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Inter-procedural
Control Flow Analysis

Using Constraint-based
Approach
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The Dynamic Dispatch Problem
 Which function is called by p(x)?

int myFunc ( int (*p)(int), …)
{
……
return p(x);
}

 P is a function pointer. What function could p point to (what is
the value of p)?

 P is a function parameter, so the value of p is unknown unless
inter-procedural dataflow analysis is performed

 But inter-procedural data-flow requires an inter-procedural control
flow graph (or a call graph)

 The problem is relevant for
 Imperative languages that allow functions as parameters
 Object oriented languages and functional languages
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Inter-procedural Control flow
Analysis
 Example code

int f (int (*x)(int) { return x(1); }
int g (int y) { return y + 2; }
int h (int z) { return z + 3; }
int main() {
  return f(g) + f(h);
}

 For each function call, what functions may
be invoked?
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Defining the Analysis
 What is the domain of analysis

 What is the solution space?
 What could be the values for each function pointer

expression?

 Specification of the analysis
 How to compute the solution?

 how to accommodate the information flow from function
definitions to function invocations

 Well-definedness of the analysis
 What are the properties of the solution space?
 Does it compute a solution?
 Does the algorithm terminate?
 Is the solution precise?
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Specification of Domain
 What is the solution?

 For each expression in the program, could it have a
function pointer value? If yes, what functions may it
point to? (if no, the solution is ∅)

 Must keep track of the values of variables (especially
function parameters)

 To represent the solution, label each expression
within the program, compute
 An abstract cache (C) so that for each expression e,

 C(e) contains the set of function values e may have

 An abstract environment (P) so that for each variable x,
 P(x) contains the set of function values x may have
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The Input Language
 Assume a small functional language

e ::= c                  // constant values
     | x                   // variable reference

 | fun f x => e0 // function with name f, parameter x, and body 30
     | e1 e2            // invoking function e1 with argument e2
     | if e0 then e1 else e2   //if e0 is true, return e1, else return e2
     | let x = e1 in e2   // introduce local variable x=e1 in e2

 Why functional language?
 Functions are first-class objects; allow nested functions/scopes

 Can be used to model virtual functions in object-oriented
programming

 Dataflow is explicit (a single symbolic value for each variable).
No variable is ever modified

 For imperative programming languages, perform global data-flow
analysis / build SSA
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Example Code and Control-flow
Analysis Solution
 Example code

   ((fun f x => x) (fun g y => y))
 Labels: 1: x;
                2: (fun f x => x)
                3: y;
                4: (fun g y => y)
                5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings)

 { fun g y => y}g

∅y
{fun f x => x}f

 { fun g y => y}x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1
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Solution Space of CFA
 Formally

 Abstract values:  Val = Power(Term)
 Each term is a function definition in the form (fun f x => e0)

 Abstract environment:  Env = Var -> Val
 Var: the set of all variables (including function parameters)

 Abstract cache:  Cache = Label ->  Val
 Label: the set of labels (expressions)

 Each solution: a pair of  (P,C) ⊆(Env, Cache)
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Specification of CFA
 What properties must be satisfied by (P,C) to be a

correct/acceptable solution?
 (C,P) |= e means that (C,P) is an acceptable Control Flow Analysis

Solution for the expression e
 (C,P) |= c

Arbitrary solutions are acceptable for a constant value c

 (C,P) |= (x)l  iff P(x) ⊆ C(l )
The solution for an variable must be a subset of the solution for its label

(each variable has a single value through each of its lifetime)

 (C,P) |= (fun f x => (e0)l0)l1   iff (C,P) |= (e0)l0 and

 {fun f x => e0} ⊆ C(l1) and {fun f x => e0} ⊆ P(f)
The solution for a function definition(abstraction) label must include the

function definition(abstraction)
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Specification of CFA (2)
 Function invocation (application)

