Inter-procedural Control Flow Analysis

Using Constraint-based Approach

The Dynamic Dispatch Problem

• Which function is called by p(x)?

```
int myFunc ( int (*p)(int), ...)
```

```
.....
return p(x);
```

```
}
```

{

- P is a function pointer. What function could p point to (what is the value of p)?
- P is a function parameter, so the value of p is unknown unless inter-procedural dataflow analysis is performed
 - But inter-procedural data-flow requires an inter-procedural control flow graph (or a call graph)
- The problem is relevant for
 - Imperative languages that allow functions as parameters
 - Object oriented languages and functional languages

Inter-procedural Control flow Analysis

Example code

```
int f (int (*x)(int) { return x(1); }
int g (int y) { return y + 2; }
int h (int z) { return z + 3; }
int main() {
  return f(g) + f(h);
}
```

For each function call, what functions may be invoked?

Defining the Analysis

What is the domain of analysis

- What is the solution space?
 - What could be the values for each function pointer expression?

Specification of the analysis

- How to compute the solution?
 - how to accommodate the information flow from function definitions to function invocations
- Well-definedness of the analysis
 - What are the properties of the solution space?
 - Does it compute a solution?
 - Does the algorithm terminate?
 - Is the solution precise?

Specification of Domain

What is the solution?

- For each expression in the program, could it have a function pointer value? If yes, what functions may it point to? (if no, the solution is Ø)
- Must keep track of the values of variables (especially function parameters)
- To represent the solution, label each expression within the program, compute
 - An abstract cache (C) so that for each expression e,
 C(e) contains the set of function values e may have
 - An abstract environment (P) so that for each variable x,
 P(x) contains the set of function values x may have

The Input Language

Assume a small functional language

- e ::= c // constant values
 - I x // variable reference
 - I fun f x => e0 // function with name f, parameter x, and body 30
 - l e1 e2 // invoking function e1 with argument e2
 - I if e0 then e1 else e2 //if e0 is true, return e1, else return e2
 - I let x = e1 in e2 // introduce local variable x=e1 in e2

Why functional language?

- Functions are first-class objects; allow nested functions/scopes
 - Can be used to model virtual functions in object-oriented programming
- Dataflow is explicit (a single symbolic value for each variable).
 No variable is ever modified
 - For imperative programming languages, perform global data-flow analysis / build SSA

Example Code and Control-flow Analysis Solution

- Example code
 - ((fun f x => x) (fun g y => y))
 - Labels: 1: x;
 - 2: (fun f x => x) 3: y; 4: (fun g y => y) 5: ((fun f x => x) (fun g y => y))
- Example CFA solution (guesses of the (C,P) mappings)

1	{fun g y => y}	
2	$\{ fun f x => x \}$	
3	Ø	
4	{fun g y => y}	
5	{fun g y => y}	
x	{ fun g y => y}	
У	Ø	
f	$\{ fun f x => x \}$	
g	{ fun g y => y}	

cs6463

Solution Space of CFA

Formally

Abstract values: Val = Power(Term)

\square Each term is a function definition in the form (fun f x => e0)

Abstract environment: Env = Var -> Val

Var: the set of all variables (including function parameters)

Abstract cache: Cache = Label -> Val

Label: the set of labels (expressions)

\square Each solution: a pair of (P,C) \subseteq (Env, Cache)

Specification of CFA

- What properties must be satisfied by (P,C) to be a correct/acceptable solution?
 - (C,P) I= e means that (C,P) is an acceptable Control Flow Analysis Solution for the expression e

□ (C,P) l= c

Arbitrary solutions are acceptable for a constant value c

□ (C,P) I= (x) \hat{l} iff P(x) ⊆ C(\hat{l})

The solution for an variable must be a subset of the solution for its label (each variable has a single value through each of its lifetime)

