
Cache Management

Improving Memory Locality and
Reducing Memory Latency

cs6363 2

Introduction
 Memory system performance is critical in

modern architectures
 Accessing memory takes much longer than

accessing cache
 Optimizations

 Reuse data already in cache (locality)
 Reduce memory bandwidth requirement

 Prefetch data ahead of time
 Reduce memory latency requirement

 Two types of cache reuse
 Temporal reuse

 After bringing a value into cache, use the
same value multiple times

 Spatial reuse
 After bringing a value into cache, use its

neighboring values in the same cache line

 Cache reuse is limited by
 cache size, cache line size, cache

associativity, replacement policy

DO I = 1, M
 DO J = 1, N
 A(I) = A(I) + B(J)
 ENDDO
ENDDO

DO I = 1, M
 DO J = 1, N
 A(I, J)=A(I,J)+B(I,J)
 ENDDO
ENDDO

cs6363 3

Optimizing Memory Performance
 Improve cache reuse

 Loop interchange
 Loop blocking (strip-mining + interchange)
 Loop blocking + skewing

 Reduce memory latency
 Software prefetching

cs6363 4

Loop Interchange
 Which loop should be innermost ?

 Reduce the number of interfering data accesses between
reuse of the same (or neighboring) data

 Approach: attach a cost function when each loop is
placed innermost
 Assuming cache line size is L

 Innermost K loop = N*N*N*(1+1/L)+N*N
 Innermost J loop = 2*N*N*N+N*N
 Innermost I loop = 2*N*N*N/L+N*N

 Reorder loop from innermost in the order of increasing cost
 Limited by safety of loop interchange

DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 C(I, J) = C(I, J) + A(I, K) * B(K, J)
 ENDDO
 ENDDO
ENDDO

cs6363 5

Loop Blocking
 Goal: separate computation into blocks, where

cache can hold the entire data used by each block
 Example

 After blocking (strip-mine-and-interchange)

 Assuming T is small, (M/T)*(N/C) + M*N/C misses

DO J = 1, M
 DO I = 1, N
 D(I) = D(I) + B(I,J)
 ENDDO
ENDDO

Assuming N is large,
2*N*M/C cache misses
(memory accesses)

DO jj = 1, M, T
 DO I = 1, N
 DO J = jj, MIN(jj+T-1, M)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

cs6363 6

Alternative Ways of Blocking
DO jj = 1, M, T
 DO I = 1, N
 DO J = jj, MIN(jj+T-1, M)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

DO ii = 1, N, T
 DO J = 1, M
 DO I = ii, MIN(ii+T-1, N)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

DO jj = 1, M, Tj
 DO ii = 1, N, Ti
 DO J = jj, MIN(jj+Tj-1,M)
 DO I = ii, MIN(ii+Ti-1, N)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
 ENDDO
ENDDO

cs6363 7

The Blocking Transformation
 The transformation takes a group of loops L0,…,Lk

 Strip-mine each loop Li into two loops Li’ and Li’’
 Move all strip counting loops L0’,L1’,…,Lk’ to the outside
 Leave all strip traversing loops L0’’,L1’’,…,L,’’ inside

 Safety of blocking
 Strip-mining is always legal
 Loop interchange is not always legal
 All participating loops must be safe to be moved outside

 Each loop has only “=“ or “<“ in all dependence vectors

 Profitability of Blocking: can enable cache reuse by an
outer loop that
 Carries small-threshold dependences (including input dep)
 The loop index appears (with small stride) in the contiguous

dimension of an array and in no other dimension

cs6363 8

Blocking with Skewing
 Goal: enable loop interchange that is not legal

otherwise

 After skewing

DO I = 1, M
 DO J = 1, N
 A(J+1) =
 (A(J)+A(J+1))/2
 ENDDO
ENDDO

DO I = 1, N
 DO j = I, M+I-1
 A(j-I+2) = (A(j-I+1) + A(j-I+2))/2
 ENDDO
ENDDO

cs6363 9

Blocking with Skewing
DO jj = 1, M+N-1, S
 DO I = MAX(1, j-M+1), MIN(j, N)
 DO J = jj, MAX(jj+S-1, M+I-1)
 A(J-I+2) = (A(J-I+1)+A(J-I+2))/2

cs6363 10

Triangular Blocking
DO I = 2, N
 DO J = 1, I-1
 A(I, J) = A(I, I) + A(J, J)
 ENDDO
ENDDO

Input code
DO ii = 2, N, T
 DO I = ii, MIN(ii+T-1,N)
 DO J = 1, I – 1
 A(I, J) = A(I,I)+A(I,J)
 ENDDO
 ENDDO
ENDDO

After strip-mining

DO ii = 2, N, T
 DO J = 1, MIN(ii+T-2,N-1)
 DO I = MAX(J+1, ii), MIN(ii+T-1,N)
 A(I, J) = A(I, I) + A(I, J)
 ENDDO
 ENDDO
 ENDDO

