
cs6363 1

Advanced Compiler
Construction

Qing Yi

class web site:
www.cs.utsa.edu/~qingyi/cs6363

cs6363 2

A little about myself
Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Phone : 458-5671

Research Interests
 Compiler construction

program analysis and optimization for high-performance computing
 Programming languages

type systems, object-oriented design
 Software engineering

automatic code generation; systematic error-discovery and verification of
software

Overall goal: develop tools to improve both the productivity and
efficiency of programming

cs6363 3

General Information
 Class website

 www.cs.utsa.edu/~qingyi/cs6363
 Check for class handouts and announcements

 Office hours:MW 3:30-4pm 5:15-5:45pm; by appointment
 Textbook

 Optimizing compilers for Modern Architectures: A dependence-based
Approach

 Ken Kennedy and Randy Allen, Morgan-Kauffman Publishers Inc.
 Requirements

 Basic understanding of algorithms, programming languages, and
compilers

 Grading
 In class exercises and quizzes: 30%
 Research paper presentation: 20%
 Paper review: 10%
 Research project: 40%

cs6363 4

Program Optimization Projects
 In order to optimize a program, a tool must be built to

 Understand (parse/unparse) a programming language
 Analyze the program to determine which potential optimizations are

possible (safety analysis)
 Analyze the program to determine which transformations are

profitable and how to apply the transformations (optimization
configuration)

 Ways to resolve the problem
 Build a small parser/unparser for a subset of the C language

 Easy and flexible if publishing paper is all you want

 Use existing infrastructures from open-source compilers and languages
 We provide the ROSE C/C++ compiler and the POET language (an

interpreted language for building ad-hoc optimizers/translators)

 Your project can focus on one of the analysis or transformation
aspects of performance optimizations

cs6363 5

Acknowledgements
 Slides from the compiler optimization class

(comp515) of Rice University
 By Prof. Ken Kennedy

 www.cs.rice.edu/~ken/comp515

 By prof. Vevek Sarkar
 www.cs.rice.edu/~vs3/comp515/

cs6363 6

High performance computing on
modern machines
 Applications must efficiently manage architectural

components
 Pipelining
 Multiple execution units --- pipelined
 Vector operations, multi-core
 Parallel processing

 Shared memory, distributed memory, message-passing
 VLIW and Superscalar instruction issue
 Registers
 Cache hierarchy
 Combinations of the above --- parallel-vector machines

 What are the compilation challenges?

cs6363 7

Optimizing For High
Performance
 Optimization means eliminating inefficiencies in programs
 Eliminate redundancy: if an operation has already been

evaluated, don’t do it again
 Especially if the operation is inside loops or part of a recursive

evaluation
 All optimizing compilers apply redundancy elimination, e.g.,

loop invariant code motion, value numbering, global RE, PRE
 Resource management: reorder operations and data to

better map to the targeting machine
 Reorder computation(operations)

 parallelization, vectorization, pipelining, VLIW, memory reuse
 Instruction scheduling and loop transformations

 Re-organization of data
 Register allocation, regrouping of arrays and data structures

cs6363 8

Optimizing Compilers For
Modern Architectures
 Sophisticated compiler optimizations beyond

traditional redundancy elimination
 Parallelization and vectorization
 memory hierarchy management
 Instruction scheduling
 Interprocedural (whole-program) optimizations

 Goal: reorder operations to better manage the targeting
machine

 Most compilers focus on optimizing loops, why?
 This is where the application spends most of its

computing time
 What about recursive function/procedural calls?

 Extremely important, but often left unoptimized…

cs6363 9

Compiler Technologies
 Source-level Program Transformations

 Most architectural issues can be dealt with by
restructuring transformations of program source

 Vectorization, parallelization, cache reuse enhancement
 Challenges:

 Determining when transformations are legal
 Selecting transformations based on profitability

 Low level code generation
 Some issues must be dealt with at a lower level

 Prefetch insertion
 Instruction scheduling

 All require some understanding of the ways that
instructions and statements depend on one
another (share data)

cs6363 10

Dependence-based
Optimization
 Vectorization and Parallelization require a deeper analysis

than optimization for scalar machines
 Bernstein’s Conditions: it is safe to run two tasks R1 and

R2 in parallel if none of the following holds:
 R1 writes into a memory location that R2 reads
 R2 writes into a memory location that R1 reads
 Both R1 and R2 write to the same memory location

 Dependence is the theory that makes this possible
 There is a dependence between two statements if they might

access the same location, there is a path from one to the other,
and one access is a write

 Dependence has other applications
 Memory hierarchy management

 Restructuring programs to make better use of cache and registers
 Includes input dependences

 Scheduling of instructions

cs6363 11

Dependence --- a Static Program
Analysis Technique
 Program analysis --- support software development and maintenance

 Compilation --- identify errors without running program
 Smart development environment (check simple errors as you type the code)

 Program Optimization --- cannot not change the meaning of the program
 Improve performance, reduce resource consumption, …
 Code revision/re-factoring ==> reusability, maintainability,

 Program correctness --- Is the program safe? Is it dependable?
 Program verification --- is the program guaranteed to satisfy certain properties?

Is the implementation safe, secure, and dependable?
 Program integration --- are there any communication errors among different

components of a collaborated project?
 Program understanding --- extract high-level semantics from low-level

implementations (reverse engineering)
 In contrast, if the program needs to be run to figure out information, it

is called dynamic program analysis.
Dependence: models the re-ordering constraints between operations

cs6363 12

Focus of this class
 Reorder computation to better map to the targeting machine

 Focus on using dependence information to guide optimizations of loops
 Determine what transformations are safe and profitable

 Introduce other optimizations applied at the source level
 Regrouping of data, prefetching techniques

 Instruction scheduling and redundancy elimination are covered in
cs5363 and not covered here

 Whole program analysis and optimizations
 Interprocedural control-flow analysis, aliasing analysis, pointer

analysis
 Extend the application scope of optimizations

 Research experience
 Study literature on cutting edge optimizations

 Object-oriented programming, data layout optimizations,
interprocedural optimizations, tuning of optimization parameters

 Research project
 Identify an important problem, solve the problem, evaluate the

solution.

cs6363 13

Syllabus
 Introduction

 Compilation for parallel machines and automatic detection of parallelism.

 Dependence Theory and Practice
 Types of dependences; Testing for dependence; Control Dependence. Types of

branches. If conversion. Program dependence graph.

 Preliminary Transformations
 Loop normalization, scalar data flow analysis, induction variable substitution,

scalar renaming.

 Parallel Code Generation
 Fine- and Coarse-Grained parallel code generation and loop transformations to

enable parallelism.

 Memory Hierarchy Management
 The use of dependence in scalar register allocation and management of the

cache memory hierarchy.

 Interprocedural Analysis and Optimization
 Management of interprocedural analysis and optimization.

cs6363 14

Roadmap
 Week1-8 --- Fundamental theories

 Materials from the textbook
 Instructors giving lectures
 Students select from a pool of papers and project ideas
 Initial project plan due

 Each project must resolves at least one non-trivial problem and
evaluates the solution

 Week9-13--- theory applied to solve real problems
 Materials from the research literature
 Student paper presentations
 Class discussion and paper reviews
 Project intermediate and final report

