
cs6363 1

Improving Data Layout
and Register Usage

Scalar Replacement and array
copying, loop unroll-and-jam

cs6363 2

Optimizing for Register Usage
 Registers are part of the memory hierarchy

 Compare to cache, compilers have complete control over what
data to put in register

 Can use registers to hold scalar variables
 Goal: convert array references to scalars

 Dynamically determine what data to put in registers
 Compare to dynamic data layout transformations

 Optimizations to improve register usage
 Scalar Replacement and array copying

 Unified as dynamic memory layout optimizations
 Yi LCPC05: Applying Data Copy To Improve Memory Performance of General

Array Computations

 Unroll-and-Jam
 Other transformations

 loop interchange, fusion

cs6363 3

Improving Memory Performance

processor

Registers

 Cache

 Memory

processor

Registers

 Cache

 Memory

Shared memory

Network connection

Locality optimizations

Parallelization

Communication optimizations

cs6363 4

Compiler Optimizations For Locality
 Computation optimizations

 Loop blocking, fusion, unroll-and-jam, interchange, unrolling
 Rearrange computations for better spatial and temporal locality

 Data-layout optimizations: rearrange layout of data (arrays,
linked data structures)
 Static layout transformation

 A single layout for global variables throughout the entire application
 No additional overhead, tradeoff between different layout choices

 Dynamic layout transformation
 Dynamically determine how to lay out data for each computation phase
 Flexible but could be expensive

 Combining computation and data transformations
 Static layout transformation

 Transform layout first, then computation
 Dynamic layout transformation

 Transform computation first, then dynamically re-arrange layout

cs6363 5

Scalar Replacement

DO I = 1, N
DO J = 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

 A(I) can be left in a
register throughout the
inner loop

DO I = 1, N
T = A(I)
DO J = 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

 All loads and stores to A
in the inner loop have
been eliminated

 High chance of T being
allocated to a register by
register allocation

Convert array references to scalar variables to
improve performance of register allocation

cs6363 6

Array Copying vs. Scalar Replacement
 Array copying: dynamic layout transformation for arrays

 Copy arrays into local buffers before computation
 Copy modified local buffers back to array

 Previous work
 Lam, Rothberg and Wolf, Temam, Granston and Jalby

 Copy arrays after loop blocking
 Optimizing irregular applications

 Data access patterns not known until runtime
 Dynamic layout transformation --- through libraries

 Scalar Replacement
 Equivalent to copying single array element into scalars
 Carr and Kennedy: applied to inner loops

 Unify scalar replacement and array copying (Yi LCPC’05)
 Improve cache and register locality
 Automaticly insert copy operations to ensure safety
 Heuristics to reduce buffer size and copy cost

cs6363 7

Array Copy: Matrix Multiplication

 Step1: build dependence graph
 True, output, anti and input deps between array references
 Is each dependence consistent/precise?

 Dependences with constant distance?
 src and sink always refer to the same memory store?

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

cs6363 8

Array Copy: Imprecise Dependences

 Array references connected by imprecise deps
 Cannot precisely determine a mapping between subscripts
 Sometimes may refer to the same location, sometimes not
 Not safe to copy into a single buffer

 Never attempt to copy them

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i) {
 C[f(i,j,m)]= C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[f(i,j,m)] C[i+j*m] A[i+k*m] B[k+j*l]

Imprecise

cs6363 9

Safety of Applying Array Copy

 Identify arrays connected by imprecise deps (cannot be copied)
 All dependences are precise in matrix multiplication

 Remove all cycles in the dependence graph
 Impose an order on all array references

 C[i+j*m] (R) -> A[i+k*m] -> B[k+j*l] -> C[i+j*m] (W)
 Remove all back edges (no more cycles in dep graph)

 Apply typed fusion to group array references that can be copied

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

cs6363 10

Profitability of Applying Array Copy

 Determine the outermost location to copy each array group
 Each group should be copied at most twice
 Before entering the outermost loop that carries array reuse cycle

 Adjust location to ensure profitability
 Enforce size limit on the buffer

 constant size => scalar replacement
 Ensure reuse of copied elements

 Move copy location inside loops that carry no reuse

 The transformation: insert copy instructions, replace array refs

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

location to copy A

j i
k

k

k
k

location to copy C

location to copy B

cs6363 11

Shifting of Copy Buffer

 If the outermost loop carries reuse but no reuse cycle
 Can shift values in the buffer to enable buffer reuse
 Copying between buffers are cheaper than copying from the

original array
 Copying between registers are much cheaper than loading

from memory

DO I = 1, N
 A(I)=B(I)+B(I+1)
ENDDO

T1=B(1)
DO I = 1, N
 T2=B(I+1)
 A(I)=T1+T2
 T1=T2
ENDDO

cs6363 12

Array Copy: Matrix Multiplication

 Dimensionality of buffer enforced by command-line options
 Can be applied to arbitrarily shaped loop structures
 Can be applied independently or after blocking

