
cs6363 1

Improving Data Layout
and Register Usage

Scalar Replacement and array
copying, loop unroll-and-jam

cs6363 2

Optimizing for Register Usage
 Registers are part of the memory hierarchy

 Compare to cache, compilers have complete control over what
data to put in register

 Can use registers to hold scalar variables
 Goal: convert array references to scalars

 Dynamically determine what data to put in registers
 Compare to dynamic data layout transformations

 Optimizations to improve register usage
 Scalar Replacement and array copying

 Unified as dynamic memory layout optimizations
 Yi LCPC05: Applying Data Copy To Improve Memory Performance of General

Array Computations

 Unroll-and-Jam
 Other transformations

 loop interchange, fusion

cs6363 3

Improving Memory Performance

processor

Registers

 Cache

 Memory

processor

Registers

 Cache

 Memory

Shared memory

Network connection

Locality optimizations

Parallelization

Communication optimizations

cs6363 4

Compiler Optimizations For Locality
 Computation optimizations

 Loop blocking, fusion, unroll-and-jam, interchange, unrolling
 Rearrange computations for better spatial and temporal locality

 Data-layout optimizations: rearrange layout of data (arrays,
linked data structures)
 Static layout transformation

 A single layout for global variables throughout the entire application
 No additional overhead, tradeoff between different layout choices

 Dynamic layout transformation
 Dynamically determine how to lay out data for each computation phase
 Flexible but could be expensive

 Combining computation and data transformations
 Static layout transformation

 Transform layout first, then computation
 Dynamic layout transformation

 Transform computation first, then dynamically re-arrange layout

cs6363 5

Scalar Replacement

DO I = 1, N
DO J = 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

 A(I) can be left in a
register throughout the
inner loop

DO I = 1, N
T = A(I)
DO J = 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

 All loads and stores to A
in the inner loop have
been eliminated

 High chance of T being
allocated to a register by
register allocation

Convert array references to scalar variables to
improve performance of register allocation

cs6363 6

Array Copying vs. Scalar Replacement
 Array copying: dynamic layout transformation for arrays

 Copy arrays into local buffers before computation
 Copy modified local buffers back to array

 Previous work
 Lam, Rothberg and Wolf, Temam, Granston and Jalby

 Copy arrays after loop blocking
 Optimizing irregular applications

 Data access patterns not known until runtime
 Dynamic layout transformation --- through libraries

 Scalar Replacement
 Equivalent to copying single array element into scalars
 Carr and Kennedy: applied to inner loops

 Unify scalar replacement and array copying (Yi LCPC’05)
 Improve cache and register locality
 Automaticly insert copy operations to ensure safety
 Heuristics to reduce buffer size and copy cost

cs6363 7

Array Copy: Matrix Multiplication

 Step1: build dependence graph
 True, output, anti and input deps between array references
 Is each dependence consistent/precise?

 Dependences with constant distance?
 src and sink always refer to the same memory store?

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

cs6363 8

Array Copy: Imprecise Dependences

 Array references connected by imprecise deps
 Cannot precisely determine a mapping between subscripts
 Sometimes may refer to the same location, sometimes not
 Not safe to copy into a single buffer

 Never attempt to copy them

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i) {
 C[f(i,j,m)]= C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[f(i,j,m)] C[i+j*m] A[i+k*m] B[k+j*l]

Imprecise

cs6363 9

Safety of Applying Array Copy

 Identify arrays connected by imprecise deps (cannot be copied)
 All dependences are precise in matrix multiplication

 Remove all cycles in the dependence graph
 Impose an order on all array references

 C[i+j*m] (R) -> A[i+k*m] -> B[k+j*l] -> C[i+j*m] (W)
 Remove all back edges (no more cycles in dep graph)

 Apply typed fusion to group array references that can be copied

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

cs6363 10

Profitability of Applying Array Copy

 Determine the outermost location to copy each array group
 Each group should be copied at most twice
 Before entering the outermost loop that carries array reuse cycle

 Adjust location to ensure profitability
 Enforce size limit on the buffer

 constant size => scalar replacement
 Ensure reuse of copied elements

 Move copy location inside loops that carry no reuse

 The transformation: insert copy instructions, replace array refs

for (j=0; j<n; ++j)
 for (k=0; k<l; ++k)
 for (i=0; i<m; ++i)
 C[i+j*m] = C[i+j*m] + alpha * A[i+k*m]*B[k+j*l];

C[i+j*m] C[i+j*m] A[i+k*m] B[k+j*l]

location to copy A

j i
k

k

k
k

location to copy C

location to copy B

cs6363 11

Shifting of Copy Buffer

 If the outermost loop carries reuse but no reuse cycle
 Can shift values in the buffer to enable buffer reuse
 Copying between buffers are cheaper than copying from the

original array
 Copying between registers are much cheaper than loading

from memory

DO I = 1, N
 A(I)=B(I)+B(I+1)
ENDDO

T1=B(1)
DO I = 1, N
 T2=B(I+1)
 A(I)=T1+T2
 T1=T2
ENDDO

cs6363 12

Array Copy: Matrix Multiplication

 Dimensionality of buffer enforced by command-line options
 Can be applied to arbitrarily shaped loop structures
 Can be applied independently or after blocking

