
cs6363 1

Coarse-Grained
Parallelism

Variable Privatization, Loop
Alignment, Loop Fusion, Loop

interchange and skewing, Loop
Strip-mining

cs6363 2

p1

Memory

Bus

p2 p3 p4

Introduction
 Our previous loop transformations target vector and superscalar

architectures
 Now we target symmetric multiprocessor machines
 The difference lies in the granularity of parallelism

 Symmetric multi-processors accessing a central memory
 The processors are unrelated, and can run separate processes/threads
 Starting processes and process synchronization are expensive
 Bus contention can cause slowdowns

 Program transformations
 Privatization of variables; loop alignment; shift parallel loops outside;

loop fusion

cs6363 3

Privatization of Scalar Variables
 Temporaries have separate namespaces

 Definition: A scalar variable x in a loop L is said to be
privatizable if every path from the loop entry to a use of x
inside the loop passes through a definition of x

 Alternatively, a variable x is private if the SSA graph doesn’t
contain a phi function for x at the loop entry

 Compare to the scalar expansion transformation

 DO I == 1,N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

 ENDDO

 PARALLEL DO I = 1,N

 PRIVATE t

S1 t = A(I)

S2 A(I) = B(I)

S3 B(I) = t

 ENDDO

cs6363 4

 DO I = 1,100

S0 T(1)=X

L1 DO J = 2,N

S1 T(J) = T(J-1)+B(I,J)

S2 A(I,J) = T(J)

 ENDDO

 ENDDO

Array Privatization
What about privatizing array variables?

 PARALLEL DO I = 1,100
 PRIVATE t

S0 t(1) = X

L1 DO J = 2,N

S1 t(J) = t(J-1)+B(I,J)

S2 A(I,J)=t(J)

 ENDDO

 ENDDO

cs6363 5

DO I = 2,N

 A(I) = B(I)+C(I)

 D(I) = A(I-1)*2.0

ENDDO

DO I = 1,N+1

 IF (I .GT. 1) A(I) = B(I)+C(I)

 IF (I .LE. N) D(I+1) = A(I)*2.0

ENDDO

Loop Alignment
 Many carried dependencies are due to alignment issues

 Solution: align loop iterations that access common references
 Profitability: alignment does not work if

 There is a dependence cycle
 Dependences between a pair of statements have different

distances

cs6363 6

DO I = 1,N

 A(I+1) = B(I)+C

 X(I) = A(I+1)+A(I)

ENDDO

DO I = 1,N
 A(I+1) = B(I)+C
 ! Replicated Statement
 IF (I .EQ 1) THEN
 X(I) = A(I+1)+A(1)
 ELSE
 X(I) = A(I+1)+(B(I-1)+C)
 END IF
ENDDO

Alignment and Replication
 Replicate computation in the mis-aligned iteration

Theorem: Alignment, replication, and statement reordering
are sufficient to eliminate all carried dependencies in a
single loop containing no recurrence, and in which the
distance of each dependence is a constant independent of
the loop index

cs6363 7

Loop Distribution and Fusion
 Loop distribution eliminates carried dependences

by separating them across different loops
 However, synchronization between loops may be

expensive
 Good only for fine-grained parallelism

 Coarse-grained parallelism requires sufficiently
large parallel loop bodies
 Solution: fuse parallel loops together after distribution
 Loop strip-mining can also be used to reduce

communication

 Loop fusion is often applied after loop distribution
 Regrouping of the loops by the compiler

cs6363 8

 DO I = 1,N
S1 A(I) = B(I)+C
 ENDDO
 DO I = 1,N
S2 D(I) = A(I+1)+E
 ENDDO

 DO I = 1,N

S1 A(I) = B(I)+C

S2 D(I) = A(I+1)+E

 ENDDO

Loop Fusion
 Transformation: opposite of loop distribution

 Combine a sequence of loops into a single loop
 Iterations of the original loops now intermixed with each other

 Ordering Constraint
 Cannot bypass statements with dependences both from and to the

fused loops
 Safety: cannot have fusion-preventing dependences

 Loop-independent dependences become backward carried after fusion

L1

L2 L3

Fusing L1 with L3 violates the
ordering constraint.

cs6363 9

 DO I = 1,N

S1 A(I+1) = B(I) + C

 ENDDO

 DO I = 1,N

S2 D(I) = A(I) + E

 ENDDO

 DO I = 1,N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

Loop Fusion Profitability
 Parallel loops should

generally not be merged
with sequential loops.
 A dependence is

parallelism-inhibiting if it
is carried by the fused
loop

 The carried dependence
may be realigned via Loop
alignment

 What if the loops to be
fused have different lower
and upper bounds?
 Loop alignment, peeling,

and index-set splitting

cs6363 10

The Typed Fusion Algorithm
 Input: loop dependence graph (V,E)
 Output: a new graph where loops to be fused are

merged into single nodes
 Algorithm

 Classify loops into two types: parallel and sequential
 Gather all dependences that inhibit fusion --- call them

bad edges
 Merge nodes of V subject to the following constraints

 Bad Edge Constraint: nodes joined by a bad edge cannot
be fused.

