
Cache Management

Improving Memory Locality and
Reducing Memory Latency

cs6363 2

Introduction
 Memory system performance is critical in

modern architectures
 Accessing memory takes much longer than

accessing cache
 Optimizations

 Reuse data already in cache (locality)
 Reduce memory bandwidth requirement

 Prefetch data ahead of time
 Reduce memory latency requirement

 Two types of cache reuse
 Temporal reuse

 After bringing a value into cache, use the
same value multiple times

 Spatial reuse
 After bringing a value into cache, use its

neighboring values in the same cache line

 Cache reuse is limited by
 cache size, cache line size, cache

associativity, replacement policy

DO I = 1, M
 DO J = 1, N
 A(I) = A(I) + B(J)
 ENDDO
ENDDO

DO I = 1, M
 DO J = 1, N
 A(I, J)=A(I,J)+B(I,J)
 ENDDO
ENDDO

cs6363 3

Optimizing Memory Performance
 Improve cache reuse

 Loop interchange
 Loop blocking (strip-mining + interchange)
 Loop blocking + skewing

 Reduce memory latency
 Software prefetching

cs6363 4

Loop Interchange
 Which loop should be innermost ?

 Reduce the number of interfering data accesses between
reuse of the same (or neighboring) data

 Approach: attach a cost function when each loop is
placed innermost
 Assuming cache line size is L

 Innermost K loop = N*N*N*(1+1/L)+N*N
 Innermost J loop = 2*N*N*N+N*N
 Innermost I loop = 2*N*N*N/L+N*N

 Reorder loop from innermost in the order of increasing cost
 Limited by safety of loop interchange

DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 C(I, J) = C(I, J) + A(I, K) * B(K, J)
 ENDDO
 ENDDO
ENDDO

cs6363 5

Loop Blocking
 Goal: separate computation into blocks, where

cache can hold the entire data used by each block
 Example

 After blocking (strip-mine-and-interchange)

 Assuming T is small, (M/T)*(N/C) + M*N/C misses

DO J = 1, M
 DO I = 1, N
 D(I) = D(I) + B(I,J)
 ENDDO
ENDDO

Assuming N is large,
2*N*M/C cache misses
(memory accesses)

DO jj = 1, M, T
 DO I = 1, N
 DO J = jj, MIN(jj+T-1, M)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

cs6363 6

Alternative Ways of Blocking
DO jj = 1, M, T
 DO I = 1, N
 DO J = jj, MIN(jj+T-1, M)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

DO ii = 1, N, T
 DO J = 1, M
 DO I = ii, MIN(ii+T-1, N)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
ENDDO

DO jj = 1, M, Tj
 DO ii = 1, N, Ti
 DO J = jj, MIN(jj+Tj-1,M)
 DO I = ii, MIN(ii+Ti-1, N)
 D(I) = D(I) + B(I, J)
 ENDDO
 ENDDO
 ENDDO
ENDDO

cs6363 7

The Blocking Transformation
 The transformation takes a group of loops L0,…,Lk

 Strip-mine each loop Li into two loops Li’ and Li’’
 Move all strip counting loops L0’,L1’,…,Lk’ to the outside
 Leave all strip traversing loops L0’’,L1’’,…,L,’’ inside

 Safety of blocking
 Strip-mining is always legal
 Loop interchange is not always legal
 All participating loops must be safe to be moved outside

 Each loop has only “=“ or “<“ in all dependence vectors

 Profitability of Blocking: can enable cache reuse by an
outer loop that
 Carries small-threshold dependences (including input dep)
 The loop index appears (with small stride) in the contiguous

dimension of an array and in no other dimension

cs6363 8

Blocking with Skewing
 Goal: enable loop interchange that is not legal

otherwise

 After skewing

DO I = 1, M
 DO J = 1, N
 A(J+1) =
 (A(J)+A(J+1))/2
 ENDDO
ENDDO

DO I = 1, N
 DO j = I, M+I-1
 A(j-I+2) = (A(j-I+1) + A(j-I+2))/2
 ENDDO
ENDDO

cs6363 9

Blocking with Skewing
DO jj = 1, M+N-1, S
 DO I = MAX(1, j-M+1), MIN(j, N)
 DO J = jj, MAX(jj+S-1, M+I-1)
 A(J-I+2) = (A(J-I+1)+A(J-I+2))/2

cs6363 10

Triangular Blocking
DO I = 2, N
 DO J = 1, I-1
 A(I, J) = A(I, I) + A(J, J)
 ENDDO
ENDDO

Input code
DO ii = 2, N, T
 DO I = ii, MIN(ii+T-1,N)
 DO J = 1, I – 1
 A(I, J) = A(I,I)+A(I,J)
 ENDDO
 ENDDO
ENDDO

