Interprocedural Analysis and Optimization

Mod/Ref Analysis
Alias Analysis
Constant Propagation
Procedure Inlining and Cloning
Introduction

- Interprocedural Analysis
 - Gathering information about the whole program instead of a single procedure
 - Examples: side-effect analysis, alias analysis
- Interprocedural Optimization
 - Modifying more than one procedure, or
 - Using interprocedural analysis
Interprocedural Side-effect Analysis

- Modification and Reference Side-effect
 - MOD(s): set of variables that may be modified as a side effect of call at s
 - REF(s): set of variables that may be referenced as a side effect of call at s

```plaintext
COMMON X, Y
...
DO I = 1, N
S0: CALL P
S1: X(I) = X(I) + Y(I)
ENDDO
```

- Can vectorize if
 - P neither modifies nor uses X
 - P does not modify Y
Interprocedural Alias Analysis

SUBROUTINE S(A,X,N)
 COMMON Y
 DO I = 1, N
 S0: X = X + Y*A(I)
 ENDDO
END

- Could we keep X and Y in different registers?
 - What happens if S is called with parameters S(A,Y,N)?
 - Y is aliased to X on entry to S (Fortran uses call-by-ref)
 - Can’t put X and Y in different registers

- For each parameter x, compute ALIAS(p,x)
 - The set of variables that may refer to the same location as formal parameter x on entry to p
Call Graph construction

- Interprocedural analysis must model how procedures call each other
 - Two approaches: call graph and interprocedural control flow graph
- Call Graph: \(G=(N,E) \) model call relations between procedures
 - \(N \): one vertex for each procedure
 - \(E \): \(p \to q \): if procedure \(p \) calls \(q \); one edge for each possible call
- Construction must handle function pointers (procedure parameters)

```plaintext
SUBROUTINE S(X,P)
  S0: CALL P(X)
  RETURN
END
```

- \(P \) is a procedure parameter to \(S \)
 - What values can \(P \) have on entry to \(S \)?
 - \text{CALL(s)}: set of all procedures that may be invoked at \(s \) (alias analysis)
Flow Insensitive Side-effect Analysis

- **Goal:** compute what variables may be modified by each procedure
 - Interprocedural analysis

- **Assumptions**
 - Procedure definitions are not nested inside one another
 - All parameters passed by reference
 - Each procedure has a constant number of parameters
 - Procedures may recursively invoke each other

- **We will formulate and solve the MOD(s) problem**
Solving MOD

- **MOD(s):** variables modified by the call of procedure p at call site s
 \[MOD(s) = DMOD(s) \cup \bigcup_{x \in DMOD(s)} ALIAS(p, x) \]
 - **DMOD(s):** set of variables directly modified as side-effect of call at s
 \[DMOD(s) = \{ v \mid s \Rightarrow p, v \xrightarrow{s} w, w \in GMOD(p) \} \]
 - **GMOD(p):** set of global variables and formal parameters of p that are modified, either directly or indirectly as a result of calling p

Example:

\[S0: \text{CALL P(A,B,C)} \]
\[\text{SUBROUTINE P(X,Y,Z)} \]
\[\text{INTEGER X,Y,Z} \]
\[X = X*Z \]
\[Y = Y*Z \]
\[\text{END} \]

GMOD(P) = \{X, Y\}

DMOD(S0) = \{A, B\}
Solving GMOD

- GMOD(p) contains two types of variables
 - IMOD(p): variables explicitly modified in body of P
 - Variables modified as a side-effect of some procedure invoked in p
 - Global variables are viewed as parameters to a called procedure
 \[GMOD(p) = IMOD(p) \cup \bigcup_{s=(p,q)} \{ z \mid z \xrightarrow{s} w, w \in GMOD(q) \} \]
 - May take a long time to converge due to recursive procedure calls
Solving GMOD

- Decompose GMOD(p) differently to get an efficient solution
- Key: Treat side-effects to global variables and reference formal parameters separately

\[GMOD(p) = IMOD^+(p) \cup \bigcup_{s = (p, q)} GMOD(q) \cap \neg LOCAL \]

- where

\[IMOD^+(p) = IMOD(p) \cup \bigcup_{s = (p, q)} \{ z | z \xrightarrow{s} w, w \in RMOD(q) \} \]

- **RMOD(p):** set of formal parameters that may be modified in p, either directly or by used as actual parameter to call another procedure q
Alias Analysis

- Recall definition of $MOD(s)$
 \[MOD(s) = DMOD(s) \cup \bigcup_{x \in DMOD(s)} ALIAS(p, x) \]

- Need to
 - Compute $ALIAS(p, x)$
 - Update $DMOD$ to MOD using $ALIAS(p, x)$

- Key Observations
 - Two global variables can never be aliased of each other.
 - Global variables can only be aliased to formal parameters
 - The number of aliases for each variable is bounded by the number of formal parameters and global variables
 - Not true in C/C++ code when data can be dynamically allocated
Update DMOD to MOD

