Coarse-Grained Parallelism

Variable Privatization, Loop
Alignment, Loop Fusion, Loop interchange and skewing, Loop Strip-mining

Introduction

- Our previous loop transformations target vector and superscalar architectures
- Now we target symmetric multiprocessor machines
- The difference lies in the granularity of parallelism
- Symmetric multi-processors accessing a central memory
- The processors are unrelated, and can run separate processes/threads
- Starting processes and process synchronization are expensive
- Bus contention can cause slowdowns
- Program transformations
- Privatization of variables; loop alignment; shift parallel loops outside; loop fusion

Privatization of Scalar Variables

- Temporaries have separate namespaces
- Definition: A scalar variable x in a loop L is said to be privatizable if every path from the loop entry to a use of x inside the loop passes through a definition of x
- Alternatively, a variable x is private if the SSA graph doesn't contain a phi function for x at the loop entry
- Compare to the scalar expansion transformation

```
DO I == 1,N
    T = A(I)
    A(I) = B(I)
    B(I) = T
ENDDO
```

```
PARALLEL DO I = 1,N
    PRIVATE t
```

$B(I)=t$S1S2S3

ENDDO

Array Privatization

What about privatizing array variables?

S0
L1

```
```

DO $I=1,100$

```
```

DO $I=1,100$
$T(1)=X$
$T(1)=X$
DO J $=2, N$
DO J $=2, N$
$T(J)=T(J-1)+B(I, J)$
$T(J)=T(J-1)+B(I, J)$
$A(I, J)=T(J)$
$A(I, J)=T(J)$
ENDDO
ENDDO
ENDDO

```
```

ENDDO

```
```

```
S1
S2
```


Loop Alignment

- Many carried dependencies are due to alignment issues
- Solution: align loop iterations that access common references
- Profitability: alignment does not work if
- There is a dependence cycle
- Dependences between a pair of statements have different distances

DO $I=2, N$
$A(I)=B(I)+C(I)$
$D(I)=A(I-1) * 2.0$
ENDDO

```
DO I = 1,N+1
    IF (I .GT. 1) A(I) = B(I)+C(I)
    IF (I .LE. N) D(I+1) = A(I)*2.0
```

ENDDO

Alignment and Replication

- Replicate computation in the mis-aligned iteration

```
DO I = 1,N
    A(I+1) = B(I)+C
    X(I) = A(I+1)+A(I)
```

ENDDO
DO $I=1, N$
$A(I+1)=B(I)+C$
! Replicated Statement
IF (I .EQ 1) THEN
$X(I)=A(I+1)+A(1)$
ELSE
$X(I)=A(I+1)+(B(I-1)+C)$
END IF

ENDDO

Theorem: Alignment, replication, and statement reordering are sufficient to eliminate all carried dependencies in a single loop containing no recurrence, and in which the distance of each dependence is a constant independent of the loop index

Loop Distribution and Fusion

- Loop distribution eliminates carried dependences by separating them across different loops
- However, synchronization between loops may be expensive
- Good only for fine-grained parallelism
- Coarse-grained parallelism requires sufficiently large parallel loop bodies
- Solution: fuse parallel loops together after distribution
- Loop strip-mining can also be used to reduce communication
- Loop fusion is often applied after loop distribution
- Regrouping of the loops by the compiler

Loop Fusion

- Transformation: opposite of loop distribution
- Combine a sequence of loops into a single loop
- Iterations of the original loops now intermixed with each other
- Ordering Constraint
- Cannot bypass statements with dependences both from and to the fused loops
- Safety: cannot have fusion-preventing dependences
- Loop-independent dependences become backward carried after fusion

Fusing L1 with L3 violates the ordering constraint.

```
DO \(\mathrm{I}=1, \mathrm{~N}\)
    \(A(I)=B(I)+C\)
    ENDDO
    DO \(\mathrm{I}=1, \mathrm{~N}\)
S2
    \(D(I)=A(I+1)+E\)
    ENDDO
```

```
DO I = 1,N
S1 A(I) = B(I)+C
S2 D(I) = A(I+1)+E
ENDDO
```


Loop Fusion Profitability

- Parallel loops should generally not be merged with sequential loops.
- A dependence is parallelism-inhibiting if it is carried by the fused loop
- The carried dependence may be realigned via Loop alignment
- What if the loops to be fused have different lower and upper bounds?
- Loop alignment, peeling, and index-set splitting