 (C,P) |= ((e1)l1  (e2)l2)l3   iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and
      ∀ (fun f x => (e0)l0) ∈ C(l1 ): (C,P)|=(e0)l0, C(l2) ⊆ P(x) and C(l0 ) ⊆ C(l2)

 The solution for  function parameter (x) must contain that of the invocation
argument (e2);

 The solution of the function invocation must contain that of the function body
 Local variables (nested scopes)

 (C,P) |= (let x = (e1)l1 in (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2,
 C(l1) ⊆ P(x) and C(l2 ) ⊆ C(l3)

 The solution for the local variable (x) must contain that of its defined value
 The solution of the outer scope must contain that of the inner scope

 Conditionals
 (C,P) |= (if (e0)l0 then (e1)l1 else (e2)l2)l3 iff (C,P) |= (e0)l0, (C,P) |= (e1)l1,

(C,P) |= (e2)l2, and  C(l2) ⊆ C(l3) and C(l2 ) ⊆ C(l3)
 The solution of the outer scope must contain that of the inner scopes (both

branches)
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Example Code and Control-flow
Analysis Solution
 Example code

   ((fun f x => x) (fun g y => y))
 Labels: 1: x;
                2: (fun f x => x)
                3: y;
                4: (fun g y => y)
                5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings). Are the valid?
  (C,P)    (C’,P’)

∅∅y
{fun f x => x}{fun f x => x}f
 {fun g y => y} {fun g y => y}g

 { fun g y => y}

 {fun g y => y}
 {fun g y => y}

∅

{fun f x => x}

 {fun g y => y}

       ∅x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1

(C,P) |= ((fun f x => x) (fun g y => y))
(C’,P’) |= ((fun f x => x) (fun g y => y))
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Well-definedness of CFA Analysis
 Difficulty: Cannot build (C,P) |= e by structural

induction on the expression e
 E.g. function invocation (application)
   (C,P) |= ((e1)l1  (e2)l2)l3   iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and

      ∀ (fun f x => (e0)l0) ∈ C(l1 ), (C,P) |=(e0)l0, C(l2) ⊆ P(x) and C(l0 ) ⊆ C(l2)
 There is no guarantee that C(l0) has been computed correctly before

computing C(l2)

 Coinductive definition: the solution space includes all guesses of (C,P)
that satisfy the specifications
 Must apply all constraints to iteratively modify the solutions until they

become correct
 The best solution is the smallest one that satisfies all the constraints
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Correctness of Specification
 If there is a possible evaluation of the program

such that the function at a call point evaluates to
some function definition
 then this definition has to be in the set of possible

definitions computed by the analysis.

 Existence of solutions
 Every expression accepts a least CFA solution
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Constraint based Analysis
 Syntax-directed analysis

 Reformulate the analysis specification
 Construct a finite set of constraints based on structural

induction
 Compute the least solution of the set of constraints

 Each constraint has the form
(sol1 ⊆ sol2)   or   ({t} ⊆ sol)  or   ({t} ⊆ sol1 => sol2 ⊆ sol3)

 where
 Each sol is either C(l) or  P(x)

  l  is label, x is a variable
 Each t is either (fn x => e0) or (fun f x => e0)
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Constraint-based Analysis
 For each expression e, compute Cond[e]

 Cond[c] = ∅     //constants
 Cond[(x)l ] = { P(x) ⊆ C(l ) }     // variables
 Cond[(fun f x => e0)l] = Cond[e0] ∪
               { {fun f x=>e0}⊆ C(l) } ∪ { {fun f x => e0} ⊆ P(f) }   // function def.
 Cond[((e1)l1  (e2)l2)l3] =  Cond[e1] ∪ Cond[e2] ∪
{ {t} ∈ C(l1 )=>C(l2) ⊆ P(x) ∀ t = (fun f x => (e0)l0) } ∪
{ {t} ∈ C(l1 )=> C(l0) ⊆ C(l3) ∀ t = (fun f x => (e0)l0) }
 Cond[(let x = (e1)l1 in (e2)l2)l3 ] =
      Cond[e1] ∪ Cond[e2] ∪ {C(l1) ⊆ P(x)} ∪ {C(l2 ) ⊆ C(l3)}
 Cond [(if (e0)l0 then (e1)l1 else (e2)l2)l3 ] =