After interchange

cs6363 11

Software Prefetching
 Goal: prefetch data known to be used in the near future

 Support by hardware: discard prefetch if already in cache

 Safety: never alter the meaning of program
 Profitability: can reduce memory access latency if none of

the following happens
 Other useful data are evicted from cache due to the operation
 The prefetched data are evicted before use or never used

 Critical steps in an effective prefetching algorithm
 Accurately determine which references to prefetch
 Insert the prefetch op just far enough in advance

cs6363 12

Prefetch Analysis
 Assume loop nests have been blocked for locality
 Identify where cache misses may happen

 Eliminate dependences unlikely to result in cache reuse
 For each loop that carries reuse

 Estimate size of data accessed by each loop iteration
 Determine # of iterations where data would overflow cache
 Any dependence with a threshold equal to or greater than the overflow is

considered ineffective for reuse

 Partition memory references into groups
 Each group has a generator that brings data to cache
 All other references in each group can reuse data in cache

 Identify where prefetching is required
 Is the group generator contained in a dep cycle carried by the loop?

 If no, a miss is expected on each iteration, or every CL iterations where CL
is the cache line size

 If yes, a miss is expected only on the first few accesses, depending on the
distance of the carrying dependence

cs6363 13

Prefetch Analysis Example

 Data volume by x iterations of each loop
 loopI: 2*x+1 overflow iteration: x=(CS-CL+1)/2
 loopJ: 2*N*x+x overflow iteration: x=CS/(2*N+CL)

 Reference groups
 A(I,J): a miss every CL iterations of loopI
 B(I): a miss every CL iterations of loopI
 C(J): a miss every CL iterations of loopJ

DO J = 1, M
 DO I = 1, N
 A(I, J) = A(I, J) + C(J) + B(I)
 ENDDO
ENDDO

cs6363 14

Inserting Prefetch for Acyclic
Reference Groups

DO J = 1, M
 DO I = 1, N
 A(I, J) = A(I, J) + C(J)
 ENDDO
ENDDO

 The reference group
 A(I,J): a miss every CL iterations of loopI
 Assuming CL=4, then i0 = 5 and Ti = 4

DO J = 1, M
 prefetch(A(1,J))
 DO I = 1, 3
 A(I, J) = A(I, J) + C(J)
 ENDDO
 DO ii = 4, M, 4
 prefetch(A(ii, J))
 DO I = ii, MIN(M,ii+4)
 A(I, J) = A(I, J) + C(J)
 ENDDO
 ENDDO
ENDDO

cs6363 15

Inserting Prefetch Operations
for Acyclic Reference Groups
 If there is no spatial reuse of the reference

 insert a prefetch before reference to the group
generator

 If the references have spatial locality
 Let i0 = the first loop iteration where reference to the

group generator is regularly a cache miss
 Let Ti = the interval of loop iterations for cache miss
 Partition the loop into two parts;

 initial subloop running from 1 to i0-1 and
 remainder running from i0 to the end

 Strip-mine the remainder loop with step Ti
 Insert prefetch operations to avoid misses
 Eliminate any very short loops by unrolling

cs6363 16

Inserting Prefetch for Cyclic
Reference Groups

 Insert prefetch prior to the loop carrying the dependence cycle
 If an outer loop L carries the dependence, insert a prefetch

loop
 If the innermost prefetch loop gets data in unit stride, split it into

 A prefetch of the first group generator reference
 Remaider loop strip-mined to prefetch the next cache line at every

iteration

 DO ii = 1, M, 4
 prefetch(A(ii, J))
 DO I = ii, MIN(M,ii+4)
 A(I, J) = A(I, J)+C(J)+B(I)
 ENDDO
 ENDDO
 ENDDO
ENDDO

Prefetch B(1)
DO I=4,M,4
 prefetch(B(I))
ENDDO
DO jj = 1,M,4
 prefetch(C(jj))
 DO J=jj,MIN(M,jj+3)

cs6363 17

Prefetch Irregular Accesses
 Input code

DO J = 1, M

 DO I = 2, 33
 A(I, J) = A(I, J) * B(IX(I), J)
 ENDDO
 ENDDO

 After prefetch transformation
 prefetch(IX(2))
 DO I = 5, 33, 4
 prefetch(IX(I))
 ENDDO
 ……

cs6363 18

Effectiveness of Software Prefetching

cs6363 19

Summary
 Two different kind of cache reuse

 Temporal reuse
 Spatial reuse

 Strategies to increase cache reuse
 Loop interchange
 Loop blocking (strip-mining + interchange)
 Loop blocking + skewing

 Software prefetching: reduce memory latency
 Works only when the memory bandwidth is not

saturated