DO I $=1, N$
S 1 $A(I+1)=B(I)+C$

ENDDO

DO I $=1, N$
$D(I)=A(I)+E$
ENDDO

```
DO I = 1,N
    A(I+1) = B(I) + C
    D(I) = A(I) + E
```

S1
ENDDO

The Typed Fusion Algorithm

\square Input: loop dependence graph (V,E)

- Output: a new graph where loops to be fused are merged into single nodes
- Algorithm
- Classify loops into two types: parallel and sequential
- Gather all dependences that inhibit fusion --- call them bad edges
- Merge nodes of V subject to the following constraints
\square Bad Edge Constraint: nodes joined by a bad edge cannot be fused.
\square Ordering Constraint: nodes joined by path containing nonparallel vertex should not be fused

Typed Fusion Procedure

```
procedure TypedFusion(V,E,B,t0)
    for each node n in V
        num[n] = \(0 / /\) the group \# of \(n\)
        \(\operatorname{maxBadPrev}[\mathrm{n}]=0 / /\) the last group non-compatible with n
        next \([\mathrm{n}]=0 / /\) the next group non-compatible with n
    \(\mathrm{W}=\{\) all nodes with in-degree zero \(\}\); fused \(=0 / /\) last fused node
    while W isn't empty
        remove node n from W ; Mark n as processed;
        if type[n] = t0
            if maxBadPrev[n] \(=0\) then \(\mathrm{p} \leftarrow\) fused
            else \(\mathrm{p} \leftarrow \operatorname{next[maxBadPrev[n]]~}\)
            if \(\mathrm{p}!=0\) then num[ n\(]=\) num[ p\(]\)
            else \(\{\) if fused \(!=0\) then \(\{\) next[fused] \(=n\}\) fused \(=n\); num[ \(n]=\) fused; \(\}\)
        else \(\{\) num[n]=newgroup(); maxBadPrev[n]=fused; \}
        for each dependence \(\mathrm{d}: \mathrm{n}->\mathrm{m}\) in E :
            if ( d is a bad edge in B ) maxBadPrev[m] = max (maxBadPrev[m],num[n]);
            else maxBadPrev[m] = max (maxBadPrev[m],maxBadPrev[n]);
            if all predecessors of m are processed: add m to W
```


Typed Fusion Example

Original loop graph

After fusing parallel loops

After fusing sequential loops

So far

- Single loop methods
- Privatization
- Alignment
- Loop distribution
- Loop Fusion
- Next we will cover
- Loop interchange
- Loop skewing
- Loop reversal
- Loop strip-mining
- Pipelined parallelism

Loop Interchange

- Move parallel loops to outermost level
- In a perfect nest of loops, a particular loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contain only '=' entries
- Example

$$
\begin{aligned}
& D O I=1, N \\
& \quad D O J=1, N \\
& \quad A(I+1, J)=A(I, J)+B(I, J)
\end{aligned}
$$

ENDDO

ENDDO

- OK for vectorization
- Problematic for coarse-grained parallelization
\square Need to move the J loop outside

Loop Selection

- Generate most parallelism with adequate granularity
- Key is to select proper loops to run in parallel
- Optimality is a NP-complete problem
- Informal parallel code generation strategy
- Select parallel loops and move them to the outermost position
- Select a sequential loop to move outside and enable internal parallelism
- Look at dependences carried by single loops and move such loops outside
DO I = 2, N+1
DO J = 2, M+1 parallel DO K = 1, L
$A(I, J, K+1)=A(I, J-1, K)+A(I-1, J, K+2)+A(I-1, J, K)$ ENDDO ENDDO
ENDDO

Loop Reversal

```
DO I = 2, N+1
        DO J = 2, M+1
            DO K = 1, L
                \(A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)\)
            ENDDO
        ENDDO
\[
\binom{=<>}{<=>}
\]
```

ENDDO

- Goal: allow a loop to be moved to the outermost
- Safe only if all dependences have >= at the loop level

DO K = L, 1, -1
PARALLEL DO I = 2, N+1
PARALLEL DO $\mathrm{J}=2, \mathrm{M}+1$
$\mathrm{A}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{A}(\mathrm{I}, \mathrm{J}-1, \mathrm{~K}+1)+\mathrm{A}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)$
END PARALLEL DO
END PARALLEL DO
ENDDO

