = 1, N
      T = T + A(I) + A(I+1)
      A(I) = T
  ENDDO

 Scalar expansion gives us:
   T$(0) = T
   DO I = 1, N
S1      T$(I) = T$(I-1) + A(I) + A(I+1)
S2      A(I) = T$(I)
   ENDDO
   T = T$(N)

 Cannot eliminate the dependence cycle
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Scalar Expansion: Tradeoffs
 Expansion increases memory requirements
 Solutions:

 Expand in a single loop
 Strip mine loop before expansion
 Forward substitution:

 DO I = 1, N
    T = A(I) + A(I+1)
    A(I) = T + B(I)
 ENDDO

 DO I = 1, N
    A(I) = A(I) + A(I+1) + B(I)
 ENDDO

DO I1 = 1, N, 10
   DO I=I1,I1+9
      T = A(I) + A(I+1)
      A(I) = T + B(I)
   ENDDO
 ENDDO

After strip-mining
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covering

not covering

Scalar Expansion:
Covering Definitions
 A definition S of variable x is a covering definition for loop L

 If no other definition of x at the beginning of L can reach uses
of x(S) in L

 That is, if inside L, all uses of x reachable from S has a single
definition S (can we apply forward expression substitution?)

   DO I = 1, 100
S1     T = X(I)
S2     Y(I) = T
   ENDDO
   DO I = 1, 100
      IF (A(I) .GT. 0) THEN
S1        T = X(I)
S2        Y(I) = T
      ENDIF
      Y(I) = T
   ENDDO



22

Scalar Expansion: Covering
Definitions
 A single covering definition may not exist for a loop L

 To form a collection of covering definitions, we can insert
dummy assignments:

    DO I = 1, 100
       IF (A(I) .GT. 0) THEN
S1           T = X(I)
       ELSE
S2           T = T
       ENDIF
S3     Y(I) = T
    ENDDO

 To compute a set of covering definitions for variable x in L
 Find the first definition S1 of x in L
 Find all the paths that circumvent S1 to reach uses of x
 Insert a dummy assignment for x in each of the path found
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Scalar Expansion Using
Covering Definitions
 Given a set C of covering definitions for variable T,

assuming loop L has been normalized
 Create an array T$ of appropriate length
 For each S in the covering definition collection C,

 replace T on the left-hand side by T$(I).

 For every use of T in the loop body reachable by C
 If the use is after C in the loop body, replace T by T$(I)
 If the use is before C in the loop body, replace T by T$(I-1)

 If definitions before the loop L can reach use of T in L,
insert T$(0) = T before the loop L

 If T is used after loop L, insert T=T$(U) after the loop,
where U is the loop upper bound
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Scalar Expansion: Covering
Definitions
   DO I = 1, 100

   IF (A(I) .GT. 0) THEN
S1      T = X(I)
      ENDIF
S2    Y(I) = T
    ENDDO

DO I = 1, 100
       IF (A(I) .GT. 0) THEN
S1           T = X(I)
       ELSE
S2           T = T
       ENDIF
S3     Y(I) = T
    ENDDO

T$(0) = T
DO I = 1, 100
      IF (A(I) .GT. 0) THEN
S1          T$(I) = X(I)
      ELSE
            T$(I) = T$(I-1)
      ENDIF
S2    Y(I) = T$(I)
ENDDO

After inserting covering definitions:

After scalar expansion:
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Scalar Renaming
DO I = 1, 100
S1    T1 = A(I) + B(I)
S2    C(I) = T1 + T1
S3    T2 = D(I) - B(I)
S4    A(I+1) = T2 * T2
  ENDDO

DO I = 1, 100
S1    T = A(I) + B(I)
S2    C(I) = T + T
S3    T = D(I) - B(I)
S4    A(I+1) = T * T
  ENDDO

 Goal: partition defs/uses into equivalent classes, each of
which can occupy different memory locations:
 Pick a definition S, add all uses that S reaches
 Add all definitions that reach any of the uses…
 ..until fixed point is reached

