
cs6363 1

Mod/Ref Analysis
Alias Analysis

Constant Propagation
Procedure Inlining and Cloning

Interprocedural
Analysis and
Optimization

cs6363 2

Introduction
 Interprocedural Analysis

 Gathering information about the whole
program instead of a single procedure

 Examples: side-effect analysis, alias analysis

 Interprocedural Optimization
 Modifying more than one procedure, or
 Using interprocedural analysis

cs6363 3

Interprocedural Side-effect
Analysis
 Modification and Reference Side-effect

 MOD(s): set of variables that may be modified as a side
effect of call at s

 REF(s): set of variables that may be referenced as a
side effect of call at s

COMMON X,Y
...
DO I = 1, N
S0: CALL P
S1: X(I) = X(I) + Y(I)
ENDDO

 Can vectorize if
 P neither modifies nor uses X
 P does not modify Y

cs6363 4

Interprocedural Alias Analysis
SUBROUTINE S(A,X,N)

COMMON Y
DO I = 1, N

S0: X = X + Y*A(I)
ENDDO

END

 Could we keep X and Y in different registers?
 What happens if S is called with parameters S(A,Y,N)?

 Y is aliased to X on entry to S (Fortran uses call-by-ref)
 Can’t put X and Y in different registers

 For each parameter x, compute ALIAS(p,x)
 The set of variables that may refer to the same location

as formal parameter x on entry to p

cs6363 5

Call Graph construction
 Interprocedural analysis must model how procedures call each other

 Two approaches: call graph and interprocedural control flow graph

 Call Graph: G=(N,E) model call relations between procedures
 N: one vertex for each procedure
 E: p->q: if procedure p calls q; one edge for each possible call

 Construction must handle function pointers (procedure parameters)
 SUBROUTINE S(X,P)
S0: CALL P(X)

RETURN
 END

 P is a procedure parameter to S
 What values can P have on entry to S?
 CALL(s): set of all procedures that may be invoked at s (alias analysis)

cs6363 6

Flow Insensitive Side-effect Analysis
 Goal: compute what variables may be modified

by each procedure
 Interprocedural analysis

 Assumptions
 Procedure definitions are not nested inside one another
 All parameters passed by reference
 Each procedure has a constant number of parameters
 Procedures may recursively invoke each other

 We will formulate and solve the MOD(s) problem

cs6363 7

MOD(s) = DMOD(s)∪ ALIAS(p,x)

x∈DMOD(s)
U

DMOD(s) ={v | s⇒ p,v s → w,w ∈GMOD(p)}

Solving MOD
 MOD(s): variables modified by the call of procedure p at

call site s

 DMOD(s): set of variables directly modified as side-effect of
call at s

 GMOD(p): set of global variables and formal parameters of p
that are modified, either directly or indirectly as a result of
calling p

GMOD(P)={X,Y}
DMOD(S0)={A,B}

S0: CALL P(A,B,C)
SUBROUTINE P(X,Y,Z)

INTEGER X,Y,Z
X = X*Z
Y = Y*Z

END

cs6363 8

Solving GMOD
 GMOD(p) contains two types of variables

 IMOD(p): variables explicitly modified in body
of P

 Variables modified as a side-effect of some
procedure invoked in p

 Global variables are viewed as parameters to a called
procedure

 May take a long time to converge due to
recursive procedure calls

GMOD(p) = IMOD(p)∪ {z | z s →

s= (p,q)
U w,w ∈GMOD(q)}

cs6363 9

Solving GMOD
 Decompose GMOD(p) differently to get an

efficient solution
 Key: Treat side-effects to global variables and

reference formal parameters separately

 where

 RMOD(p): set of formal parameters that may be
modified in p, either directly or by used as actual
parameter to call another procedure q

GMOD(p) = IMOD+(p)∪

s =(p,q)
U GMOD(q)∩ ¬LOCAL

IMOD+(p) = IMOD(p)∪ {z | z s →

s =(p,q)
U w,w∈RMOD(q)}

cs6363 10

Alias Analysis
 Recall definition of MOD(s)

 Need to
 Compute ALIAS(p,x)
 Update DMOD to MOD using ALIAS(p,x)

 Key Observations
 Two global variables can never be aliased of each other.
 Global variables can only be aliased to formal

parameters
 The number of aliases for each variable is bounded by

the number of formal parameters and global variables
 Not true in C/C++ code when data can be dynamically

allocated

MOD(s) = DMOD(s)∪ ALIAS(p,x)

x∈DMOD(s)
U

cs6363 11

Update DMOD to MOD
SUBROUTINE P

INTEGER A
S0: CALL S(A,A)
END

SUBROUTINE S(X,Y)
INTEGER X,Y

S1: CALL Q(X)
END

SUBROUTINE Q(Z)
INTEGER Z
Z = 0

END

GMOD(Q)={Z}

MOD(S1)={X,Y}

DMOD(S1)={X}

cs6363 12

Interprocedural Optimizations
 The goal of interprocedural analysis is to enable

whole program optimizations
 Can we understand procedural calls just like

regular statements?
 MOD/REF -- set of variables modified/referenced in

procedure
 ALIAS -- set of aliased variables in a procedure.