Loop Skewing

$$
\begin{aligned}
& \text { DO } \mathrm{I}=2, \mathrm{~N}+1 \\
& \text { DO }=2, \mathrm{M}+1 \\
& \mathrm{DOK}=1, \mathrm{~L} \\
& \mathrm{~A}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})=\mathrm{A}(\mathrm{I}, \mathrm{~J}-1, \mathrm{~K})+\mathrm{A}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}) \\
& \mathrm{B}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}+1)=\mathrm{B}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{A}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}) \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned} \quad\left(\begin{array}{l}
=<= \\
<== \\
==< \\
===
\end{array}\right)
$$

ENDDO

- Skewed using $k=K+I+J$:

$$
\begin{aligned}
& \text { DO } \mathrm{I}=2, \mathrm{~N}+1 \\
& \mathrm{DO} \mathrm{~J}=2, \mathrm{M}+1 \\
& \mathrm{DO} \mathrm{k}=\mathrm{I}+\mathrm{J}+1, \mathrm{I}+\mathrm{J}+\mathrm{L} \\
& \mathrm{~A}(\mathrm{I}, \mathrm{~J}, \mathrm{k}-\mathrm{I}-\mathrm{J})=\mathrm{A}(\mathrm{I}, \mathrm{~J}-1, \mathrm{k}-\mathrm{I}-\mathrm{J})+\mathrm{A}(\mathrm{I}-1, \mathrm{~J}, \mathrm{k}-\mathrm{I}-\mathrm{J}) \\
& \mathrm{B}(\mathrm{I}, \mathrm{~J}, \mathrm{k}-\mathrm{I}-\mathrm{J}+1)=\mathrm{B}(\mathrm{I}, \mathrm{~J}, \mathrm{k}-\mathrm{I}-\mathrm{J})+\mathrm{A}(\mathrm{I}, \mathrm{~J}, \mathrm{k}-\mathrm{I}-\mathrm{J}) \\
& \quad \text { ENDDO }
\end{aligned} \quad \begin{aligned}
& =\ll \\
& \text { ENDDO }
\end{aligned} \quad \begin{aligned}
& =\ll \\
& \text { ENDDO }
\end{aligned}
$$

Loop Skewing + Interchange

```
DO k = 5,N+M+1
    PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
        PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
            A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
            B}(\textrm{I},\textrm{J},\textrm{k}-\textrm{I}-\textrm{J}+1)=B(I,J, k-I-J) + A(I, J, k-I-J)
        ENDDO
        ENDDO
ENDDO
```

- Selection Heuristics
- Parallelize outermost loop if possible
- Make at most one outer loop sequential to enable inner parallelism
- If both fails, try skewing
- If skewing fails, try minimize the number of outside sequential loops

Loop Strip Mining

- Converts available parallelism into a form more suitable for the hardware

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1, \mathrm{~N} \\
& \quad \mathrm{~A}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) \\
& \text { ENDDO } \\
& \mathrm{k}=\mathrm{CEIL}(\mathrm{~N} / \mathrm{P}) \\
& \text { PARALLEL DO } \mathrm{I}=1, \mathrm{~N}, \mathrm{k} \\
& \mathrm{DO} \mathrm{i}=\mathrm{I}, \mathrm{MIN}(\mathrm{I}+\mathrm{k}-1, \mathrm{~N}) \\
& \quad \mathrm{A}(\mathrm{i})=\mathrm{A}(\mathrm{i})+\mathrm{B}(\mathrm{i}) \\
& \quad \text { ENDDO } \\
& \text { END PARALLEL DO }
\end{aligned}
$$

Perfect Loop Nests

- Transformations to perfectly nested loops
- Safety can be determined using the dependence matrix of the loop nest
- Transformed dependence matrix can be obtained via a transformation matrix
- Examples
- loop interchange, skewing, reversal, strip-mining
- Loop blocking is combination of loop interchange and strip-mining
\square A transformation matrix T is unimodular if
- T is square
- All the elements of T are integral and
- The absolute value of the determinant of T is 1
- Example unimodular transformations
- Loop interchange, loop skewing, loop reversal
- Composition of unimodular transformations is unimodular

