
cs6363 1

Coarse-Grained
Parallelism

Variable Privatization, Loop
Alignment, Loop Fusion, Loop

interchange and skewing, Loop
Strip-mining

cs6363 2

p1

Memory

Bus

p2 p3 p4

Introduction
 Our previous loop transformations target vector and superscalar

architectures
 Now we target symmetric multiprocessor machines
 The difference lies in the granularity of parallelism

 Symmetric multi-processors accessing a central memory
 The processors are unrelated, and can run separate processes/threads
 Starting processes and process synchronization are expensive
 Bus contention can cause slowdowns

 Program transformations
 Privatization of variables; loop alignment; shift parallel loops outside;

loop fusion

cs6363 3

Privatization of Scalar Variables
 Temporaries have separate namespaces

 Definition: A scalar variable x in a loop L is said to be
privatizable if every path from the loop entry to a use of x
inside the loop passes through a definition of x

 Alternatively, a variable x is private if the SSA graph doesn’t
contain a phi function for x at the loop entry

 Compare to the scalar expansion transformation

 DO I == 1,N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

 ENDDO

 PARALLEL DO I = 1,N

 PRIVATE t

S1 t = A(I)

S2 A(I) = B(I)

S3 B(I) = t

 ENDDO

cs6363 4

 DO I = 1,100

S0 T(1)=X

L1 DO J = 2,N

S1 T(J) = T(J-1)+B(I,J)

S2 A(I,J) = T(J)

 ENDDO

 ENDDO

Array Privatization
What about privatizing array variables?

 PARALLEL DO I = 1,100
 PRIVATE t

S0 t(1) = X

L1 DO J = 2,N

S1 t(J) = t(J-1)+B(I,J)

S2 A(I,J)=t(J)

 ENDDO

 ENDDO

cs6363 5

DO I = 2,N

 A(I) = B(I)+C(I)

 D(I) = A(I-1)*2.0

ENDDO

DO I = 1,N+1

 IF (I .GT. 1) A(I) = B(I)+C(I)

 IF (I .LE. N) D(I+1) = A(I)*2.0

ENDDO

Loop Alignment
 Many carried dependencies are due to alignment issues

 Solution: align loop iterations that access common references
 Profitability: alignment does not work if

 There is a dependence cycle
 Dependences between a pair of statements have different

distances

cs6363 6

DO I = 1,N

 A(I+1) = B(I)+C

 X(I) = A(I+1)+A(I)

ENDDO

DO I = 1,N
 A(I+1) = B(I)+C
 ! Replicated Statement
 IF (I .EQ 1) THEN
 X(I) = A(I+1)+A(1)
 ELSE
 X(I) = A(I+1)+(B(I-1)+C)
 END IF
ENDDO

Alignment and Replication
 Replicate computation in the mis-aligned iteration

Theorem: Alignment, replication, and statement reordering
are sufficient to eliminate all carried dependencies in a
single loop containing no recurrence, and in which the
distance of each dependence is a constant independent of
the loop index

cs6363 7

Loop Distribution and Fusion
 Loop distribution eliminates carried dependences

by separating them across different loops
 However, synchronization between loops may be

expensive
 Good only for fine-grained parallelism

 Coarse-grained parallelism requires sufficiently
large parallel loop bodies
 Solution: fuse parallel loops together after distribution
 Loop strip-mining can also be used to reduce

communication

 Loop fusion is often applied after loop distribution
 Regrouping of the loops by the compiler

cs6363 8

 DO I = 1,N
S1 A(I) = B(I)+C
 ENDDO
 DO I = 1,N
S2 D(I) = A(I+1)+E
 ENDDO

 DO I = 1,N

S1 A(I) = B(I)+C

S2 D(I) = A(I+1)+E

 ENDDO

Loop Fusion
 Transformation: opposite of loop distribution

 Combine a sequence of loops into a single loop
 Iterations of the original loops now intermixed with each other

 Ordering Constraint
 Cannot bypass statements with dependences both from and to the

fused loops
 Safety: cannot have fusion-preventing dependences

 Loop-independent dependences become backward carried after fusion

L1

L2 L3

Fusing L1 with L3 violates the
ordering constraint.

cs6363 9

 DO I = 1,N

S1 A(I+1) = B(I) + C

 ENDDO

 DO I = 1,N

S2 D(I) = A(I) + E

 ENDDO

 DO I = 1,N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

Loop Fusion Profitability
 Parallel loops should

generally not be merged
with sequential loops.
 A dependence is

parallelism-inhibiting if it
is carried by the fused
loop

 The carried dependence
may be realigned via Loop
alignment

 What if the loops to be
fused have different lower
and upper bounds?
 Loop alignment, peeling,

and index-set splitting

cs6363 10

The Typed Fusion Algorithm
 Input: loop dependence graph (V,E)
 Output: a new graph where loops to be fused are

merged into single nodes
 Algorithm

 Classify loops into two types: parallel and sequential
 Gather all dependences that inhibit fusion --- call them

bad edges
 Merge nodes of V subject to the following constraints

 Bad Edge Constraint: nodes joined by a bad edge cannot
be fused.

