Improving Data Layout
and Register Usage

Scalar Replacement and array
copying, loop unroll-and-jam

666666

Optimizing for Register Usage

O Registers are part of the memory hierarchy

= Compare to cache, compilers have complete control over what
data to put in register

= Can use registers to hold scalar variables

o Goal: convert array references to scalars
= Dynamically determine what data to put in registers
Compare to dynamic data layout transformations
o Optimizations to improve register usage

= Scalar Replacement and array copying

Unified as dynamic memory layout optimizations

Yi LCPCO5: Applying Data Copy To Improve Memory Performance of General
Array Computations

m Unroll-and-Jam

= Other transformations
loop interchange, fusion

cs6363

Improving Memory Performance

Registers

Cache

Memory
|

processor

Registers

Cache

<+—Locality optimizations

Memory

v

\

Shared memory

{1—: Parallelization

\

cs6363

0o Computation optimizations

Loop blocking, fusion, unroll-and-jam, interchange, unrolling
Rearrange computations for better spatial and temporal locality

o Data-layout optimizations: rearrange layout of data (arrays,
linked data structures)

Static layout transformation

A single layout for global variables throughout the entire application
No additional overhead, tradeoff between different layout choices

Dynamic layout transformation

Dynamically determine how to lay out data for each computation phase
Flexible but could be expensive

o Combining computation and data transformations
Static layout transformation
Transform layout first, then computation
Dynamic layout transformation
Transform computation first, then dynamically re-arrange layout

cs6363 4

oConvert array references to scalar variables to
improve performance of register allocation

DO I =1, N
DO J =1, M
A(I) = A(I) + B(J)
ENDDO
ENDDO

o A(I) can be leftin a
register throughout the
inner loop

CcS63

o All loads and stores to A
in the inner loop have
been eliminated

o High chance of T being
allocated to a register by
register allocation

63 5

0o Array copying: dynamic layout transformation for arrays
Copy arrays into local buffers before computation
Copy modified local buffers back to array

o Previous work
Lam, Rothberg and Wolf, Temam, Granston and Jalby
Copy arrays after loop blocking
Optimizing irregular applications
Data access patterns not known until runtime
Dynamic layout transformation --- through libraries

Scalar Replacement
Equivalent to copying single array element into scalars
Carr and Kennedy: applied to inner loops

o Unify scalar replacement and array copying (Yi LCPC'05)
Improve cache and register locality
Automaticly insert copy operations to ensure safety
Heuristics to reduce buffer size and copy cost

cs6363

Array Copy: Matrix Multiplication

for (j=0; j<n; ++j)
for (k=0; k<I; ++k)
for (i=0; i<m; ++i)
Cli+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

)

o Stepl: build dependence graph
= True, output, anti and input deps between array references

= Is each dependence consistent/precise?
Dependences with constant distance?
src and sink always refer to the same memory store?

cs6363

Array Copy: Imprecise Dependences

for (j=0; j<n; ++j)
for (k=0; k<I; ++k)
for (i=0; i<m; ++i) {

C[f(i,j,m)]= C[i+j*m] + alpha * Afi+k*m]*B[k+j*I];

o Array references connected by imprecise deps
= Cannot precisely determine a mapping between subscripts
= Sometimes may refer to the same location, sometimes not

= Not safe to copy into a single buffer
Never attempt to copy them

cs6363

Safety of Applying Array Copy

for (j=0; j<n; ++j)
for (k=0; k<I; ++k)
for (i=0; i<m; ++i)
Cli+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

o Identify arrays connected by imprecise deps (cannot be copied)
= All dependences are precise in matrix multiplication
o0 Remove all cycles in the dependence graph
= Impose an order on all array references
C[i+j*m] (R) -> A[i+k*m] -> B[k+j*I] -> C[i+j*m] (W)
= Remove all back edges (no more cycles in dep graph)

o Apply typed fusion to group array references that can be copied
cs6363

Profitability of Applying Array Copy
for (j=0; j<n: ++j)* —— location to copy A
for (i=0; i<m; ++i) location to copy B

C[i+j*m] = C[i+j*m] + alpha * A[|+k*m] B[k+j*|]

o Determine the outermost Iocatlon to copy each array group
= Each group should be copied at most twice
= Before entering the outermost loop that carries array reuse cycle

O Adjust location to ensure profitability

= Enforce size limit on the buffer
constant size => scalar replacement

= Ensure reuse of copied elements
Move copy location inside loops that carry no reuse
o The transformation: insert copy instructions, replace array refs
cs6363 10

Shifting of Copy Buffer

DO I = 1, N T1=B(1)
A(I)=B(I)+B(I+1) po I =1, N
ENDDO T2=B (:I‘+‘1.)
A(I)=T1+T2
T1=T2
ENDDO

o If the outermost loop carries reuse but no reuse cycle
= Can shift values in the buffer to enable buffer reuse