Profitability-Based Methods

- Many alternatives for parallel code generation
- Different hardware components require different optimizations
\square Fine-grained vs. coarse-grained parallelism, memory performance
- Optimality is NP-complete
\square Exponential in the number of loops in a nest
- Loop upper bounds are unknown at compile time
- Use static performance estimation functions to select the better performing alternatives
- May not be accurate
- Key considerations
\square Cost of memory references
\square Sufficiency of parallelism granularity

Estimating Cost of Memory References

- Goal: assign each loop the cost of memory references when putting the loop innermost
- At each iteration of the loop nest, compute
- How many times the memory needs to be accessed?
- Assumptions
- Data accessed in consecutive iterations are still in cache
- Data accessed in different outer-loop iterations are not in cache
- Algorithm steps
- Subdivide memory references in the loop body into reuse groups
\square All references in each group are connected by dependences
- Input dependences need to be considered as well
- Determine cost of subsequent accesses to the same reference
- Loop invariant (carried only by innermost loop): Cost = 1
u unit stride: Cost=number of iterations / cache line size
- non-unit stride: Cost = number of iterations

Loop Selection Based on Memory Cost

- Assuming cache line size is L

$$
\mathrm{DO} \mathrm{I}=1, \mathrm{~N}
$$

$$
\mathrm{DO} \mathrm{~J}=1, \mathrm{~N}
$$

$$
\mathrm{DO} \mathrm{~K}=1, \mathrm{~N}
$$

$$
\mathrm{C}(\mathrm{I}, \mathrm{~J})=\mathrm{C}(\mathrm{I}, \mathrm{~J})+\mathrm{A}(\mathrm{I}, \mathrm{~K}) * \mathrm{~B}(\mathrm{~K}, \mathrm{~J})
$$

ENDDO
ENDDO
ENDDO

- Innermost K loop $=N^{*} N^{*} N^{*}(1+1 / L)+N^{*} N$
- $\operatorname{cost}(C)=1 \operatorname{cost}(A)=N \operatorname{cost}(B)=N / L$
- Innermost J loop $=2 * N * N * N+N * N$
- Innermost I loop $=2 * N * N * N / L+N * N$
- Reorder loop from innermost in the order of increasing cost
- Limited by safety of loop interchange

Parallel Code Generation

procedure Parallelize(L, D)
success = ParallelizeNest(L);
if not success then begin
if L can be distributed then begin distribute Linto loop nests L1, L2, ..., Ln; for I = 1,...n, do Parallelize(li, Di);
TypedFusion(\{L1, L2, ..., Ln\});
else
for each loop LO inside L do Parallelize(Lo,D0);

Multilevel Loop Fusion

- Commonly used for imperfect loop nests
- Used after maximal loop distribution

- Decision making needs look-ahead
- Heuristic: Fuse with a loop that cannot be fused with one of its successors

Pipelined Parallelism

- Useful where complete parallelization is not available
- Higher synchronization costs
- Fortran command DOACROSS

DO I = 2, N-1 DO J = 2, N-1
$\mathrm{A}(\mathrm{I}, \mathrm{J})=.25$ * $(\mathrm{A}(\mathrm{I}-1, \mathrm{~J})+\mathrm{A}(\mathrm{I}, \mathrm{J}-1)$
$+A(I+1, J)+A(I, J+1))$
ENDDO
ENDDO

- Pipelined Parallelism

DOACROSS I = 2, N-1
POST (EV(1))
DO J = 2, N-1
WAIT(EV(J-1))
$\mathrm{A}(\mathrm{I}, \mathrm{J})=.25 *(\mathrm{~A}(\mathrm{I}-1, \mathrm{~J})+\mathrm{A}(\mathrm{I}, \mathrm{J}-1)+$ $A(I+1, J)+A(I, J+1))$

POST (EV(J))
ENDDO
ENDDO
cs6363

Reducing Synchronization Cost

DOACROSS $I=2, N-1$
POST (E(1))
$K=0$
DO $J=2, N-1,2$
$K=K+1$
WAIT(EV(K))
DO $\mathrm{j}=\mathrm{J}, \operatorname{MAX}(\mathrm{J}+1, \mathrm{~N}-1)$ $A(I, J)=.25^{*}(A(I-1, J)+$
$A(I, J-1)+A(I+1, J)+A(I, J+1)$
ENDDO
POST (EV(K+1))