 Often done by compilers when calculating live ranges for
register allocation

S3      T2$(1:100) = D(1:100) - B(1:100)
S4      A(2:101) = T2$(1:100) * T2$(1:100)
S1      T1$(1:100) = A(1:100) + B(1:100)
S2      C(1:100) = T1$(1:100) + T1$(1:100)
        T = T2$(100)
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Array Renaming
  DO I = 1, N
S1      A(I) = A(I-1) + X
S2      Y(I) = A(I) + Z
S3      A(I) = B(I) + C
  ENDDO

 S1 δ∞ S2    S2 δ∞-1 S3    S3 δ1 S1   S1 δ∞0 S3

 Rename A(I) to A$(I):
   DO I = 1, N
S1      A$(I) = A(I-1) + X
S2      Y(I) = A$(I) + Z
S3      A(I) = B(I) + C
   ENDDO

 Dependences remaining:   S1 δ∞ S2   and  S3 δ1 S1
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Array Renaming: Profitability
 Examining dependence graph and determining

minimum set of critical edges to break a
recurrence is NP-complete!

 Solution:
 Determine edges that are removed by array renaming
 Analyze effects on dependence graph

 Algorithm (assumes no control flow in loop body)
 Identify collections of array references which refer to the

same value
 Identify output and anti-dependences to eliminate
 When renaming arrays, minimize amount of copying

back to the “original” array at the beginning and the end
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So Far...
 Uncovering potential vectorization in loops by

 Loop Distribution
 Loop Interchange
 Scalar Expansion
 Scalar and Array Renaming

 More transformations
 Loop Skewing
 Node Splitting
 Recognition of Reductions
 Index-Set Splitting
 Run-time Symbolic Resolution

 Putting it together
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Loop Skewing
 Reshape Iteration

Space to uncover
parallelism
DO I = 1, N

DO J = 1, N
(=,<)

S:A(I,J)=A(I-1,J)+A(I,J-1)
(<,=)

ENDDO
ENDDO
 Dependence Matrix

 Parallelism not apparent

1 0
0 1



30

Loop Skewing Transformation
 Skew iterations of inner loop

based on outer loop
 J goes from I+1,I+N instead of

1,N
DO I = 1, N
   DO j = I+1, I+N

  (=,<)
S:  A(I,j-I)=A(I-1,j-I)+A(I,j-I-1)

  (<,<)
ENDDO

ENDDO
 NOTE: dependence matrix

changes

1 0
0 1

1 1
0 1*

1 1
0 1=
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Loop Skewing + Loop Interchange
DO I = 1, N

DO j = I+1, I+N
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO
ENDDO
Loop interchange to..
DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO
ENDDO
Vectorize to..
DO j = 2, N+N

FORALL I = max(1,j-N), min(N,j-1)
S:    A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

END FORALL
ENDDO

 Disadvantages:
 After interchange, inner

loop evaluates different
numbers of iterations

 Outer loop needs twice
as much number of
iterations

 Not profitable if N is
small

 If vector startup time is
more than speedup
time, this is not
profitable

 Vector bounds must be
recomputed on each
iteration of outer loop

 Apply loop skewing if
everything else fails
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Node Splitting
DO I = 1, N 
S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32
ENDDO

 Recurrence kept intact by
renaming algorithm
 Antidependence and true

dependence involving the
same statement

 Make copy of the source
data of antidependence
 Anti-dependence now

involves a different stmt
 Goal: break dependence

cycle

DO I = 1, N
S1’:X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32
ENDDO

Vectorized to

X$(1:N) = X(2:N+1)
X(2:N+1) = B(1:N) + 32
A(1:N) = X$(1:N) + X(1:N)
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Node Splitting
 Determining minimal set of critical

antidependences is in NP-C
 Perfect job of Node Splitting is difficult

 Heuristic:
 Select antidependences
 Delete it to see if acyclic
 If acyclic, apply Node Splitting
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Recognition of Reductions
 Reducing an array of values into a single value