SUBROUTINE P
 INTEGER A
S0: CALL S(A,A)
END

SUBROUTINE S(X,Y)
 INTEGER X,Y
S1: CALL Q(X)
END

SUBROUTINE Q(Z)
 INTEGER Z
 Z = 0
END

GMOD(Q)={Z}
DMOD(S1)={X}
MOD(S1)={X,Y}
Interprocedural Optimizations

- The goal of interprocedural analysis is to enable whole program optimizations.
- Can we understand procedural calls just like regular statements?
 - MOD/REF -- set of variables modified/referenced in procedure.
 - ALIAS -- set of aliased variables in a procedure.
- Eliminating the boundary of procedures:
 - Procedure inlining and cloning (specialization).
- Can enhance the scope of many optimizations:
 - Constant propagation.
 - Redundancy elimination.
 - Loop optimizations.
Procedure Inlining

Replace a procedure invocation with the body of the procedure being called

- Advantages:
 - Eliminates procedure call overhead.
 - Allows more optimizations to take place

- However, overuse can cause slowdowns
 - Breaks compiler procedure assumptions.
 - Function calls add needed register spills.
 - Changing function forces global recompilation.
Procedure Cloning

Often specific values of function parameters result in better optimizations.

```fortran
PROCEDURE UPDATE(A,N,IS)
  REAL A(N)
  INTEGER I = 1,N
  A(I*IS-IS+1)=A(I*IS-IS+1)+PI
ENDDO
END
```

If we knew that IS != 0 at a call, then loop can be vectorized.

If we know that IS != 0 at specific call sites, clone a vectorized version of the procedure and use it at those sites.
Hybrid optimizations

- Combinations of procedures can have benefit.
- One example is loop embedding:

```
DO I = 1,N
   CALL FOO()
ENDDO

PROCEDURE FOO()
   ...
END
```
Constant Propagation

- Propagating constants between procedures can significantly improve performance
- Dependence testing can be made more precise

```plaintext
SUBROUTINE FOO(N)
    INTEGER N,M
    CALL INIT(M,N)
    DO I = 1,P
        B(M*I + 1) = 2*B(1)
    ENDDO
END

SUBROUTINE INIT(M,N)
    M = N
END
```

Enable more accurate dependence analysis if N is a constant
- Challenge: need to model data-flow across procedural boundaries
Constant Propagation

- **Definition:** Let $s = (p,q)$ be a call site, and let x be a parameter of q. The jump function J^x_s
 - Gives the value of formal parameter x used to invoke q in terms of incoming parameter values of procedure p
 - Models a transfer function for each call site
 - caller parameters \Rightarrow callee parameters
- We construct an interprocedural value graph:
 - Add a node to the graph for each jump function J^x_s
 - If x is used to compute to J^y_t, where t is a call site in procedure q, then add an edge between J^x_s and J^y_t for every call site $s = (p,q)$ in some procedure p
 - Model control flow (call relations) between jump functions
- Apply the constant propagation algorithm to this graph.
 - Might want to iterate with global propagation
Jump Functions

- Need a way of building J^I_γ
- For parameter x of procedure p, define R^x_p to be the output value of x in terms of input parameters of p

$$
R^X_{\text{INIT}} = \{2 \times Y\} \quad R^C_{\text{SOLVE}} = \{T \times 10\}
$$

$$
R^B_{\text{PROCESS}} = \begin{cases}
R^C_{\text{SOLVE}}(J^T_\gamma(N)) & C \in \text{MOD}(\gamma) \\
\text{undefined} & \text{otherwise}
\end{cases}
$$

$$
J^T_\gamma = \begin{cases}
R^X_{\text{INIT}}(N) & I \in \text{MOD}(\beta) \\
\text{undefined} & \text{otherwise}
\end{cases}
$$

$$
J^N_\alpha = 15 \quad J^Y_\beta = N
$$
Symbolic Analysis

- Prove facts about values of variables
 - Find a symbolic expression for a variable in terms of other variables.
 - Establish a relationship between pairs of variables at some point in program.
 - Establish a range of values for a variable at a given point.

Range Analysis:

- Jump functions and return jump functions return ranges.
- Meet operation is now more complicated.
- If we can bound number of times upper bound increases and lower bound decreases, the finite-descending-chain property is satisfied.
Consider the following code:

```fortran
DO I = 1,N
   CALL SOURCE(A,I)
   CALL SINK(A,I)
ENDDO
```

Does this loop carry dependence?

Let $M_A(I)$ be the set of locations in array modified on iteration I and $U_A(I)$ set of locations used on iteration I. Then has a carried true dependence iff

$$M_A(I_1) \cap U_A(I_2) \neq \emptyset \quad 1 \leq I_1 < I_2 \leq N$$
Example

The constant-propagation algorithm will Eventually converge to above values.
Whole Program Optimization

- What we have covered
 - Call graph construction
 - Mod/ref analysis
 - Alias analysis
 - Constant propagation
 - Procedure inlining and cloning

- Practical concerns
 - Requires the source code of multiple procedures (whole program)
 - Requires recompilation of interdependent procedures when program is modified