ENDDO

ENDDO

Scheduling Parallel Work

- Parallel execution is not beneficial if $\sigma_{0} \geq(N B) / p$
- Bakery-counter scheduling has high synchronization cost
- Guided Self-Scheduling
- Minimize synchronization overhead
- Schedules groups of iterations together
\square Go from large to small chunks of work
- Keep all processors busy at all times
- Iterations dispensed at time tollows: $x=\left\lceil\frac{N_{t}}{p}\right\rceil$
\square Alternatively we can have GSS(k) that guarantees that all blocks handed out are of size k or greater

Erlebacher

```
DO J = 1, JMAXD
    DO I = 1, IMAXD
        \(\mathrm{F}(\mathrm{I}, \mathrm{J}, 1)=\mathrm{F}(\mathrm{I}, \mathrm{J}, 1) * \mathrm{~B}(1)\)
DO K \(=2, \mathrm{~N}-1\)
    DO J = 1, JMAXD
        DO I = 1, IMAXD
\(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})=(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{A}(\mathrm{K}) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)) * \mathrm{~B}(\mathrm{~K})\)
DO J = 1, JMAXD
    DO I = 1, IMAXD
        \(\operatorname{TOT}(\mathrm{I}, \mathrm{J})=0.0\)
DO J = 1, JMAXD
    DO I = 1, IMAXD
        \(\operatorname{TOT}(\mathrm{I}, \mathrm{J})=\operatorname{TOT}(\mathrm{I}, \mathrm{J})+\mathrm{D}(1) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, 1)\)
DO K = 2, N-1
    DO J = 1, JMAXD
        DO I = 1, IMAXD
            \(\mathrm{TOT}(\mathrm{I}, \mathrm{J})=\mathrm{TOT}(\mathrm{I}, \mathrm{J})+\mathrm{D}(\mathrm{K}) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
```


Loop Fusion+Parallelization

PARALLEL DO J= 1, JMAXD
DO I = 1, IMAXD

$$
\mathrm{F}(\mathrm{I}, \mathrm{~J}, 1)=\mathrm{F}(\mathrm{I}, \mathrm{~J}, 1) * \mathrm{~B}(1)
$$

DO $K=2, N-1$
DO I = 1, IMAXD

$$
F(I, J, K)=(F(I, J, K)-A(K) * F(I, J, K-1)) * B(K)
$$

DO I = 1, IMAXD

$$
\operatorname{TOT}(\mathrm{I}, \mathrm{~J})=0.0
$$

DO I = 1, IMAXD
$\operatorname{TOT}(\mathrm{I}, \mathrm{J})=\operatorname{TOT}(\mathrm{I}, \mathrm{J})+\mathrm{D}(1) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, 1)$
DO K = 2, N-1

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1, \mathrm{IMAXD} \\
& \quad \operatorname{TOT}(\mathrm{I}, \mathrm{~J})=\operatorname{TOT}(\mathrm{I}, \mathrm{~J})+\mathrm{D}(\mathrm{~K}) * \mathrm{~F}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})
\end{aligned}
$$

Multi-level Fusion

```
PARALLEL DO J = 1, JMAXD
    DO I \(=1\), IMAXD
        \(\mathrm{F}(\mathrm{I}, \mathrm{J}, 1)=\mathrm{F}(\mathrm{I}, \mathrm{J}, 1) * \mathrm{~B}(1)\)
        \(\operatorname{TOT}(\mathrm{I}, \mathrm{J})=0.0\)
        \(\operatorname{TOT}(\mathrm{I}, \mathrm{J})=\operatorname{TOT}(\mathrm{I}, \mathrm{J})+\mathrm{D}(1) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, 1)\)
```

 ENDDO
 DO K = 2, N-1
 DO I = 1, IMAXD
 \(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})=(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{A}(\mathrm{K}) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, \mathrm{K}-1)) * \mathrm{~B}(\mathrm{~K})\)
 \(\operatorname{TOT}(\mathrm{I}, \mathrm{J})=\operatorname{TOT}(\mathrm{I}, \mathrm{J})+\mathrm{D}(\mathrm{K}) * \mathrm{~F}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
 ENDDO
 ENDDO
 ENDDO