 Eliminating the boundary of procedures
 Procedure inlining and cloning(specialization)

 Can enhance the scope of many optimizations
 Constant propagation
 Redundancy elimination
 Loop optimizations

cs6363 13

Procedure Inlining
 Replace a procedure invocation with the

body of the procedure being called
 Advantages:

 Eliminates procedure call overhead.
 Allows more optimizations to take place

 However, overuse can cause slowdowns
 Breaks compiler procedure assumptions.
 Function calls add needed register spills.
 Changing function forces global recompilation.

cs6363 14

PROCEDURE UPDATE(A,N,IS)
 REAL A(N)
 INTEGER I = 1,N
 A(I*IS-IS+1)=A(I*IS-IS+1)+PI
 ENDDO
END

If we knew that IS != 0 at
a call, then loop can be
vectorized.

If we know that IS != 0 at specific call sites, clone a
vectorized version of the procedure and use it at those sites.

Procedure Cloning
 Often specific values of function

parameters result in better optimizations.

cs6363 15

DO I = 1,N
 CALL FOO()
ENDDO

PROCEDURE FOO()
 …
END

CALL FOO()

PROCEDURE FOO()
 DO I = 1,N
 …
 ENDDO
END

Hybrid optimizations
 Combinations of procedures can have

benefit.
 One example is loop embedding:

cs6363 16

SUBROUTINE FOO(N)
 INTEGER N,M
 CALL INIT(M,N)
 DO I = 1,P
 B(M*I + 1) = 2*B(1)
 ENDDO
END

SUBROUTINE INIT(M,N)
 M = N
END

Constant Propagation
 Propagating constants between procedures can significantly

improve performance
 Dependence testing can be made more precise

 Challenge:need to model data-flow across procedural
boundaries

Enable more accurate dependence analysis if
N is a constant

cs6363 17

 Definition: Let s = (p,q) be a call site, and let x be a
parameter of q. The jump function
 Gives the value of formal parameter x used to invoke q in terms

of incoming parameter values of procedure p
 Models a transfer function for each call site

 caller parameters ==> callee parameters

 We construct an interprocedural value graph:
 Add a node to the graph for each jump function
 If x is used to compute to , where t is a call site in procedure q,

then add an edge between and for every call site s = (p,q)
in some procedure p

 Model control flow (call relations) between jump functions

 Apply the constant propagation algorithm to this graph.
 Might want to iterate with global propagation

Js
x

Constant Propagation

Js
x

Jt
y

Js
x

Jt
y

cs6363 18

PROGRAM MAIN
 INTEGER A
α CALL PROCESS(15,A)
 PRINT A
END
SUBROUTINE PROCESS(N,B)
 INTEGER N,B,I
β CALL INIT(I,N)
γ CALL SOLVE(B,I)
END
SUBROUTINE INIT(X,Y)
 INTEGER X,Y
 X = 2*Y
END
SUBROUTINE SOLVE(C,T)
 INTEGER C,T
 C = T*10
END

• Need a way of building
• For parameter x of procedure p,

define to be the output value of
x in terms of input parameters of p

Jγ
I

Rp
x

RINIT
X ={2 *Y} RSOLVE

C ={T *10}

Jγ
T =

RINIT
X (N) I ∈MOD(β)

undefined otherwise

Jα
N = 15 Jβ

Y = N

RPROCESS
B =

RSOLVE
C (JγT (N)) C∈MOD(γ)

undefined otherwise

Jump Functions

cs6363 19

Symbolic Analysis
 Prove facts about values of variables

 Find a symbolic expression for a variable in terms of other
variables.

 Establish a relationship between pairs of variables at some
point in program.

 Establish a range of values for a variable at a given point.

[-∞:60] [50:∞][1:100]

[-∞:100] [1:∞]

[-∞,∞]

Range Analysis:
• Jump functions and return jump

functions return ranges.
• Meet operation is now more

complicated.
• If we can bound number of times upper

bound increases and lower bound
decreases, the finite-descending-chain
property is satisfied.

cs6363 20

DO I = 1,N
 CALL SOURCE(A,I)
 CALL SINK(A,I)
ENDDO

Does this loop carry dependence?

Let be the set of locations in array modified on
iteration I and set of locations used on iteration
I. Then has a carried true dependence iff

MA (I)
UA(I)

MA (I1)∩UA (I2) ≠ ∅ 1 ≤ I1 < I2 ≤ N

Array Section Analysis
 Consider the following code:

cs6363 21

 Jα
X

Jβ
VJβ

U

Jα
Y

The constant-propagation algorithm will
Eventually converge to above values.

1 2

-13

Example
PROGRAM MAIN

 INTEGER A,B
 A = 1
 B = 2

α CALL S(A,B)
END
SUBROUTINE S(X,Y)

 INTEGER X,Y,Z,W
 Z = X + Y

W = X - Y
 β CALL T(Z,W)

END
SUBROUTINE T(U,V)

 PRINT U,V
END

cs6363 22

Whole Program Optimization
 What we have covered

 Call graph construction
 Mod/ref analysis
 Alias analysis
 Constant propagation
 Procedure inlinine and cloning

 Practical concerns
 Requires the source code of multiple

procedures (whole program)
 Requires recompilation of interdependent

procedures when program is modified