 Ordering Constraint: nodes joined by path containing non-
parallel vertex should not be fused

cs6363 11

procedure TypedFusion(V,E,B,t0)
 for each node n in V
 num[n] = 0 //the group # of n
 maxBadPrev[n]=0 //the last group non-compatible with n
 next[n]=0 //the next group non-compatible with n
 W = {all nodes with in-degree zero}; fused = 0 // last fused node
 while W isn’t empty
 remove node n from W; Mark n as processed;
 if type[n] = t0
 if maxBadPrev[n] = 0 then p ← fused
 else p ← next[maxBadPrev[n]]
 if p != 0 then num[n] = num[p]
 else { if fused != 0 then {next[fused] = n} fused=n; num[n]=fused;}
 else { num[n]=newgroup(); maxBadPrev[n]=fused; }
 for each dependence d : n -> m in E:
 if (d is a bad edge in B) maxBadPrev[m] = max(maxBadPrev[m],num[n]);
 else maxBadPrev[m] = max(maxBadPrev[m],maxBadPrev[n]);
 if all predecessors of m are processed: add m to W

Typed Fusion Procedure

cs6363 12

3

1 2

4

5 6

7 8

1,3 2

4

5,8 6

7

1 2

4 5

6

3

1.3

2,4,6

5,8

7

Original loop graph After fusing parallel loops

After fusing sequential loops

Typed Fusion Example

cs6363 13

So far…
 Single loop methods

 Privatization
 Alignment
 Loop distribution
 Loop Fusion

 Next we will cover
 Loop interchange
 Loop skewing
 Loop reversal
 Loop strip-mining
 Pipelined parallelism

cs6363 14

Loop Interchange
 Move parallel loops to outermost level

 In a perfect nest of loops, a particular loop can be
parallelized at the outermost level if and only if the
column of the direction matrix for that nest contain only
‘=‘ entries

 Example
DO I = 1, N

 DO J = 1, N
 A(I+1, J) = A(I, J) + B(I, J)
 ENDDO

ENDDO
 OK for vectorization
 Problematic for coarse-grained parallelization

 Need to move the J loop outside

cs6363 15

Loop Selection
 Generate most parallelism with adequate granularity

 Key is to select proper loops to run in parallel
 Optimality is a NP-complete problem

 Informal parallel code generation strategy
 Select parallel loops and move them to the outermost position
 Select a sequential loop to move outside and enable internal

parallelism
 Look at dependences carried by single loops and move such loops

outside
 DO I = 2, N+1

 DO J = 2, M+1
 parallel DO K = 1, L
 A(I, J, K+1) = A(I,J-1,K)+A(I-1,J,K+2)+A(I-1,J,K)
 ENDDO
 ENDDO
ENDDO

= < <
< = >
< = =

cs6363 16

= < >
< = >

Loop Reversal
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 ENDDO
 ENDDO
ENDDO

 Goal: allow a loop to be moved to the outermost
 Safe only if all dependences have >= at the loop level
DO K = L, 1, -1
 PARALLEL DO I = 2, N+1
 PARALLEL DO J = 2, M+1
 A(I, J, K) = A(I, J-1, K+1) + A(I-1, J, K+1)
 END PARALLEL DO
 END PARALLEL DO
ENDDO

cs6363 17

= < =
< = =
= = <
= = =

Loop Skewing
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I,J-1,K) + A(I-1, J, K)
 B(I, J, K+1) = B(I, J, K) + A(I, J, K)
 ENDDO
 ENDDO
ENDDO

= < <
< = <
= = <
= = =

 Skewed using k=K+I+J:
 DO I = 2, N+1
 DO J = 2, M+1
 DO k = I+J+1, I+J+L
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
 ENDDO

cs6363 18

Loop Skewing + Interchange
DO k = 5, N+M+1
 PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
 PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
ENDDO

 Selection Heuristics
 Parallelize outermost loop if possible
 Make at most one outer loop sequential to enable

inner parallelism
 If both fails, try skewing
 If skewing fails, try minimize the number of outside

sequential loops

cs6363 19

Loop Strip Mining
 Converts available parallelism into a form more

suitable for the hardware
DO I = 1, N
 A(I) = A(I) + B(I)
ENDDO

k = CEIL (N / P)
PARALLEL DO I = 1, N, k

 DO i = I, MIN(I + k-1, N)
 A(i) = A(i) + B(i)

ENDDO
END PARALLEL DO

cs6363 20

Perfect Loop Nests
 Transformations to perfectly nested loops

 Safety can be determined using the dependence matrix of the
loop nest

 Transformed dependence matrix can be obtained via a
transformation matrix

 Examples
 loop interchange, skewing, reversal, strip-mining
 Loop blocking is combination of loop interchange and strip-mining

 A transformation matrix T is unimodular if
 T is square
 All the elements of T are integral and
 The absolute value of the determinant of T is 1
 Example unimodular transformations

 Loop interchange, loop skewing, loop reversal

 Composition of unimodular transformations is unimodular

cs6363 21

Profitability-Based Methods
 Many alternatives for parallel code generation

 Different hardware components require different
optimizations

 Fine-grained vs. coarse-grained parallelism, memory
performance

 Optimality is NP-complete
 Exponential in the number of loops in a nest
 Loop upper bounds are unknown at compile time

 Use static performance estimation functions to select the
better performing alternatives

 May not be accurate

 Key considerations
 Cost of memory references
 Sufficiency of parallelism granularity

cs6363 22

Estimating Cost of Memory
References
 Goal: assign each loop the cost of memory references when

putting the loop innermost
 At each iteration of the loop nest, compute

 How many times the memory needs to be accessed?