 Cond[e0] ∪ Cond[e1] ∪ Cond[e2] ∪ {C(l2) ⊆ C(l3)} ∪ {C(l2 ) ⊆ C(l3) }
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Example: Constraint Construction
Cond[((fun f x => (x)1)2  (fun g y => (y)3)4 )5]
   = { {fun f x => (x)} ⊆ C(2), {fun f x => (x)} ⊆ P(f),

 P(x) ⊆ C(1),
{fun g y => (y)}⊆C(4), {fun g y => (y)}⊆P(g),

 P(y) ⊆ C(3),
{fun f x => (x)} ⊆ C(2) => C(4) ⊆ P(x),
{fun f x => (x)} ⊆ C(2) => C(1) ⊆ C(5),
{fun g y => (y)} ⊆ C(2) => C(4) ⊆ P(y),
{fun g y => (y)} ⊆ C(2) => C(3) ⊆ C(5) }
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Solving the constraints
 Input: a set of constraints for the entire program
 Output: the least solution (C,P) to the constraints
 Idea: equivalent to finding the least fixed point of a

monotone function defined by the constraints
 Straight-forward iterative algorithm has n^5 cost, where n is

the size of the program (expression)
 A more sophisticated algorithm takes n^3 complexity

 The graph-based algorithm
 Build a graph where

 Each node n corresponds to a unique C(l) or P(x) =>val(n)

 Add an edge from node n1 to n2 if any change to val(n1)
may require modifications to val(n2)

 Use a worklist to keep track of nodes to change
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Constraint Solving Algorithm (1)
 Define add(t, p) = { if (t ⊆ p) { p = p ∪ t; append(p,worklist);} }
 Step 1 Initialization

 worklist := nil;
 for each label l (or variable x) do

 Val[C(l)] = nil; Edge(C(l)) = nil; (or Val[P(x)] = nil; Edge(P(x)) = nil)
 Step 2 Building the graph

 for each cc in Cond[program] do
      case cc of  {t} ⊆ p: add(t,Val(p));

  p1 ⊆ p2: append(cc, Edge[p1]);
 {t} ⊆ p => p1 ⊆ p2: append(cc,Edge[p1]); append(cc,Edge[p]);

                                       C(5)
C(1)          C(2)         C(3)       C(4)

        P(x)               P(y)          P(f)          P(g)
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Constraint Solving Algorithm(2)
 Step 3 Iteration

 while worklist is not empty do
        q := Remove-first(W);
        for each cc in Edge[q] do
           case cc of p1 ⊆ p2: add(p2, Val[p1]);

      {t} ⊆ p => p1 ⊆ p2: if t ⊆ Val[p] then add(val(p1), p2);

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
 {fun g y => y}

Propoage P(x)

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
∅

Propogate C(2)… Propoage C(1)Iteration 0Val

∅∅P(y)
{fun f x => x}{fun f x => x}P(f)
 {fun g y => y} {fun g y => y}P(g)

∅

∅

 {fun g y => y}

∅

{fun f x => x}
∅

 {fun g y => y}P(x)
{fun g y => y}C(5)
 {fun g y => y}C(4)

∅C(3)
{fun f x => x}C(2)
 {fun g y => y}C(1)
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Summary
 Recording the solution of CFA analysis

 for each label l  (or variable x) do
 C(l) = Val[C(l)]  (P(x) = Val[P(x)] )

 Correctness and Termination
 The worklist algorithm terminates and the result produced by the

algorithm is the least solution to C[[e]].
 Complexity: The algorithm takes at most O(n3) steps if the original

expression e has size n.


