
cs6363 1

Mod/Ref Analysis
Alias Analysis

Constant Propagation
Procedure Inlining and Cloning

Interprocedural
Analysis and
Optimization

cs6363 2

Introduction
 Interprocedural Analysis

 Gathering information about the whole
program instead of a single procedure

 Examples: side-effect analysis, alias analysis

 Interprocedural Optimization
 Modifying more than one procedure, or
 Using interprocedural analysis

cs6363 3

Interprocedural Side-effect
Analysis
 Modification and Reference Side-effect

 MOD(s): set of variables that may be modified as a side
effect of call at s

 REF(s): set of variables that may be referenced as a
side effect of call at s

COMMON X,Y
...
DO I = 1, N
S0: CALL P
S1: X(I) = X(I) + Y(I)
ENDDO

 Can vectorize if
 P neither modifies nor uses X
 P does not modify Y

cs6363 4

Interprocedural Alias Analysis
SUBROUTINE S(A,X,N)

COMMON Y
DO I = 1, N

S0: X = X + Y*A(I)
ENDDO

END

 Could we keep X and Y in different registers?
 What happens if S is called with parameters S(A,Y,N)?

 Y is aliased to X on entry to S (Fortran uses call-by-ref)
 Can’t put X and Y in different registers

 For each parameter x, compute ALIAS(p,x)
 The set of variables that may refer to the same location

as formal parameter x on entry to p

cs6363 5

Call Graph construction
 Interprocedural analysis must model how procedures call each other

 Two approaches: call graph and interprocedural control flow graph

 Call Graph: G=(N,E) model call relations between procedures
 N: one vertex for each procedure
 E: p->q: if procedure p calls q; one edge for each possible call

 Construction must handle function pointers (procedure parameters)
 SUBROUTINE S(X,P)
S0: CALL P(X)

RETURN
 END

 P is a procedure parameter to S
 What values can P have on entry to S?
 CALL(s): set of all procedures that may be invoked at s (alias analysis)

cs6363 6

Flow Insensitive Side-effect Analysis
 Goal: compute what variables may be modified

by each procedure
 Interprocedural analysis

 Assumptions
 Procedure definitions are not nested inside one another
 All parameters passed by reference
 Each procedure has a constant number of parameters
 Procedures may recursively invoke each other

 We will formulate and solve the MOD(s) problem

cs6363 7

MOD(s) = DMOD(s)∪ ALIAS(p,x)

x∈DMOD(s)
U

DMOD(s) ={v | s⇒ p,v s →  w,w ∈GMOD(p)}

Solving MOD
 MOD(s): variables modified by the call of procedure p at

call site s

 DMOD(s): set of variables directly modified as side-effect of
call at s

 GMOD(p): set of global variables and formal parameters of p
that are modified, either directly or indirectly as a result of
calling p

GMOD(P)={X,Y}
DMOD(S0)={A,B}

S0: CALL P(A,B,C)
SUBROUTINE P(X,Y,Z)

INTEGER X,Y,Z
X = X*Z
Y = Y*Z

END

cs6363 8

Solving GMOD
 GMOD(p) contains two types of variables

 IMOD(p): variables explicitly modified in body
of P

 Variables modified as a side-effect of some
procedure invoked in p

 Global variables are viewed as parameters to a called
procedure

 May take a long time to converge due to
recursive procedure calls

GMOD(p) = IMOD(p)∪ {z | z s → 

s= (p,q)
U w,w ∈GMOD(q)}

cs6363 9

Solving GMOD
 Decompose GMOD(p) differently to get an

efficient solution
 Key: Treat side-effects to global variables and

reference formal parameters separately

 where

 RMOD(p): set of formal parameters that may be
modified in p, either directly or by used as actual
parameter to call another procedure q

GMOD(p) = IMOD+(p)∪

s =(p,q)
U GMOD(q)∩ ¬LOCAL

IMOD+(p) = IMOD(p)∪ {z | z s → 

s =(p,q)
U w,w∈RMOD(q)}

cs6363 10

Alias Analysis
 Recall definition of MOD(s)

 Need to
 Compute ALIAS(p,x)
 Update DMOD to MOD using ALIAS(p,x)

 Key Observations
 Two global variables can never be aliased of each other.
 Global variables can only be aliased to formal

parameters
 The number of aliases for each variable is bounded by

the number of formal parameters and global variables
 Not true in C/C++ code when data can be dynamically

allocated

MOD(s) = DMOD(s)∪ ALIAS(p,x)

x∈DMOD(s)
U

cs6363 11

Update DMOD to MOD
SUBROUTINE P

INTEGER A
S0: CALL S(A,A)
END

SUBROUTINE S(X,Y)
INTEGER X,Y

S1: CALL Q(X)
END

SUBROUTINE Q(Z)
INTEGER Z
Z = 0

END

GMOD(Q)={Z}

MOD(S1)={X,Y}

DMOD(S1)={X}

cs6363 12

Interprocedural Optimizations
 The goal of interprocedural analysis is to enable

whole program optimizations
 Can we understand procedural calls just like

regular statements?
 MOD/REF -- set of variables modified/referenced in

procedure
 ALIAS -- set of aliased variables in a procedure.

