Inter-procedural Control Flow Analysis

Using Constraint-based Approach

The Dynamic Dispatch Problem

- Which function is called by $p(x)$?

```
int myFunc ( int (*p)(int), ...)
```

\{
return $\mathrm{p}(\mathrm{x})$;
\}

- P is a function pointer. What function could p point to (what is the value of p)?
- P is a function parameter, so the value of p is unknown unless inter-procedural dataflow analysis is performed
\square But inter-procedural data-flow requires an inter-procedural control flow graph (or a call graph)
- The problem is relevant for
- Imperative languages that allow functions as parameters
- Object oriented languages and functional languages

Inter-procedural Control flow Analysis

- Example code

```
int f (int (*x)(int) { return x(1); }
int g(int y) { return y + 2; }
inth(int z) { return z + 3; }
int main() {
    return f(g) + f(h);
}
```

\square For each function call, what functions may be invoked?

Defining the Analysis

- What is the domain of analysis
- What is the solution space?
\square What could be the values for each function pointer expression?
- Specification of the analysis
- How to compute the solution?
- how to accommodate the information flow from function definitions to function invocations
- Well-definedness of the analysis
- What are the properties of the solution space?
- Does it compute a solution?
- Does the algorithm terminate?
- Is the solution precise?

Specification of Domain

- What is the solution?
- For each expression in the program, could it have a function pointer value? If yes, what functions may it point to? (if no, the solution is \varnothing)
- Must keep track of the values of variables (especially function parameters)
- To represent the solution, label each expression within the program, compute
- An abstract cache (C) so that for each expression e,
$\square \mathrm{C}(\mathrm{e})$ contains the set of function values e may have
- An abstract environment (P) so that for each variable x,
$\square P(x)$ contains the set of function values x may have

The Input Language

- Assume a small functional language

$\mathrm{e}::=c$	// constant values
Ix	// variable reference

I fun $f x=>e 0 / /$ function with name f, parameter x, and body 30
le1 e2 // invoking function e1 with argument e2
I if e0 then e1 else e2 //if e0 is true, return e1, else return e2
I let $x=e 1$ in e2 // introduce local variable $x=e 1$ in e2

- Why functional language?
- Functions are first-class objects; allow nested functions/scopes
\square Can be used to model virtual functions in object-oriented programming
- Dataflow is explicit (a single symbolic value for each variable). No variable is ever modified
\square For imperative programming languages, perform global data-flow analysis / build SSA

Example Code and Control-flow Analysis Solution

- Example code

$$
((\text { fun } f x=>x)(f u n g y=>y))
$$

- Labels: 1: x;

$$
\begin{aligned}
& \text { 2: (fun } f x=>x) \\
& \text { 3: } y \text {; } \\
& \text { 4: (fung } y=>y \text {) } \\
& \text { 5: ((fun } f x=>x)(\text { fun } g y=>y))
\end{aligned}
$$

- Example CFA solution (guesses of the (C,P) mappings)

1	$\{$ fun $g \mathrm{y}=>\mathrm{y}\}$
2	$\{$ fun $\mathrm{f} x=>\mathrm{x}\}$
3	\varnothing
4	$\{$ fun $g \mathrm{y}=>\mathrm{y}\}$
5	$\{$ fun $\mathrm{g} y=>\mathrm{y}\}$
x	$\{$ fun $\mathrm{g} y=>\mathrm{y}\}$
y	$\varnothing \varnothing$
f	$\{$ fun $\mathrm{f} x=>\mathrm{x}\}$
g	$\{$ fun $\mathrm{g} y=>\mathrm{y}\}$

Solution Space of CFA

\square Formally

- Abstract values: Val = Power(Term)
\square Each term is a function definition in the form (fun $f x=>e 0$)
- Abstract environment: Env = Var -> Val
\square Var: the set of all variables (including function parameters)
- Abstract cache: Cache = Label -> Val
\square Label: the set of labels (expressions)
\square Each solution: a pair of $(\mathrm{P}, \mathrm{C}) \subseteq($ Env, Cache $)$

Specification of CFA

- What properties must be satisfied by (P, C) to be a correct/acceptable solution?
- (C,P) I= e means that (C,P) is an acceptable Control Flow Analysis Solution for the expression e
$\square(C, P) I=c$
Arbitrary solutions are acceptable for a constant value c
$\square(C, P) I=(x) \ell$ iff $P(x) \subseteq C(\ell)$
The solution for an variable must be a subset of the solution for its label (each variable has a single value through each of its lifetime)
$\square(C, P) I=\left(\right.$ fun $\left.f x=>(e 0) \mathscr{C}_{0}\right) \mathscr{C}_{1}$ iff $(C, P) I=(e 0) \mathscr{C}_{0}$ and

$$
\{\text { fun } f x=>e 0\} \subseteq C\left(\mathfrak{F}_{1}\right) \text { and }\{\text { fun } f x=>e 0\} \subseteq P(f)
$$