• (C,P) I= (fun f x => (e0)
$$lo)l_1$$
 iff (C,P) I= (e0) lo and

 $\{\text{fun f } x \Rightarrow e0\} \subseteq C(l_1) \text{ and } \{\text{fun f } x \Rightarrow e0\} \subseteq P(f)$

The solution for a function definition(abstraction) label must include the function definition(abstraction)

Specification of CFA (2)

Function invocation (application)

- (C,P) $I = ((e_1)l_1 (e_2)l_2)l_3$ iff (C,P) $I = (e_1)l_1$, (C,P) $I = (e_2)l_2$, and
 - $\forall \text{ (fun f } x \Rightarrow (e0) lo) \in C(l_1): (C,P) = (e0) lo, C(l_2) \subseteq P(x) \text{ and } C(l_0) \subseteq C(l_2)$
 - The solution for function parameter (x) must contain that of the invocation argument (e2);
 - The solution of the function invocation must contain that of the function body
- Local variables (nested scopes)
 - (C,P) \models (let x = (e1) l_1 in (e2) l_2) l_3 iff (C,P) \models (e1) l_1 , (C,P) \models (e2) l_2 ,

 $C(l_1) \subseteq P(x)$ and $C(l_2) \subseteq C(l_3)$

- The solution for the local variable (x) must contain that of its defined value
- The solution of the outer scope must contain that of the inner scope

Conditionals

- (C,P) I= (if (e0) lo then (e1) l_1 else (e2) l_2) l_3 iff (C,P) I= (e0) lo, (C,P) I= (e1) l_1 , (C,P) I= (e2) l_2 , and C(l_2) \subseteq C(l_3) and C(l_2) \subseteq C(l_3)
 - The solution of the outer scope must contain that of the inner scopes (both branches)

Example Code and Control-flow Analysis Solution

Example code

 ((fun f x => x) (fun g y => y))

 Labels: 1: x;

 2: (fun f x => x)
 3: y;
 4: (fun g y => y)

5: ((fun f x => x) (fun g y => y))

□ Example CFA solution (guesses of the (C,P) mappings). Are the valid?

(C,P)		(C',P')	
1	{fun g y => y}	{fun g y => y}	
2	$\{ fun f x => x \}$	$\{ fun f x => x \}$	
3	Ø	Ø	
4	{fun g y => y}	{fun g y => y}	
5	{fun g y => y}	{fun g y => y}	
х	{ fun g y => y}	Ø	
У	Ø	Ø	
f	$\{ fun f x => x \}$	$\{ fun f x => x \}$	
g	{fun g y => y}	{fun g y => y} _{cs6468}	

(C,P) \models ((fun f x => x) (fun g y => y)) (C',P') $\not\models$ ((fun f x => x) (fun g y => y))

Well-definedness of CFA Analysis

- Difficulty: Cannot build (C,P) |= e by structural induction on the expression e
 - E.g. function invocation (application)

 $(C,P) = ((e_1)\ell_1 (e_2)\ell_2)\ell_3$ iff $(C,P) = (e_1)\ell_1$, $(C,P) = (e_2)\ell_2$, and

 $\forall \text{ (fun f } x \Rightarrow (e0)lo) \in C(l_1), (C,P) \models (e0)lo, C(l_2) \subseteq P(x) \text{ and } C(lo) \subseteq C(l_2)$

- □ There is no guarantee that C(lo) has been computed correctly before computing C(l2)
- Coinductive definition: the solution space includes all guesses of (C,P) that satisfy the specifications
 - Must apply all constraints to iteratively modify the solutions until they become correct
 - The best solution is the smallest one that satisfies all the constraints

Correctness of Specification

- If there is a possible evaluation of the program such that the function at a call point evaluates to some function definition
 - then this definition has to be in the set of possible definitions computed by the analysis.
- Existence of solutions
 - Every expression accepts a least CFA solution

Constraint based Analysis

Syntax-directed analysis

- Reformulate the analysis specification
 - Construct a finite set of constraints based on structural induction
- Compute the least solution of the set of constraints
- Each constraint has the form