 Sum, min/max, count reductions
S = 0.0
DO I = 1, N 

S = S + A(I)
ENDDO

 Assuming commutativity and associativity
S = 0.0
DO k = 1, 4

SUM(k) = 0.0
ENDDO
DO I = 1, N, 4

 SUM(1:3) = SUM(1:3) + A(I:I+3)
ENDDO
DO k = 1, 4

S = S + SUM(k)
ENDDO

Not directly vectorizable

Useful for vector machines with 4 stage pipeline
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DO I = 1, N
   S = S + A(I)
   T(I) = S
ENDDO

Recognition of Reductions
 Reduction recognized by

 Presence of self true, output and anti
dependences

 Absence of other true dependences

DO I = 1, N

S = S + A(I)

ENDDO
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Index-set Splitting
 Subdivide loop into

different iteration
ranges to achieve
partial parallelization
 Loop Peeling [Weak Zero

SIV]

 Threshold Analysis
[Strong SIV, Weak Crossing SIV]

 Section Based Splitting
[Variation of loop peeling]

 Loop Peeling
 Source of dependence is

a single iteration
DO I = 1, N 

A(I) = A(I) + A(1)
ENDDO
Loop peeled to..
A(1) = A(1) + A(1)
DO I = 2, N 

A(I) = A(I) + A(1)
ENDDO
Vectorize to..
A(1) = A(1) + A(1)
A(2:N)= A(2:N) + A(1)



37

Threshold Analysis
 Threshold Analysis

DO I = 1, 100 
A(I+20) = A(I) + B

ENDDO
Strip mine to..
DO I = 1, 100, 20

DO i = I, I+19 
A(i+20) = A(i) + B

ENDDO
ENDDO
Vectorize to..
DO I = 1, 100, 20
  A(I+20:I+39) =

A(I:I+19)+B

 Crossing thresholds
DO I = 1, 100 

A(100-I) = A(I) + B
ENDDO
Strip mine to..
DO I = 1, 100, 50

DO i = I, I+49 
A(101-i) = A(i) + B

ENDDO
ENDDO
Vectorize to..
DO I = 1, 100, 50 
  A(101-I:51-I) = A(I:I+49)+B
ENDDO
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Section-based Splitting
DO I = 1, N

DO J = 1, N/2 
S1:  B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N 

S2:  A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

 J Loop bound by
recurrence due to B

 Only a portion of B is
responsible for it

 Partition second loop into
loop that uses result of S1
and loop that does not
DO I = 1, N

DO J = 1, N/2 
S1:  B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2 

S2:  A(J,I+1) = B(J,I) + D
ENDDO
DO J = N/2+1, N 

S3:  A(J,I+1) = B(J,I) + D
ENDDO

ENDDO
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Run-time Symbolic Resolution
 Breaking conditions

DO I = 1, N 
A(I+L) = A(I) + B(I)

ENDDO
Transformed to..
IF(L.LE.0) THEN

A(L:N+L)=A(1:N)+B(1:N)
ELSE

DO I = 1, N 
A(I+L) = A(I) + B(I)

ENDDO
ENDIF

 Identifying minimum
number of breaking
conditions to break a
recurrence is in NP-
Complete

 Heuristic:
 Identify when a critical

dependence can be
conditionally eliminated
via a breaking condition
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Putting It All Together
 Good Part

 Many transformations
imply more choices to
exploit parallelism

 Bad Part
 Choosing the right

transformation
 How to automate

transformation selection?
 Interference between

transformations
 An effective optimization

algorithm must
 Take a global view of

transformed code
 Know the architecture of

the target machine

 Example of Interference
DO I = 1, N

DO J = 1, M 
S(I) = S(I) + A(I,J)

ENDDO
ENDDO
Sum Reduction gives..
DO I = 1, N 

S(I) = S(I) + SUM(A(I,1:M))
ENDDO
While Loop Interchange and

Vectorization gives..
DO J = 1, N 

S(1:N) = S(1:N) + A(1:N,J)
ENDDO
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Performance on Benchmark