 Assumptions
 Data accessed in consecutive iterations are still in cache
 Data accessed in different outer-loop iterations are not in cache

 Algorithm steps
 Subdivide memory references in the loop body into reuse groups

 All references in each group are connected by dependences
 Input dependences need to be considered as well

 Determine cost of subsequent accesses to the same reference
 Loop invariant (carried only by innermost loop): Cost = 1
 unit stride: Cost=number of iterations / cache line size
 non-unit stride: Cost = number of iterations

cs6363 23

Loop Selection Based on
Memory Cost

 Assuming cache line size is L
DO I = 1, N

 DO J = 1, N
 DO K = 1, N
 C(I, J) = C(I, J) + A(I, K) * B(K, J)
 ENDDO
 ENDDO

ENDDO
 Innermost K loop = N*N*N*(1+1/L)+N*N

 cost(C)=1 cost(A)=N cost(B)=N/L
 Innermost J loop = 2*N*N*N+N*N
 Innermost I loop = 2*N*N*N/L+N*N

 Reorder loop from innermost in the order of increasing cost
 Limited by safety of loop interchange

cs6363 24

Parallel Code Generation
procedure Parallelize(L, D)
 success = ParallelizeNest(L);
 if not success then begin
 if L can be distributed then begin
 distribute L into loop nests L1, L2, …, Ln;
 for I = 1,…n, do Parallelize(li, Di);
 TypedFusion({L1, L2, …, Ln});
 else
 for each loop L0 inside L do Parallelize(Lo,D0);

cs6363 25

Multilevel Loop Fusion
 Commonly used for imperfect loop nests

 Used after maximal loop distribution

 Decision making needs look-ahead
 Heuristic: Fuse with a loop that cannot be fused with

one of its successors

cs6363 26

Pipelined Parallelism
 Useful where complete

parallelization is not available
 Higher synchronization costs
 Fortran command DOACROSS

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1,J)+A(I,J-1)

+A(I+1,J)+A(I,J+1))
 ENDDO
ENDDO

 Pipelined Parallelism
DOACROSS I = 2, N-1
 POST (EV(1))
 DO J = 2, N-1
 WAIT(EV(J-1))
 A(I, J) = .25 * (A(I-1,J) + A(I,J-1)+

A(I+1,J) + A(I,J+1))
 POST (EV(J))
 ENDDO
ENDDO

cs6363 27

Reducing Synchronization Cost
DOACROSS I = 2, N-1
 POST (E(1))
 K = 0
 DO J = 2, N-1, 2
 K = K+1
 WAIT(EV(K))
 DO j = J, MAX(J+1, N-1)
 A(I, J) = .25*(A(I-1,J) +

A(I,J-1) + A(I+1,J) + A(I,J+1)
 ENDDO
 POST (EV(K+1))
 ENDDO
ENDDO

cs6363 28

Scheduling Parallel Work
 Parallel execution is not beneficial if

 Bakery-counter scheduling has high synchronization cost

 Guided Self-Scheduling
 Minimize synchronization overhead
 Schedules groups of iterations together

 Go from large to small chunks of work

 Keep all processors busy at all times
 Iterations dispensed at time t follows:

 Alternatively we can have GSS(k) that guarantees that all
blocks handed out are of size k or greater

cs6363 29

DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
DO K = 2, N-1
 DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I,J,K)=(F(I,J,K)–A(K)*F(I,J,K-1))*B(K)
DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = 0.0
DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
DO K = 2, N-1
 DO J = 1, JMAXD
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)

Erlebacher

cs6363 30

Loop Fusion+Parallelization
PARALLEL DO J= 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
 DO K = 2, N – 1
 DO I = 1, IMAXD
 F(I, J, K) = (F(I, J, K) – A(K) * F(I, J, K-1)) * B(K)
 DO I = 1, IMAXD
 TOT(I, J) = 0.0
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
 DO K = 2, N-1
 DO I = 1, IMAXD
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)

cs6363 31

Multi-level Fusion
PARALLEL DO J = 1, JMAXD
 DO I = 1, IMAXD
 F(I, J, 1) = F(I, J, 1) * B(1)
 TOT(I, J) = 0.0
 TOT(I, J) = TOT(I, J) + D(1) * F(I, J, 1)
 ENDDO

 DO K = 2, N-1
 DO I = 1, IMAXD
 F(I, J, K) = (F(I, J, K) – A(K) * F(I, J, K-1)) * B(K)
 TOT(I, J) = TOT(I, J) + D(K) * F(I, J, K)
 ENDDO
 ENDDO
ENDDO

cs6363 32

