Advanced Compiler
Construction

I 0909090909090 e
Qing Yi

class web site:

666666



A little about myself

Qing Yi
o  Ph.D. Rice University, USA.

o Assistant Professor, Department of Computer Science
o Office: SB 4.01.30

o Phone: 458-5671

Research Interests

o Compiler construction
program analysis and optimization for high-performance computing

o Programming languages
type systems, object-oriented design

o Software engineering _ _ o
automatic code generation; systematic error-discovery and verification of
software

Overall goal: develop tools to improve both the productivity and
efficiency of programming

cs6363



General Information

o Class website

= www.cs.utsa.edu/~qingyi/cs6363
Check for class handouts and announcements

= Office hours:MW 3:30-4pm 5:15-5:45pm; by appointment
O Textbook

= Optimizing compilers for Modern Architectures: A dependence-based
Approach

Ken Kennedy and Randy Allen, Morgan-Kauffman Publishers Inc.
O Requirements

= Basic understanding of algorithms, programming languages, and
compilers

0 Grading

In class exercises and quizzes: 30%
Research paper presentation: 20%
Paper review: 10%

Research project: 40%

cs6363



o In order to optimize a program, a tool must be built to
Understand (parse/unparse) a programming language

Analyze the program to determine which potential optimizations are
possible (safety analysis)

Analyze the program to determine which transformations are
profitable and how to apply the transformations (optimization
configuration)

o Ways to resolve the problem
Build a small parser/unparser for a subset of the C language
Easy and flexible if publishing paper is all you want

Use existing infrastructures from open-source compilers and languages

We provide the ROSE C/C++ compiler and the POET language (an
interpreted language for building ad-hoc optimizers/translators)

Your project can focus on one of the analysis or transformation
aspects of performance optimizations

cs6363 4



Acknowledgements

o Slides from the compiler optimization class
(comp515) of Rice University
= By Prof. Ken Kennedy

= By prof. Vevek Sarkar

WWW.cs.rice.edu/~vs3/comp515/

cs6363 5



High performance computing on
modern machines

o Applications must efficiently manage architectural
components

Pipelining

Multiple execution units --- pipelined

Vector operations, multi-core

Parallel processing
Shared memory, distributed memory, message-passing

VLIW and Superscalar instruction issue

Registers

Cache hierarchy

Combinations of the above --- parallel-vector machines

hat are the compilation challenges?

Ellll

O

cs6363



O

Optimization means eliminating inefficiencies in programs

Eliminate redundancy: if an operation has already been
evaluated, don’t do it again

Especially if the operation is inside loops or part of a recursive
evaluation

All optimizing compilers apply redundancy elimination, e.qg.,
loop invariant code motion, value numbering, global RE, PRE
Resource management: reorder operations and data to
better map to the targeting machine
Reorder computation(operations)
parallelization, vectorization, pipelining, VLIW, memory reuse
Instruction scheduling and loop transformations
Re-organization of data
Register allocation, regrouping of arrays and data structures

cs6363



Optimizing Compilers For
Modern Architectures

0 Sophisticated compiler optimizations beyond
traditional redundancy elimination
Parallelization and vectorization
memory hierarchy management
Instruction scheduling
Interprocedural (whole-program) optimizations

= Goal: reorder operations to better manage the targeting
machine
o Most compilers focus on optimizing loops, why?
= This is where the application spends most of its
computing time
= What about recursive function/procedural calls?
Extremely important, but often left unoptimized...

cs6363



o Source-level Program Transformations

Most architectural issues can be dealt with by
restructuring transformations of program source

Vectorization, parallelization, cache reuse enhancement
Challenges:

Determining when transformations are legal

Selecting transformations based on profitability

o Low level code generation

Some issues must be dealt with at a lower level
Prefetch insertion
Instruction scheduling

o All require some understanding of the ways that
instructions and statements depend on one
another (share data)

cs6363



Dependence-based
Optimization

o Vectorization and Parallelization require a deeper analysis
than optimization for scalar machines

= Bernstein’s Conditions: it is safe to run two tasks R1 and
R2 in parallel if none of the following holds:
R1 writes into a memory location that R2 reads
R2 writes into a memory location that R1 reads
Both R1 and R2 write to the same memory location

o Dependence is the theory that makes this possible

= There is a dependence between two statements if they might
access the same location, there is a path from one to the other,

and one access is a write
o Dependence has other applications

= Memory hierarchy management
Restructuring programs to make better use of cache and registers
Includes input dependences

= Scheduling of instructions

cs6363 10



O Program analysis --- support software development and maintenance
Compilation --- identify errors without running program
Smart development environment (check simple errors as you type the code)
Program Optimization --- cannot not change the meaning of the program
Improve performance, reduce resource consumption, ...
Code revision/re-factoring ==> reusability, maintainability,
Program correctness --- Is the program safe? Is it dependable?

Program verification --- is the program guaranteed to satisfy certain properties?
Is the implementation safe, secure, and dependable?

Program integration --- are there any communication errors among different
components of a collaborated project?

Program understanding --- extract high-level semantics from low-level
implementations (reverse engineering)

O In contrast, if the program needs to be run to figure out information, it
is called dynamic program analysis.

Dependence: models the re-ordering constraints between operations

cs6363 11



0 Reorder computation to better map to the targeting machine

Focus on using dependence information to guide optimizations of loops
Determine what transformations are safe and profitable

Introduce other optimizations applied at the source level
Regrouping of data, prefetching techniques

Instruction scheduling and redundancy elimination are covered in
cs5363 and not covered here

o Whole program analysis and optimizations

Interprocedural control-flow analysis, aliasing analysis, pointer
analysis

Extend the application scope of optimizations
O Research experience
Study literature on cutting edge optimizations

Object-oriented programming, data layout optimizations,
interprocedural optimizations, tuning of optimization parameters

Research project

Identify an important problem, solve the problem, evaluate the

solution.
cs6363 12



Syllabus

O

Introduction
= Compilation for parallel machines and automatic detection of parallelism.
Dependence Theory and Practice

m Types of dependences; Testing for dependence; Control Dependence. Types of
branches. If conversion. Program dependence graph.

Preliminary Transformations

= Loop normalization, scalar data flow analysis, induction variable substitution,
scalar renaming.

Parallel Code Generation

= Fine- and Coarse-Grained parallel code generation and loop transformations to
enable parallelism.

Memory Hierarchy Management

m The use of dependence in scalar register allocation and management of the
cache memory hierarchy.

Interprocedural Analysis and Optimization
= Management of interprocedural analysis and optimization.

cs6363 13



Roadmap

0o Weekl1l-8 --- Fundamental theories

Materials from the textbook
Instructors giving lectures
Students select from a pool of papers and project ideas

Initial project plan due

Each project must resolves at least one non-trivial problem and
evaluates the solution

o Week9-13--- theory applied to solve real problems

Materials from the research literature
Student paper presentations

Class discussion and paper reviews
Project intermediate and final report

cs6363

14