 Eliminating the boundary of procedures
 Procedure inlining and cloning(specialization)

 Can enhance the scope of many optimizations
 Constant propagation
 Redundancy elimination
 Loop optimizations

cs6363 13

Procedure Inlining
 Replace a procedure invocation with the

body of the procedure being called
 Advantages:

 Eliminates procedure call overhead.
 Allows more optimizations to take place

 However, overuse can cause slowdowns
 Breaks compiler procedure assumptions.
 Function calls add needed register spills.
 Changing function forces global recompilation.

cs6363 14

PROCEDURE UPDATE(A,N,IS)
 REAL A(N)
 INTEGER I = 1,N
 A(I*IS-IS+1)=A(I*IS-IS+1)+PI
 ENDDO
END

If we knew that IS != 0 at
a call, then loop can be
vectorized.

If we know that IS != 0 at specific call sites, clone a
vectorized version of the procedure and use it at those sites.

Procedure Cloning
 Often specific values of function

parameters result in better optimizations.

cs6363 15

DO I = 1,N
 CALL FOO()
ENDDO

PROCEDURE FOO()
 …
END

CALL FOO()

PROCEDURE FOO()
 DO I = 1,N
 …
 ENDDO
END

Hybrid optimizations
 Combinations of procedures can have

benefit.
 One example is loop embedding:

cs6363 16

SUBROUTINE FOO(N)
 INTEGER N,M
 CALL INIT(M,N)
 DO I = 1,P
 B(M*I + 1) = 2*B(1)
 ENDDO
END

SUBROUTINE INIT(M,N)
 M = N
END

Constant Propagation
 Propagating constants between procedures can significantly

improve performance
 Dependence testing can be made more precise

 Challenge:need to model data-flow across procedural
boundaries

Enable more accurate dependence analysis if
N is a constant

cs6363 17

 Definition: Let s = (p,q) be a call site, and let x be a
parameter of q. The jump function
 Gives the value of formal parameter x used to invoke q in terms

of incoming parameter values of procedure p
 Models a transfer function for each call site

 caller parameters ==> callee parameters

 We construct an interprocedural value graph:
 Add a node to the graph for each jump function
 If x is used to compute to , where t is a call site in procedure q,

then add an edge between and for every call site s = (p,q)
in some procedure p

 Model control flow (call relations) between jump functions

 Apply the constant propagation algorithm to this graph.
 Might want to iterate with global propagation

Js
x

Constant Propagation

Js
x

Jt
y

Js
x

Jt
y

cs6363 18

PROGRAM MAIN
 INTEGER A
α CALL PROCESS(15,A)
 PRINT A
END
SUBROUTINE PROCESS(N,B)
 INTEGER N,B,I
β CALL INIT(I,N)
γ CALL SOLVE(B,I)
END
SUBROUTINE INIT(X,Y)
 INTEGER X,Y
 X = 2*Y
END
SUBROUTINE SOLVE(C,T)
 INTEGER C,T
 C = T*10
END

• Need a way of building
• For parameter x of procedure p,

define to be the output value of
x in terms of input parameters of p

Jγ
I

Rp
x

RINIT
X ={2 *Y} RSOLVE

C ={T *10}

Jγ
T =

RINIT
X (N) I ∈MOD(β)

undefined otherwise





 

Jα
N = 15 Jβ

Y = N

RPROCESS
B =

RSOLVE
C (JγT (N)) C∈MOD(γ)

undefined otherwise





 

Jump Functions

cs6363 19

Symbolic Analysis
 Prove facts about values of variables

 Find a symbolic expression for a variable in terms of other
variables.

 Establish a relationship between pairs of variables at some
point in program.

 Establish a range of values for a variable at a given point.

[-∞:60] [50:∞][1:100]

[-∞:100] [1:∞]

[-∞,∞]

Range Analysis:
• Jump functions and return jump

functions return ranges.
• Meet operation is now more

complicated.
• If we can bound number of times upper

bound increases and lower bound
decreases, the finite-descending-chain
property is satisfied.

cs6363 20

DO I = 1,N
 CALL SOURCE(A,I)
 CALL SINK(A,I)
ENDDO

Does this loop carry dependence?

Let be the set of locations in array modified on
iteration I and set of locations used on iteration
I. Then has a carried true dependence iff

MA (I)
UA(I)

MA (I1)∩UA (I2) ≠ ∅ 1 ≤ I1 < I2 ≤ N

Array Section Analysis
 Consider the following code:

cs6363 21

 Jα
X

Jβ
VJβ

U

Jα
Y

The constant-propagation algorithm will
Eventually converge to above values.

1 2

-13

Example
PROGRAM MAIN

 INTEGER A,B
 A = 1
 B = 2

α CALL S(A,B)
END
SUBROUTINE S(X,Y)

 INTEGER X,Y,Z,W
 Z = X + Y

W = X - Y
 β CALL T(Z,W)

END
SUBROUTINE T(U,V)

 PRINT U,V
END

cs6363 22

Whole Program Optimization
 What we have covered

 Call graph construction
 Mod/ref analysis
 Alias analysis
 Constant propagation
 Procedure inlinine and cloning

 Practical concerns
 Requires the source code of multiple

procedures (whole program)
 Requires recompilation of interdependent

procedures when program is modified