= Copying between buffers are cheaper than copying from the
original array

= Copying between registers are much cheaper than loading
from memory

cs6363

Array Copy: Matrix Multiplication

A_buf[0:m*I] = A[0:m,0:l];
for (j=0; j<n; ++j) {
C_buf[0:m] = C[0:m, j*m];
for (k=0; k<I; ++k) {
B buf = B[k+j*l];
for (i=0; i<m; ++i)
C_buf[i] = C_buf[i] + alpha * A_buf[i+k*m]*B_buf;
}
C[0:m,j*m]=C_buf[0:m];

}

o Dimensionality of buffer enforced by command-line options
o Can be applied to arbitrarily shaped loop structures
o Can be applied independently or after blocking

cs6363

12

o Array copy and scalar replacement
Leave out references that cannot be copied
Prune dependence graph, remove dep cycle
Apply typed fusion to group name partitions

Select a set of name partitions using register
pressure moderation

For each selected partition
Determine the outermost position to copy
Determine buffer size. Use scalars if possible.
Insert copy operations
Replace array references with buffer references

cs6363 13

DOI =1, N*2
DOJ=1,M
A(I) = A(I) + B(J)
ENDDO
ENDDO

o Can we put B(J) into a register
and reuse the reference?

DOI =1, N¥2, 2
DOJ=1,M
A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)
ENDDO
ENDDO

o Unroll outer loop twice and then
fuse the copies of the inner loop

o Now can reuse register for B(J)
o But require one more register for A

O Goal: explore register reuse by outer loops

Compare to loop blocking

Different iterations of outer loop unrolled

Often called register blocking

May increase register pressure at the innermost loop
o Transformation: two alternative ways to get the combined result

Unroll an outer loop, apply multi-level loop fusion to the unrolled loops
Strip-mine outer loop, interchange strip loop inside, then unroll strip loop

14

Safety of Unroll-and-dam

DO I = 1, N*2 DO I =1, N*2, 2
DO J =1, M DO J =1, M
A(I+1,J-1)=A(I,J)+B(I,J) A(I+1,J-1)=A(I,J)+B(I,J)
ENDDO A(I+2,J-1)=A(I+1,J)+B(I+1,J)
ENDDO ENDDO
ENDDO

o Apply unroll-and-jam
o This is wrong!

[0 Direction vector: (<,>)
=This makes loop interchange illegal
0 Unroll-and-Jam is similar to blocking

= It must be safe to interchange the strip traversing outer loop
with the inner loop

cs6363 15

Unroll-and-Jam + Scalar Repl

DOI =1, N*2,2
DOJ=1, M
A(I) = A(I) + B(J)

A(I+1) = A(I+1) + BQJ)

ENDDO
ENDDO

DOI =1, N*2, 2
sO = A(I)
sl = A(I+1)
DOJ]J=1,M
t = B(J)
sO=s0+t
sl =s1 +t¢t
ENDDO
A(I) = sO
A(I+1) = sl
ENDDO

o0 Reduce the number of
memory loads by half

cs6363

16

Unroll-and-jam Example

DO I =1, N

’ DO I =1, N, 2
DO K =1, N DOK=1, N
A(I) = A(I) + X(I,K) A(I) = A(I) + X(I,K)
ENDDO A(I+1) = A(I+1l) + X(I+1,K)
DO J =1, M ENDDO
DO K = 1, N Do J =1, M
B(J,K) = B(J,K) + A(I) po K =1, N
B(J,K) = B(J,K) + A(I)
ENDDO B(J,K) = B(J,K) + A(I+1)
C(J,I) = B(J,N)/A(I) ENDDO
ENDDO C(J,I) = B(J,N)/A(I)
ENDDO C(J,I+1) = B(J,N)/A(I+1)
ENDDO

ENDDO

cs6363

Loop Interchange

o The order of a loop nest affect the effectiveness of register

optimization

Original: |pO I = 2, N DO J =1, M
DO J =1, M DO I =2, N
A(J,I)=A(J,I)+A(J,I-1) A(J,I)=A(J,I)+A(J,I-1)
ENDDO ENDDO
ENDDO ENDDO
— DO J = 1,M
oL . = <4 R1 = A(J,1)
Optimized: DOJ =1, M PO T = 2.8
R1 = A(J,I-1) R2=A(J,T)
Rz = A(J,1I) R2=R2+R1
R2 = R2+Rl1 A(J,T)=R2
A(J,I)=R2 R1=R2
ENDDO ENDDO
ENDDO ENDDO

o Want loops that carry dependence at innermost position

cs6363

18

Loop Fusion

DO I = 1,N
A(I) = C(I) + D(I)

ENDDO

DO I = 1,N

B(I) = C(I) - D(I)

ENDDO

If we fuse these loops, we can reuse operations in

registers:
DO I 1
A(
B (
ENDDO

H H
N

N
C(I) + D(I)
C(I) - D(I)

nn s

cs6363

19