A_buf[0:m*l] = A[0:m,0:l];
for (j=0; j<n; ++j) {
 C_buf[0:m] = C[0:m, j*m];
 for (k=0; k<l; ++k) {
 B_buf = B[k+j*l];
 for (i=0; i<m; ++i)
 C_buf[i] = C_buf[i] + alpha * A_buf[i+k*m]*B_buf;
 }
 C[0:m,j*m]=C_buf[0:m];
}

cs6363 13

Array Copy: Putting it together
 Array copy and scalar replacement

 Leave out references that cannot be copied
 Prune dependence graph, remove dep cycle
 Apply typed fusion to group name partitions
 Select a set of name partitions using register

pressure moderation
 For each selected partition

 Determine the outermost position to copy
 Determine buffer size. Use scalars if possible.
 Insert copy operations
 Replace array references with buffer references

cs6363 14

Loop Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M
A(I) = A(I) + B(J)

ENDDO
ENDDO
 Can we put B(J) into a register

and reuse the reference?

DO I = 1, N*2, 2
DO J = 1, M

A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO
 Unroll outer loop twice and then

fuse the copies of the inner loop
 Now can reuse register for B(J)
 But require one more register for A

 Goal: explore register reuse by outer loops
 Compare to loop blocking

 Different iterations of outer loop unrolled

 Often called register blocking
 May increase register pressure at the innermost loop

 Transformation: two alternative ways to get the combined result
 Unroll an outer loop, apply multi-level loop fusion to the unrolled loops
 Strip-mine outer loop, interchange strip loop inside, then unroll strip loop

cs6363 15

Safety of Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M
 A(I+1,J-1)=A(I,J)+B(I,J)

ENDDO
ENDDO

 Apply unroll-and-jam

DO I = 1, N*2, 2
DO J = 1, M

A(I+1,J-1)=A(I,J)+B(I,J)
A(I+2,J-1)=A(I+1,J)+B(I+1,J)

 ENDDO
ENDDO

 This is wrong!

 Direction vector: (<,>)
This makes loop interchange illegal

 Unroll-and-Jam is similar to blocking
 It must be safe to interchange the strip traversing outer loop
with the inner loop

cs6363 16

Unroll-and-Jam + Scalar Repl
DO I = 1, N*2, 2

DO J = 1, M
A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO

DO I = 1, N*2, 2
s0 = A(I)
s1 = A(I+1)
DO J = 1, M

t = B(J)
s0 = s0 + t
s1 = s1 + t

ENDDO
A(I) = s0
A(I+1) = s1

ENDDO

 Reduce the number of
memory loads by half

cs6363 17

Unroll-and-jam Example
DO I = 1, N
 DO K = 1, N
 A(I) = A(I) + X(I,K)
 ENDDO
 DO J = 1, M

DO K = 1, N
 B(J,K) = B(J,K) + A(I)
 ENDDO
 C(J,I) = B(J,N)/A(I)
 ENDDO
ENDDO

DO I = 1, N, 2
 DO K = 1, N
 A(I) = A(I) + X(I,K)
 A(I+1) = A(I+1) + X(I+1,K)
 ENDDO
 DO J = 1, M

DO K = 1, N
 B(J,K) = B(J,K) + A(I)

 B(J,K) = B(J,K) + A(I+1)
 ENDDO
 C(J,I) = B(J,N)/A(I)
 C(J,I+1) = B(J,N)/A(I+1)
 ENDDO
ENDDO

cs6363 18

DO I = 2, N
 DO J = 1, M
 A(J,I)=A(J,I)+A(J,I-1)
 ENDDO
ENDDO

DO I = 2,N
 DO J = 1, M
 R1 = A(J,I-1)
 R2 = A(J,I)
 R2 = R2+R1
 A(J,I)=R2
 ENDDO
ENDDO

DO J = 1, M
 DO I = 2, N
 A(J,I)=A(J,I)+A(J,I-1)
 ENDDO
ENDDO

DO J = 1,M
 R1 = A(J,1)
 DO I = 2,N
 R2=A(J,I)
 R2=R2+R1
 A(J,I)=R2
 R1=R2
 ENDDO
ENDDO

Original:

Optimized:

Loop Interchange
 The order of a loop nest affect the effectiveness of register

optimization

 Want loops that carry dependence at innermost position

cs6363 19

DO I = 1,N
 A(I) = C(I) + D(I)
ENDDO

DO I = 1,N
 B(I) = C(I) - D(I)
ENDDO

 If we fuse these loops, we can reuse operations in
registers:

DO I = 1,N
 A(I) = C(I) + D(I)
 B(I) = C(I) - D(I)
ENDDO

Loop Fusion