 Ordering Constraint: nodes joined by path containing non-
parallel vertex should not be fused

cs6363 11

procedure TypedFusion(V,E,B,t0)
 for each node n in V
 num[n] = 0 //the group # of n
 maxBadPrev[n]=0 //the last group non-compatible with n
 next[n]=0 //the next group non-compatible with n
 W = {all nodes with in-degree zero}; fused = 0 // last fused node
 while W isn’t empty
 remove node n from W; Mark n as processed;
 if type[n] = t0
 if maxBadPrev[n] = 0 then p ← fused
 else p ← next[maxBadPrev[n]]
 if p != 0 then num[n] = num[p]
 else { if fused != 0 then {next[fused] = n} fused=n; num[n]=fused;}
 else { num[n]=newgroup(); maxBadPrev[n]=fused; }
 for each dependence d : n -> m in E:
 if (d is a bad edge in B) maxBadPrev[m] = max(maxBadPrev[m],num[n]);
 else maxBadPrev[m] = max(maxBadPrev[m],maxBadPrev[n]);
 if all predecessors of m are processed: add m to W

Typed Fusion Procedure

cs6363 12

3

1 2

4

5 6

7 8

1,3 2

4

5,8 6

7

1 2

4 5

6

3

1.3

2,4,6

5,8

7

Original loop graph After fusing parallel loops

After fusing sequential loops

Typed Fusion Example

cs6363 13

So far…
 Single loop methods

 Privatization
 Alignment
 Loop distribution
 Loop Fusion

 Next we will cover
 Loop interchange
 Loop skewing
 Loop reversal
 Loop strip-mining
 Pipelined parallelism

cs6363 14

Loop Interchange
 Move parallel loops to outermost level

 In a perfect nest of loops, a particular loop can be
parallelized at the outermost level if and only if the
column of the direction matrix for that nest contain only
‘=‘ entries

 Example
DO I = 1, N

 DO J = 1, N
 A(I+1, J) = A(I, J) + B(I, J)
 ENDDO

ENDDO
 OK for vectorization
 Problematic for coarse-grained parallelization

 Need to move the J loop outside

cs6363 15

Loop Selection
 Generate most parallelism with adequate granularity

 Key is to select proper loops to run in parallel
 Optimality is a NP-complete problem

 Informal parallel code generation strategy
 Select parallel loops and move them to the outermost position
 Select a sequential loop to move outside and enable internal

parallelism
 Look at dependences carried by single loops and move such loops

outside
 DO I = 2, N+1

 DO J = 2, M+1
 parallel DO K = 1, L
 A(I, J, K+1) = A(I,J-1,K)+A(I-1,J,K+2)+A(I-1,J,K)
 ENDDO
 ENDDO
ENDDO

= < <
< = >
< = =

cs6363 16

= < >
< = >

Loop Reversal
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 ENDDO
 ENDDO
ENDDO

 Goal: allow a loop to be moved to the outermost
 Safe only if all dependences have >= at the loop level
DO K = L, 1, -1
 PARALLEL DO I = 2, N+1
 PARALLEL DO J = 2, M+1
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 END PARALLEL DO
 END PARALLEL DO
ENDDO

cs6363 17

= < =
< = =
= = <
= = =

Loop Skewing
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I,J-1,K) + A(I-1, J, K)
 B(I, J, K+1) = B(I, J, K) + A(I, J, K)
 ENDDO
 ENDDO
ENDDO

= < <
< = <
= = <
= = =

 Skewed using k=K+I+J:
 DO I = 2, N+1
 DO J = 2, M+1
 DO k = I+J+1, I+J+L
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
 ENDDO

cs6363 18

Loop Skewing + Interchange
DO k = 5, N+M+1
 PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
 PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
ENDDO

 Selection Heuristics
 Parallelize outermost loop if possible
 Make at most one outer loop sequential to enable

inner parallelism
 If both fails, try skewing
 If skewing fails, try minimize the number of outside

sequential loops

cs6363 19

Loop Strip Mining
 Converts available parallelism into a form more

suitable for the hardware
DO I = 1, N
 A(I) = A(I) + B(I)
ENDDO

k = CEIL (N / P)
PARALLEL DO I = 1, N, k

 DO i = I, MIN(I + k-1, N)
 A(i) = A(i) + B(i)

ENDDO
END PARALLEL DO

cs6363 20

Perfect Loop Nests
 Transformations to perfectly nested loops

 Safety can be determined using the dependence matrix of the
loop nest

 Transformed dependence matrix can be obtained via a
transformation matrix

 Examples
 loop interchange, skewing, reversal, strip-mining
 Loop blocking is combination of loop interchange and strip-mining

 A transformation matrix T is unimodular if
 T is square
 All the elements of T are integral and
 The absolute value of the determinant of T is 1
 Example unimodular transformations

 Loop interchange, loop skewing, loop reversal

 Composition of unimodular transformations is unimodular

cs6363 21

Profitability-Based Methods
 Many alternatives for parallel code generation

 Different hardware components require different
optimizations

 Fine-grained vs. coarse-grained parallelism, memory
performance

 Optimality is NP-complete
 Exponential in the number of loops in a nest
 Loop upper bounds are unknown at compile time

 Use static performance estimation functions to select the
better performing alternatives

 May not be accurate

 Key considerations
 Cost of memory references
 Sufficiency of parallelism granularity

cs6363 22

Estimating Cost of Memory
References
 Goal: assign each loop the cost of memory references when

putting the loop innermost
 At each iteration of the loop nest, compute

 How many times the memory needs to be accessed?

