Interprocedural
Analysis and
Optimization

Mod/Ref Analysis
Alias Analysis
Constant Propagation
Procedure Inlining and Cloning

666666

Introduction

0 Interprocedural Analysis

= Gathering information about the whole
program instead of a single procedure
Examples: side-effect analysis, alias analysis

o Interprocedural Optimization
= Modifying more than one procedure, or
= Using interprocedural analysis

cs6363

Interprocedural Side-effect
Analysis

O Modification and Reference Side-effect

= MOD(s): set of variables that may be modified as a side
effect of call at s

= REF(s): set of variables that may be referenced as a
side effect of call at s
COMMON X,Y

DO I =1, N

SO: CALL P
S1: X(I) = X(I) + Y(I)
ENDDO

o Can vectorize if
» P neither modifies nor uses X
= P does not modify Y

cs6363 3

Interprocedural Alias Analysis

SUBROUTINE S(A,X,N)
COMMON Y
DO I =1, N

SO: X = X + Y*A(I)
ENDDO

END

o Could we keep X and Y in different registers?
= What happens if S is called with parameters S(A,Y,N)?
Y is aliased to X on entry to S (Fortran uses call-by-ref)
Can’t put X and Y in different registers
o For each parameter x, compute ALIAS(p,X)

= The set of variables that may refer to the same location
as formal parameter x on entry to p

cs6363

Call Graph construction

o Interprocedural analysis must model how procedures call each other
= Two approaches: call graph and interprocedural control flow graph

o Call Graph: G=(N,E) model call relations between procedures
= N: one vertex for each procedure
= E: p->q: if procedure p calls q; one edge for each possible call

o Construction must handle function pointers (procedure parameters)
SUBROUTINE S(X,P)
SO: CALL P(X)
RETURN
END
O P is a procedure parameter to S

= What values can P have on entry to S?
m CALL(s): set of all procedures that may be invoked at s (alias analysis)

cs6363 5

Flow Insensitive Side-effect Analysis

o Goal: compute what variables may be modified
by each procedure
= Interprocedural analysis

o Assumptions
Procedure definitions are not nested inside one another
All parameters passed by reference
Each procedure has a constant number of parameters
Procedures may recursively invoke each other

N
N
N
N
o We will formulate and solve the MOD(s) problem

cs6363

Solving MOD

0 MOD(s): variables modified by the call of procedure p at
call site s yrop(s) = DMOD(s)U | ALIAS(p.x)

xEDMOD(s)
= DMOD(s): set of variables directly modified as side-effect of

Il at
"2 DMOD(s) ={v 1 s= p,y——>w,w EGMOD(p)}

= GMOD(p): set of global variables and formal parameters of p
that are modified, either directly or indirectly as a result of

calling p

SO0: CALL P(A,B,C)
SUBROUTINE P(X,Y,Z)
INTEGER X,Y,Z
X = X*7
Y = Y*Z

GMOD (P)={X,Y}
DMOD (S0)={A, B}

END

cs6363

o GMOD(p) contains two types of variables

IMOD(p): variables explicitly modified in body
of P

Variables modified as a side-effect of some
procedure invoked in p

Global variables are viewed as parameters to a called
procedure

GMOD(p) = IMOD(p)U U{z! z——w,w EGMOD(g)}

§= (p’q)

May take a long time to converge due to
recursive procedure calls

cs6363 8

o Decompose GMOD(p) differently to get an
efficient solution

o Key: Treat side-effects to global variables and
reference formal parameters separately

GMOD(p) =|IMOD" (p))U U GMoD(g) N -LOCAL

s =(p’q)

where
IMOD" (p) = IMOD(p) U |J{z! z——sw,wERMOD(¢)}

S=(p’Q)

RMOD(p): set of formal parameters that may be
modified in p, either directly or by used as actual
parameter to call another procedure g

cs6363

o Recall definition of MOD(s)

MOD(s) = DMOD(s)U |J ALIAS(p,x)
0 Need to xEDMOD(s)
Compute ALIAS(p,X)
Update DMOD to MOD using ALIAS(p,Xx)

0 Key Observations
Two global variables can never be aliased of each other.

Global variables can only be aliased to formal
parameters

The number of aliases for each variable is bounded by
the number of formal parameters and global variables

Not true in C/C++ code when data can be dynamically
allocated

cs6363 10

Update DMOD to MOD

SUBROUTINE P
INTEGER A

SO: CALL S(A,A)

END

SUBROUTINE S(X,Y)
INTEGER X,Y
S1: CALL Q(X)

END

SUBROUTINE Q(Z)
INTEGER Z
Z =0

END

cs6363

GMOD(Q)={Z}

DMOD(S1)={X}

MOD(S1)={X,Y}

11

o The goal of interprocedural analysis is to enable
whole program optimizations

o Can we understand procedural calls just like
regular statements?

