
cs6363 1

Advanced Compiler
Construction

Qing Yi

class web site:
www.cs.utsa.edu/~qingyi/cs6363

cs6363 2

A little about myself
Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

Research Interests
 Compiler construction

program analysis and optimization for high-performance computing
 Programming languages

type systems, object-oriented design
 Software engineering

automatic code generation; systematic error-discovery and verification of
software

Overall goal: develop tools to improve both the productivity and
efficiency of programming

cs6363 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs6363
 Check for class handouts and announcements

 Office hours:MW 3:30-4pm 5:15-5:45pm; by appointment
 Textbook

 Optimizing compilers for Modern Architectures: A dependence-based
Approach

 Ken Kennedy and Randy Allen, Morgan-Kauffman Publishers Inc.
 Requirements

 Basic understanding of algorithms, programming languages, and
compilers

 Grading
 In class exercises and quizzes: 30%
 Research paper presentation: 20%
 Paper review: 10%
 Research project: 40%

cs6363 4

Program Optimization Projects
 In order to optimize a program, a tool must be built to

 Understand (parse/unparse) a programming language
 Analyze the program to determine which potential optimizations are

possible (safety analysis)
 Analyze the program to determine which transformations are

profitable and how to apply the transformations (optimization
configuration)

 Ways to resolve the problem
 Build a small parser/unparser for a subset of the C language

 Easy and flexible if publishing paper is all you want

 Use existing infrastructures from open-source compilers and languages
 We provide the ROSE C/C++ compiler and the POET language (an

interpreted language for building ad-hoc optimizers/translators)

 Your project can focus on one of the analysis or transformation
aspects of performance optimizations

cs6363 5

Acknowledgements
 Slides from the compiler optimization class

(comp515) of Rice University
 By Prof. Ken Kennedy

 www.cs.rice.edu/~ken/comp515

 By prof. Vevek Sarkar
 www.cs.rice.edu/~vs3/comp515/

cs6363 6

High performance computing on
modern machines
 Applications must efficiently manage architectural

components
 Pipelining
 Multiple execution units --- pipelined
 Vector operations, multi-core
 Parallel processing

 Shared memory, distributed memory, message-passing
 VLIW and Superscalar instruction issue
 Registers
 Cache hierarchy
 Combinations of the above --- parallel-vector machines

 What are the compilation challenges?

cs6363 7

Optimizing For High
Performance
 Optimization means eliminating inefficiencies in programs
 Eliminate redundancy: if an operation has already been

evaluated, don’t do it again
 Especially if the operation is inside loops or part of a recursive

evaluation
 All optimizing compilers apply redundancy elimination, e.g.,

loop invariant code motion, value numbering, global RE, PRE
 Resource management: reorder operations and data to

better map to the targeting machine
 Reorder computation(operations)

 parallelization, vectorization, pipelining, VLIW, memory reuse
 Instruction scheduling and loop transformations

 Re-organization of data
 Register allocation, regrouping of arrays and data structures

cs6363 8

Optimizing Compilers For
Modern Architectures
 Sophisticated compiler optimizations beyond

traditional redundancy elimination
 Parallelization and vectorization
 memory hierarchy management
 Instruction scheduling
 Interprocedural (whole-program) optimizations

 Goal: reorder operations to better manage the targeting
machine

 Most compilers focus on optimizing loops, why?
 This is where the application spends most of its

computing time
 What about recursive function/procedural calls?

 Extremely important, but often left unoptimized…

cs6363 9

Compiler Technologies
 Source-level Program Transformations

 Most architectural issues can be dealt with by
restructuring transformations of program source

 Vectorization, parallelization, cache reuse enhancement
 Challenges:

 Determining when transformations are legal
 Selecting transformations based on profitability

 Low level code generation
 Some issues must be dealt with at a lower level

 Prefetch insertion
 Instruction scheduling

 All require some understanding of the ways that
instructions and statements depend on one
another (share data)

cs6363 10

Dependence-based
Optimization
 Vectorization and Parallelization require a deeper analysis

than optimization for scalar machines
 Bernstein’s Conditions: it is safe to run two tasks R1 and

R2 in parallel if none of the following holds:
 R1 writes into a memory location that R2 reads
 R2 writes into a memory location that R1 reads
 Both R1 and R2 write to the same memory location

 Dependence is the theory that makes this possible
 There is a dependence between two statements if they might

access the same location, there is a path from one to the other,
and one access is a write

 Dependence has other applications
 Memory hierarchy management

 Restructuring programs to make better use of cache and registers
 Includes input dependences

 Scheduling of instructions

cs6363 11

Dependence --- a Static Program
Analysis Technique
 Program analysis --- support software development and maintenance

 Compilation --- identify errors without running program
 Smart development environment (check simple errors as you type the code)

 Program Optimization --- cannot not change the meaning of the program
 Improve performance, reduce resource consumption, …
 Code revision/re-factoring ==> reusability, maintainability,

 Program correctness --- Is the program safe? Is it dependable?
 Program verification --- is the program guaranteed to satisfy certain properties?

Is the implementation safe, secure, and dependable?
 Program integration --- are there any communication errors among different

components of a collaborated project?
 Program understanding --- extract high-level semantics from low-level

implementations (reverse engineering)
 In contrast, if the program needs to be run to figure out information, it

is called dynamic program analysis.
Dependence: models the re-ordering constraints between operations

cs6363 12

Focus of this class
 Reorder computation to better map to the targeting machine

 Focus on using dependence information to guide optimizations of loops
 Determine what transformations are safe and profitable

 Introduce other optimizations applied at the source level
 Regrouping of data, prefetching techniques

 Instruction scheduling and redundancy elimination are covered in
cs5363 and not covered here

 Whole program analysis and optimizations
 Interprocedural control-flow analysis, aliasing analysis, pointer

analysis
 Extend the application scope of optimizations

 Research experience
 Study literature on cutting edge optimizations

 Object-oriented programming, data layout optimizations,
interprocedural optimizations, tuning of optimization parameters

 Research project
 Identify an important problem, solve the problem, evaluate the

solution.

cs6363 13

Syllabus
 Introduction

 Compilation for parallel machines and automatic detection of parallelism.

 Dependence Theory and Practice
 Types of dependences; Testing for dependence; Control Dependence. Types of

branches. If conversion. Program dependence graph.

 Preliminary Transformations
 Loop normalization, scalar data flow analysis, induction variable substitution,

scalar renaming.

 Parallel Code Generation
 Fine- and Coarse-Grained parallel code generation and loop transformations to

enable parallelism.

 Memory Hierarchy Management
 The use of dependence in scalar register allocation and management of the

cache memory hierarchy.

 Interprocedural Analysis and Optimization
 Management of interprocedural analysis and optimization.

cs6363 14

Roadmap
 Week1-8 --- Fundamental theories

 Materials from the textbook
 Instructors giving lectures
 Students select from a pool of papers and project ideas
 Initial project plan due

 Each project must resolves at least one non-trivial problem and
evaluates the solution

 Week9-13--- theory applied to solve real problems
 Materials from the research literature
 Student paper presentations
 Class discussion and paper reviews
 Project intermediate and final report