The solution for a function definition(abstraction) label must include the function definition(abstraction)

Specification of CFA (2)

- Function invocation (application)
- (C,P) $I=\left((e 1) \mathscr{C}_{1}(e 2) \mathscr{C}_{2}\right) \mathscr{C}_{3}$ iff $(C, P) I=(e 1) \mathscr{1}_{1},(C, P) I=(e 2) \mathscr{I}_{2}$, and
\forall (fun $\left.f x=>(e 0) \wp_{0}\right) \in C\left(\wp_{1}\right):(C, P) I=(e 0) \mathscr{l}_{0}, C\left(\digamma_{2}\right) \subseteq P(x)$ and $C\left(\wp_{0}\right) \subseteq C\left(\digamma_{2}\right)$
- The solution for function parameter (x) must contain that of the invocation argument (e2);
- The solution of the function invocation must contain that of the function body
- Local variables (nested scopes)
- (C,P) $I=\left(\right.$ let $x=(e 1) \mathscr{C}_{1}$ in (e2) $\left.\mathscr{I}_{2}\right) \sqrt{3}$ iff $(C, P) I=(e 1) \mathscr{1}_{1},(C, P) I=(e 2) \mathscr{I}_{2}$,

$$
\mathrm{C}\left(\mathfrak{f}_{1}\right) \subseteq \mathrm{P}(\mathrm{x}) \text { and } \mathrm{C}\left(\mathfrak{l}_{2}\right) \subseteq \mathrm{C}\left(\mathfrak{l}_{3}\right)
$$

- The solution for the local variable (x) must contain that of its defined value
\square The solution of the outer scope must contain that of the inner scope
- Conditionals
 $(C, P) I=(e 2) l_{2}$, and $C\left(l_{2}\right) \subseteq C\left(l_{3}\right)$ and $C\left(l_{2}\right) \subseteq C\left(\mathscr{l}_{3}\right)$
\square The solution of the outer scope must contain that of the inner scopes (both branches)

Example Code and Control-flow Analysis Solution

- Example code

$$
((\text { fun } f x=>x)(f u n g y=>y))
$$

- Labels: 1: x;

$$
\begin{aligned}
& \text { 2: (fun } f x=>x \text {) } \\
& \text { 3: } y \text {; } \\
& \text { 4: (fung } y=>y \text {) } \\
& \text { 5: ((fun } f x=>x)(\text { fun } g y=>y) \text {) }
\end{aligned}
$$

- Example CFA solution (guesses of the (C, P) mappings). Are the valid?

	(C, P)	($\mathrm{C}^{\prime}, \mathrm{P}^{\prime}$)
1	\{fung y => y\}	\{fung $\mathrm{y}=>\mathrm{y}$ \}
2	\{fun $\mathrm{f} x=>\mathrm{x}$ \}	\{fun $\mathrm{fx}=>\mathrm{x}$ \}
3	\varnothing	\varnothing
4	\{fung y $=>\mathrm{y}$ \}	\{fung $\mathrm{y}=>\mathrm{y}$ \}
5	\{fung y $=>\mathrm{y}$ \}	\{fung y $=>\mathrm{y}$ \}
X	\{ fung $\mathrm{y}=>\mathrm{y}$ \}	\varnothing
y	\varnothing	\varnothing
f	\{fun $\mathrm{fx}=>\mathrm{x}$ \}	\{fun $\mathrm{f} x=>\mathrm{x}$ \}
g	\{fung $\mathrm{y}=>\mathrm{y}$ \}	\{fung $\mathrm{y}=>\mathrm{y}$ \} cs646

$$
\begin{aligned}
& (C, P) \mid=((\text { fun } f x=>x)(\text { fun } g y=>y)) \\
& \left(C^{\prime}, P^{\prime}\right) \mid=((\text { fun } f x=>x)(\text { fun } g y=>y))
\end{aligned}
$$

Well-definedness of CFA Analysis

- Difficulty: Cannot build (C,P) |= e by structural induction on the expression e
- E.g. function invocation (application) $(C, P) I=\left((e 1) \sqrt{1}^{(e 2)} \mathscr{C}_{2}\right) \sqrt{3}_{3} \quad$ iff $(C, P) I=(e 1) C_{1},(C, P) I=(e 2) C_{2}$, and

\square There is no guarantee that $\mathrm{C}\left(\wp_{0}\right)$ has been computed correctly before computing C (² 2
- Coinductive definition: the solution space includes all guesses of (C,P) that satisfy the specifications
- Must apply all constraints to iteratively modify the solutions until they become correct
- The best solution is the smallest one that satisfies all the constraints