 Assumptions
 Data accessed in consecutive iterations are still in cache
 Data accessed in different outer-loop iterations are not in cache

 Algorithm steps
 Subdivide memory references in the loop body into reuse groups

 All references in each group are connected by dependences
 Input dependences need to be considered as well

 Determine cost of subsequent accesses to the same reference
 Loop invariant (carried only by innermost loop): Cost = 1
 unit stride: Cost=number of iterations / cache line size
 non-unit stride: Cost = number of iterations

cs6363 23

Loop Selection Based on
Memory Cost

 Assuming cache line size is L
DO I = 1, N

 DO J = 1, N
 DO K = 1, N
 C(I, J) = C(I, J) + A(I, K) * B(K, J)
 ENDDO
 ENDDO

ENDDO
 Innermost K loop = N*N*N*(1+1/L)+N*N

 cost(C)=1 cost(A)=N cost(B)=N/L
 Innermost J loop = 2*N*N*N+N*N
 Innermost I loop = 2*N*N*N/L+N*N

 Reorder loop from innermost in the order of increasing cost
 Limited by safety of loop interchange

cs6363 24

Parallel Code Generation
procedure Parallelize(L, D)
 success = ParallelizeNest(L);
 if not success then begin
 if L can be distributed then begin
 distribute L into loop nests L1, L2, …, Ln;
 for I = 1,…n, do Parallelize(li, Di);
 TypedFusion({L1, L2, …, Ln});
 else
 for each loop L0 inside L do Parallelize(Lo,D0);

cs6363 25

Multilevel Loop Fusion
 Commonly used for imperfect loop nests

 Used after maximal loop distribution

 Decision making needs look-ahead
 Heuristic: Fuse with a loop that cannot be fused with

one of its successors

cs6363 26

Pipelined Parallelism
 Useful where complete

parallelization is not available
 Higher synchronization costs
 Fortran command DOACROSS

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1,J)+A(I,J-1)

+A(I+1,J)+A(I,J+1))
 ENDDO
ENDDO

 Pipelined Parallelism
DOACROSS I = 2, N-1
 POST (EV(1))
 DO J = 2, N-1
 WAIT(EV(J-1))
 A(I, J) = .25 * (A(I-1,J) + A(I,J-1)+

A(I+1,J) + A(I,J+1))
 POST (EV(J))
 ENDDO
ENDDO

cs6363 27

Reducing Synchronization Cost
DOACROSS I = 2, N-1
 POST (E(1))
 K = 0
 DO J = 2, N-1, 2
 K = K+1
 WAIT(EV(K))
 DO j = J, MAX(J+1, N-1)
 A(I, J) = .25*(A(I-1,J) +

A(I,J-1) + A(I+1,J) + A(I,J+1)
 ENDDO
 POST (EV(K+1))
 ENDDO
ENDDO

cs6363 28

Scheduling Parallel Work
 Parallel execution is not beneficial if

 Bakery-counter scheduling has high synchronization cost

 Guided Self-Scheduling
 Minimize synchronization overhead
 Schedules groups of iterations together

 Go from large to small chunks of work

 Keep all processors busy at all times
 Iterations dispensed at time t follows:

 Alternatively we can have GSS(k) that guarantees that all
blocks handed out are of size k or greater

cs6363 29

DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
DO K = 2, N-1
 DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I,J,K)=(F(I,J,K)–A(K)*F(I,J,K-1))*B(K)
DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = 0.0
DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
DO K = 2, N-1
 DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)

Erlebacher

cs6363 30

Loop Fusion+Parallelization
PARALLEL DO J= 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
 DO K = 2, N – 1
 DO I = 1, IMAXD
 F(I, J, K) = (F(I, J, K) – A(K) * F(I, J, K-1)) * B(K)
 DO I = 1, IMAXD
 TOT(I, J) = 0.0
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
 DO K = 2, N-1
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)

cs6363 31

Multi-level Fusion
PARALLEL DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
 TOT(I, J) = 0.0
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
 ENDDO

 DO K = 2, N-1
 DO I = 1, IMAXD
 F(I, J, K) = (F(I, J, K) – A(K) * F(I, J, K-1)) * B(K)
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)
 ENDDO
 ENDDO
ENDDO

cs6363 32