MOD/REF -- set of variables modified/referenced in
procedure

ALIAS -- set of aliased variables in a procedure.

o Eliminating the boundary of procedures
Procedure inlining and cloning(specialization)

o Can enhance the scope of many optimizations
Constant propagation
Redundancy elimination
Loop optimizations
cs6363

12

0 Replace a procedure invocation with the
body of the procedure being called

Advantages:
Eliminates procedure call overhead.
Allows more optimizations to take place
However, overuse can cause slowdowns
Breaks compiler procedure assumptions.
Function calls add needed register spills.
Changing function forces global recompilation.

cs6363

13

Procedure Cloning

o Often specific values of function
parameters result in better optimizations.

PROCEDURE UPDATE(A,N,IS)

REAL A(N) If we knew that IS I= 0 at
INTEGER I = 1,N a call, then loop can be
A(I*IS-IS+1)=A(I*IS-IS+1)+PI ,
ENDDO vectorized.
END

If we know that IS |= O at specific call sites, clone a
vectorized version of the procedure and use it at those sites.

cs6363 14

Hybrid optimizations

o Combinations of procedures can have

0 One example is loop embedding:

benefit.
DO I = 1,N
CALL FOO()
ENDDO

PROCEDURE FOO ()

END

)

cs6363

CALL FOO()

PROCEDURE FOO ()
DO I = 1,N
ENDDO

END

15

Constant Propagation

o Propagating constants between procedures can significantly

improve performance

o Dependence testing can be made more precise

SUBROUTINE FOO(N)
INTEGER N, M
CALL INIT(M,N)

DO I = 1,P
B(M*I + 1) =
ENDDO
END

SUBROUTINE INIT(M,N)
M = N
END

2*B(1)

Enable more accurate dependence analysis 1f

N is a constant

o Challenge:need to model data-flow across procedural

boundaries

cs6363

16

o Definition: Lets = (p,q) be a call site, and let x be a
parameter of q. The jump function J_

Gives the value of formal parameter x used to invoke g in terms
of incoming parameter values of procedure p

Models a transfer function for each call site
caller parameters ==> callee parameters

o We construct an interprocedural value graph:
Add a node to the graph for each jump function]

If x is used to compute to]y where t is a call site |n procedure q,
then add an edge between] and]y for every call site s = (p,q)
in some procedure p

Model control flow (call relations) between jump functions

o Apply the constant propagation algorithm to this graph.
Might want to iterate with global propagation

cs6363 17

Jump Functions

PROGRAM MAIN
INTEGER A

o. CALL PROCESS(15,A)
PRINT A

END

SUBROUTINE PROCESS(N,B)
INTEGER N, B, I

B CALL INIT(I,N)

y CALL SOLVE(B,I)

END

SUBROUTINE INIT(X,Y)
INTEGER X,Y
X = 2*Y

END

SUBROUTINE SOLVE(C,T)
INTEGER C,T
C = T*10

END

* Need a way of buildingJ,

» For parameter x of procedure p,
define R to be the output value of
X in terms of input parameters of p

RI)](VIT ={2*7Y} RfS’:OLVE ={7"*10}
RS, (JI(N)) CEMOD(y)

RE —
PROCESS ~— . .
undefined otherwise

o {szmw) 1 EMOD()

’ undefined otherwise

J =N

N
7Y =15 ;

cs6363 18

Symbolic Analysis

O Prove facts about values of variables

= Find a symbolic expression for a variable in terms of other
variables.

= Establish a relationship between pairs of variables at some
point in program.
= Establish a range of values for a variable at a given point.

Range Analysis:

[-<60]

[-©0:100]

[1:100]

N

[l:e0]

~

['°°r°°]

» Jump functions and return jump

functions return ranges.

* Meeft operation is how more

complicated.

* If we can bound number of times upper

cs6363

bound increases and lower bound
decreases, the finite-descending-chain
property is satisfied.

19

Array Section Analysis

o Consider the following code:

DO I = 1,N

CALL SOURCE(A,I) :
CALL SINK(A,T) Does this loop carry dependence?

ENDDO

Let M,(I) be the set of locations in array modified on
iteration I and U,(I) set of locations used on iteration
I. Then has a carried true dependence iff

M,I)NU,I)=D 1=l <I, =N

cs6363

20

Example

PROGRAM MAIN y »
INTEGER A,B 1 (74 Jo)2
A=1
B =2

o CALL S(A,B)

END

SUBROUTINE S(X,Y)

INTEGER X,Y,Z,W 3 @ e 1
Z=X+Y

W=X-Y
8 CALL T(Z,W)
END The constant-propagation algorithm will

SUBROUTINE T(U,V)
PRINT U,V
END

Eventually converge to above values.

cs6363 21

Whole Program Optimization

o What we have covered
= Call graph construction
= Mod/ref analysis
= Alias analysis
= Constant propagation
= Procedure inlinine and cloning

O Practical concerns

= Requires the source code of multiple
procedures (whole program)

= Requires recompilation of interdependent
procedures when program is modified

cs6363

22