Correctness of Specification

- If there is a possible evaluation of the program such that the function at a call point evaluates to some function definition
- then this definition has to be in the set of possible definitions computed by the analysis.
- Existence of solutions
- Every expression accepts a least CFA solution

Constraint based Analysis

\square Syntax-directed analysis

- Reformulate the analysis specification
\square Construct a finite set of constraints based on structural induction
- Compute the least solution of the set of constraints
\square Each constraint has the form
(sol1 \subseteq sol 2) or $(\{t\} \subseteq$ sol) or $(\{t\} \subseteq$ sol $1=>$ sol $2 \subseteq$ sol 3$)$
- where
- Each sol is either $\mathrm{C}(\mathrm{l})$ or $\mathrm{P}(\mathrm{x})$
- ℓ is label, x is a variable
\square Each t is either ($f n x=>e 0$) or (fun $f x=>e 0$)

Constraint-based Analysis

- For each expression e, compute Cond[e]
- Cond $[c]=\varnothing \quad / /$ constants
- Cond $[(x)[]=\{P(x) \subseteq C(\lceil)\} \quad / /$ variables
- Cond[(fun $f x=>e 0)[]=$ Cond[e0] \cup
$\{$ \{fun $f x=>e 0\} \subseteq C(l)\} \cup\{$ \{fun $f x=>e 0\} \subseteq P(f)\} / /$ function def.
- Cond[((e1) $\left.\mathscr{I}_{1}(\mathrm{e} 2)\left[_{2}\right) \mathscr{C l}_{3}\right]=$ Cond[e1] \cup Cond[e2] \cup
$\left\{\{t\} \in C\left(\wp_{1}\right)=>C\left(\wp_{2}\right) \subseteq P(x) \forall t=\left(\right.\right.$ fun $\left.f x=>(e 0)\left\lceil_{0}\right)\right\} \cup$
$\left\{\{\mathrm{t}\} \in \mathrm{C}\left(\mathfrak{F}_{1}\right)=\mathrm{C}\left(\left\lceil_{0}\right) \subseteq \mathrm{C}\left(\mathfrak{F}_{3}\right) \forall \mathrm{t}=\left(\right.\right.\right.$ fun $\left.\mathrm{f} x=>(\mathrm{e} 0)\left\lceil_{0}\right)\right\}$
- Cond[(let $x=(e 1) \mathscr{C}_{1}$ in (e2) $\left.\left.\mathscr{L}_{2}\right) \mathscr{C}_{3}\right]=$

Cond[e 1$] \cup \operatorname{Cond}[\mathrm{e} 2] \cup\left\{\mathrm{C}\left(\mathfrak{l}_{1}\right) \subseteq \mathrm{P}(\mathrm{x})\right\} \cup\left\{\mathrm{C}\left(\mathfrak{l}_{2}\right) \subseteq \mathrm{C}\left(\mathfrak{l}_{3}\right)\right\}$

Cond $[\mathrm{e} 0] \cup$ Cond $[\mathrm{e} 1] \cup \operatorname{Cond}[\mathrm{e} 2] \cup\left\{\mathrm{C}\left(\mathfrak{f}_{2}\right) \subseteq \mathrm{C}\left(\mathfrak{l}_{3}\right)\right\} \cup\left\{\mathrm{C}\left(\mathfrak{F}_{2}\right) \subseteq \mathrm{C}\left(\mathfrak{l}_{3}\right)\right\}$

Example: Constraint Construction

Cond[((fun f $x=>(x) 1) 2$ (fun $g y=>(y) 3) 4) 5]$
$=\{$ fun $f x=>(x)\} \subseteq C(2)$, \{fun $f x=>(x)\} \subseteq P(f)$, $P(x) \subseteq C(1)$,
$\{$ fun $g \mathrm{y}=>(\mathrm{y})\} \subseteq \mathrm{C}(4)$, , fun $\mathrm{g} \mathrm{y}=>(\mathrm{y})\} \subseteq \mathrm{P}(\mathrm{g})$, $\mathrm{P}(\mathrm{y}) \subseteq \mathrm{C}(3)$,
$\{f u n f x=>(x)\} \subseteq C(2) \Rightarrow C(4) \subseteq P(x)$,
\{fun $f x=>(x)\} \subseteq C(2)=>C(1) \subseteq C(5)$,
\{fung $\mathrm{y}=>(\mathrm{y})\} \subseteq \mathrm{C}(2)=>\mathrm{C}(4) \subseteq \mathrm{P}(\mathrm{y})$,
$\{$ fun $g \mathrm{y}=>(\mathrm{y})\} \subseteq \mathrm{C}(2)=\mathrm{C}(3) \subseteq \mathrm{C}(5)\}$