A_buf[0:m*l] = A[0:m,0:l];
for (j=0; j<n; ++j) {
 C_buf[0:m] = C[0:m, j*m];
 for (k=0; k<l; ++k) {
 B_buf = B[k+j*l];
 for (i=0; i<m; ++i)
 C_buf[i] = C_buf[i] + alpha * A_buf[i+k*m]*B_buf;
 }
 C[0:m,j*m]=C_buf[0:m];
}

cs6363 13

Array Copy: Putting it together
 Array copy and scalar replacement

 Leave out references that cannot be copied
 Prune dependence graph, remove dep cycle
 Apply typed fusion to group name partitions
 Select a set of name partitions using register

pressure moderation
 For each selected partition

 Determine the outermost position to copy
 Determine buffer size. Use scalars if possible.
 Insert copy operations
 Replace array references with buffer references

cs6363 14

Loop Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M
A(I) = A(I) + B(J)

ENDDO
ENDDO
 Can we put B(J) into a register

and reuse the reference?

DO I = 1, N*2, 2
DO J = 1, M

A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO
 Unroll outer loop twice and then

fuse the copies of the inner loop
 Now can reuse register for B(J)
 But require one more register for A

 Goal: explore register reuse by outer loops
 Compare to loop blocking

 Different iterations of outer loop unrolled

 Often called register blocking
 May increase register pressure at the innermost loop

 Transformation: two alternative ways to get the combined result
 Unroll an outer loop, apply multi-level loop fusion to the unrolled loops
 Strip-mine outer loop, interchange strip loop inside, then unroll strip loop

cs6363 15

Safety of Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M
 A(I+1,J-1)=A(I,J)+B(I,J)

ENDDO
ENDDO

 Apply unroll-and-jam

DO I = 1, N*2, 2
DO J = 1, M

A(I+1,J-1)=A(I,J)+B(I,J)
A(I+2,J-1)=A(I+1,J)+B(I+1,J)

 ENDDO
ENDDO

 This is wrong!

 Direction vector: (<,>)
This makes loop interchange illegal

 Unroll-and-Jam is similar to blocking
 It must be safe to interchange the strip traversing outer loop
with the inner loop

cs6363 16

Unroll-and-Jam + Scalar Repl
DO I = 1, N*2, 2

DO J = 1, M
A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO

DO I = 1, N*2, 2
s0 = A(I)
s1 = A(I+1)
DO J = 1, M

t = B(J)
s0 = s0 + t
s1 = s1 + t

ENDDO
A(I) = s0
A(I+1) = s1

ENDDO

 Reduce the number of
memory loads by half

cs6363 17

Unroll-and-jam Example
DO I = 1, N
 DO K = 1, N
 A(I) = A(I) + X(I,K)
 ENDDO
 DO J = 1, M

DO K = 1, N
 B(J,K) = B(J,K) + A(I)
 ENDDO
 C(J,I) = B(J,N)/A(I)
 ENDDO
ENDDO

DO I = 1, N, 2
 DO K = 1, N
 A(I) = A(I) + X(I,K)
 A(I+1) = A(I+1) + X(I+1,K)
 ENDDO
 DO J = 1, M

DO K = 1, N
 B(J,K) = B(J,K) + A(I)

 B(J,K) = B(J,K) + A(I+1)
 ENDDO
 C(J,I) = B(J,N)/A(I)
 C(J,I+1) = B(J,N)/A(I+1)
 ENDDO
ENDDO

cs6363 18

DO I = 2, N
 DO J = 1, M
 A(J,I)=A(J,I)+A(J,I-1)
 ENDDO
ENDDO

DO I = 2,N
 DO J = 1, M
 R1 = A(J,I-1)
 R2 = A(J,I)
 R2 = R2+R1
 A(J,I)=R2
 ENDDO
ENDDO

DO J = 1, M
 DO I = 2, N
 A(J,I)=A(J,I)+A(J,I-1)
 ENDDO
ENDDO

DO J = 1,M
 R1 = A(J,1)
 DO I = 2,N
 R2=A(J,I)
 R2=R2+R1
 A(J,I)=R2
 R1=R2
 ENDDO
ENDDO

Original:

Optimized:

Loop Interchange
 The order of a loop nest affect the effectiveness of register

optimization

 Want loops that carry dependence at innermost position

cs6363 19

DO I = 1,N
 A(I) = C(I) + D(I)
ENDDO

DO I = 1,N
 B(I) = C(I) - D(I)
ENDDO

 If we fuse these loops, we can reuse operations in
registers:

DO I = 1,N
 A(I) = C(I) + D(I)
 B(I) = C(I) - D(I)
ENDDO

Loop Fusion