After strip-mining

DO ii = 2, N, T
 DO J = 1, MIN(ii+T-2,N-1)
 DO I = MAX(J+1, ii), MIN(ii+T-1,N)
 A(I, J) = A(I, I) + A(I, J)
 ENDDO
 ENDDO
 ENDDO

After interchange

cs6363 11

Software Prefetching
 Goal: prefetch data known to be used in the near future

 Support by hardware: discard prefetch if already in cache

 Safety: never alter the meaning of program
 Profitability: can reduce memory access latency if none of

the following happens
 Other useful data are evicted from cache due to the operation
 The prefetched data are evicted before use or never used

 Critical steps in an effective prefetching algorithm
 Accurately determine which references to prefetch
 Insert the prefetch op just far enough in advance

cs6363 12

Prefetch Analysis
 Assume loop nests have been blocked for locality
 Identify where cache misses may happen

 Eliminate dependences unlikely to result in cache reuse
 For each loop that carries reuse

 Estimate size of data accessed by each loop iteration
 Determine # of iterations where data would overflow cache
 Any dependence with a threshold equal to or greater than the overflow is

considered ineffective for reuse

 Partition memory references into groups
 Each group has a generator that brings data to cache
 All other references in each group can reuse data in cache

 Identify where prefetching is required
 Is the group generator contained in a dep cycle carried by the loop?

 If no, a miss is expected on each iteration, or every CL iterations where CL
is the cache line size

 If yes, a miss is expected only on the first few accesses, depending on the
distance of the carrying dependence

cs6363 13

Prefetch Analysis Example

 Data volume by x iterations of each loop
 loopI: 2*x+1 overflow iteration: x=(CS-CL+1)/2
 loopJ: 2*N*x+x overflow iteration: x=CS/(2*N+CL)

 Reference groups
 A(I,J): a miss every CL iterations of loopI
 B(I): a miss every CL iterations of loopI
 C(J): a miss every CL iterations of loopJ

DO J = 1, M
 DO I = 1, N
 A(I, J) = A(I, J) + C(J) + B(I)
 ENDDO
ENDDO

cs6363 14

Inserting Prefetch for Acyclic
Reference Groups

DO J = 1, M
 DO I = 1, N
 A(I, J) = A(I, J) + C(J)
 ENDDO
ENDDO

 The reference group
 A(I,J): a miss every CL iterations of loopI
 Assuming CL=4, then i0 = 5 and Ti = 4

DO J = 1, M
 prefetch(A(1,J))
 DO I = 1, 3
 A(I, J) = A(I, J) + C(J)
 ENDDO
 DO ii = 4, M, 4
 prefetch(A(ii, J))
 DO I = ii, MIN(M,ii+4)
 A(I, J) = A(I, J) + C(J)
 ENDDO
 ENDDO
ENDDO

cs6363 15

Inserting Prefetch Operations
for Acyclic Reference Groups
 If there is no spatial reuse of the reference

 insert a prefetch before reference to the group
generator

 If the references have spatial locality
 Let i0 = the first loop iteration where reference to the

group generator is regularly a cache miss
 Let Ti = the interval of loop iterations for cache miss
 Partition the loop into two parts;

 initial subloop running from 1 to i0-1 and
 remainder running from i0 to the end

 Strip-mine the remainder loop with step Ti
 Insert prefetch operations to avoid misses
 Eliminate any very short loops by unrolling

cs6363 16

Inserting Prefetch for Cyclic
Reference Groups

 Insert prefetch prior to the loop carrying the dependence cycle
 If an outer loop L carries the dependence, insert a prefetch

loop
 If the innermost prefetch loop gets data in unit stride, split it into

 A prefetch of the first group generator reference
 Remaider loop strip-mined to prefetch the next cache line at every

iteration

 DO ii = 1, M, 4
 prefetch(A(ii, J))
 DO I = ii, MIN(M,ii+4)
 A(I, J) = A(I, J)+C(J)+B(I)
 ENDDO
 ENDDO
 ENDDO
ENDDO

Prefetch B(1)
DO I=4,M,4
 prefetch(B(I))
ENDDO
DO jj = 1,M,4
 prefetch(C(jj))
 DO J=jj,MIN(M,jj+3)

cs6363 17

Prefetch Irregular Accesses
 Input code

DO J = 1, M

 DO I = 2, 33
 A(I, J) = A(I, J) * B(IX(I), J)
 ENDDO
 ENDDO

 After prefetch transformation
 prefetch(IX(2))
 DO I = 5, 33, 4
 prefetch(IX(I))
 ENDDO
 ……

cs6363 18

Effectiveness of Software Prefetching

cs6363 19

Summary
 Two different kind of cache reuse

 Temporal reuse
 Spatial reuse

 Strategies to increase cache reuse
 Loop interchange
 Loop blocking (strip-mining + interchange)
 Loop blocking + skewing

 Software prefetching: reduce memory latency
 Works only when the memory bandwidth is not

saturated