Solving the constraints

- Input: a set of constraints for the entire program
- Output: the least solution (C,P) to the constraints
- Idea: equivalent to finding the least fixed point of a monotone function defined by the constraints
- Straight-forward iterative algorithm has $n \wedge 5$ cost, where n is the size of the program (expression)
- A more sophisticated algorithm takes n^3 complexity
- The graph-based algorithm
- Build a graph where
- Each node n corresponds to a unique $\mathrm{C}(\bar{l})$ or $\mathrm{P}(\mathrm{x})=>\operatorname{val}(\mathrm{n})$
\square Add an edge from node n1 to n 2 if any change to val(n1) may require modifications to $\operatorname{val(n2)}$
- Use a worklist to keep track of nodes to change

Constraint Solving Algorithm (1)

- Define add $(\mathrm{t}, \mathrm{p})=\{$ if $(\mathrm{t} \nsubseteq \mathrm{p})\{\mathrm{p}=\mathrm{p} \cup \mathrm{t}$; append $(\mathrm{p}$, worklist $) ;\}\}$
- Step 1 Initialization
- worklist := nil;
- for each label ((or variable x) do
$\square \operatorname{Val}[\mathrm{C}(\ell)]=$ nil; Edge(C(l)) = nil; (or Val[P(x)] = nil; Edge(P(x)) = nil)
- Step 2 Building the graph
- for each cc in Cond[program] do case cc of $\{\mathrm{t}\} \subseteq \mathrm{p}$: $\operatorname{add}(\mathrm{t}, \operatorname{Val}(\mathrm{p}))$; p1 \subseteq p2: append(cc, Edge[p1]);
$\{t\} \subseteq p=>p 1 \subseteq p 2$: append(cc,Edge[p1]); append(cc,Edge[p]);

Constraint Solving Algorithm(2)

- Step 3 Iteration
- while worklist is not empty do
$\mathrm{q}:=$ Remove-first(W);
for each cc in Edge[q] do
case cc of p1 \subseteq p2: add(p2, Val[p1]);
$\{t\} \subseteq p \Rightarrow p 1 \subseteq p 2:$ if $t \subseteq \operatorname{Val}[p]$ then $\operatorname{add}(\operatorname{val}(p 1), p 2) ;$

Val	Iteration 0	Propogate C(2)...	Propoage $\mathrm{P}(\mathrm{x})$	Propoage C(1)
$\mathrm{C}(1)$	\varnothing	\varnothing	\{fung $\mathrm{y}=>\mathrm{y}$ \}	\{fun $\mathrm{g} \mathrm{y}=>\mathrm{y}$ \}
C(2)	\{fun $\mathrm{fx}=>\mathrm{x}$ \}	\{fun $\mathrm{f} x=>\mathrm{x}$ \}	\{fun $f x=>x$ \}	\{fun $f x=>x$ \}
C(3)	\varnothing	\varnothing	\varnothing	\varnothing
C(4)	\{fung $\mathrm{y}=>\mathrm{y}$ \}	\{fung $\mathrm{y}=>\mathrm{y}$ \}	\{fun $\mathrm{g} \mathrm{y}=>\mathrm{y}$ \}	\{fun $\mathrm{g} \mathrm{y}=>\mathrm{y}$ \}
C(5)	\varnothing	\varnothing	\varnothing	\{fung $\mathrm{y}=>\mathrm{y}$ \}
$\mathrm{P}(\mathrm{x})$	\varnothing	\{fun g y $=>\mathrm{y}$ \}	\{fung y $=>\mathrm{y}$ \}	\{fun $\mathrm{g} \mathrm{y}=>\mathrm{y}$ \}
$\mathrm{P}(\mathrm{y})$	\varnothing	\varnothing	\varnothing	\varnothing
$\mathrm{P}(\mathrm{f})$	\{fun $\mathrm{fx}=>\mathrm{x}$ \}	\{fun $\mathrm{f} x=>\mathrm{x}$ \}	\{fun $f x=>x$ \}	\{fun $f x=>x$ \}
$\mathrm{P}(\mathrm{g})$	\{fung $\mathrm{y}=>\mathrm{y}$ \}	\{fun $\mathrm{g} y=>\mathrm{y}$ \}	\{fung y $=>\mathrm{y}$ \}	\{fun g y $=>\mathrm{y}$ \}

Summary

- Recording the solution of CFA analysis
- for each label $\{$ (or variable x) do
$\square \mathrm{C}(\ell)=\operatorname{Val}[\mathrm{C}(\ell)](\mathrm{P}(\mathrm{x})=\mathrm{Val}[\mathrm{P}(\mathrm{x})])$
- Correctness and Termination
- The worklist algorithm terminates and the result produced by the algorithm is the least solution to $\mathrm{C}[\mathrm{e} e]$].
- Complexity: The algorithm takes at most O(n3) steps if the original expression e has size n .