 $(sol1 \subseteq sol2) \quad or \quad (\{t\} \subseteq sol) \quad or \quad (\{t\} \subseteq sol1 => sol2 \subseteq sol3)$

where

Each sol is either C(l) or P(x)

• l is label, x is a variable

• Each t is either (fn x => e0) or (fun f x => e0)

Constraint-based Analysis

For each expression e, compute Cond[e]

- Cond[c] = \emptyset //constants
- Cond[(x) \hat{l}] = { P(x) \subseteq C(\hat{l}) } // variables
- Cond[(fun f x => e0)l] = Cond[e0] ∪

{ {fun f x=>e0} $\subseteq C(l)$ } \cup { {fun f x => e0} $\subseteq P(f)$ } // function def.

• Cond[((e1) l_1 (e2) l_2) l_3] = Cond[e1] \cup Cond[e2] \cup

 $\{\{t\} \in C(\mathfrak{l}_1) => C(\mathfrak{l}_2) \subseteq P(x) \ \forall \ t = (fun \ f \ x => (e0) \mathfrak{l}_0)\} \cup$

 $\{\{t\} \in C(\ell_1) \Longrightarrow C(\ell_0) \subseteq C(\ell_3) \forall t = (\text{fun f } x \Longrightarrow (e0)\ell_0)\}$

Cond[(let x = (e1)l1 in (e2)l2)l3] =

 $Cond[e1] \cup Cond[e2] \cup \{C(\ell_1) \subseteq P(x)\} \cup \{C(\ell_2) \subseteq C(\ell_3)\}$

• Cond [(if (e0) lo then (e1) l_1 else (e2) l_2) l_3] = Cond[e0] \cup Cond[e1] \cup Cond[e2] \cup {C(l_2) \subseteq C(l_3)} \cup {C(l_2) \subseteq C(l_3) }

Example: Constraint Construction

Cond[((fun f x => (x)1)2 (fun g y => (y)3)4)5] = { {fun f x => (x)} \subseteq C(2), {fun f x => (x)} \subseteq P(f), $P(x) \subseteq C(1),$ {fun g y => (y)} \subseteq C(4), {fun g y => (y)} \subseteq P(g), $P(y) \subseteq C(3),$ {fun f x => (x)} \subseteq C(2) => C(4) \subseteq P(x), {fun f x => (x)} \subseteq C(2) => C(1) \subseteq C(5), {fun g y => (y)} \subseteq C(2) => C(4) \subseteq P(y), $\{ fun g y => (y) \} \subseteq C(2) => C(3) \subseteq C(5) \}$

Solving the constraints

- Input: a set of constraints for the entire program
- Output: the least solution (C,P) to the constraints
- Idea: equivalent to finding the least fixed point of a monotone function defined by the constraints
 - Straight-forward iterative algorithm has n^5 cost, where n is the size of the program (expression)
 - A more sophisticated algorithm takes n^3 complexity
- **The graph-based algorithm**
 - Build a graph where
 - Each node n corresponds to a unique C(l) or P(x) =>val(n)
 - Add an edge from node n1 to n2 if any change to val(n1) may require modifications to val(n2)
 - Use a worklist to keep track of nodes to change

Constraint Solving Algorithm (1)

- Define add(t, p) = { if $(t \notin p) \{ p = p \cup t; append(p,worklist); \} }$
- Step 1 Initialization
 - worklist := nil;
 - for each label l (or variable x) do
 - □ Val[C(l)] = nil; Edge(C(l)) = nil; (or Val[P(x)] = nil; Edge(P(x)) = nil)
- Step 2 Building the graph
 - for each cc in Cond[program] do

```
case cc of \{t\} \subseteq p: add(t, Val(p));
```

 $p1 \subseteq p2$: append(cc, Edge[p1]);

 $\{t\} \subseteq p \Rightarrow p1 \subseteq p2$: append(cc,Edge[p1]); append(cc,Edge[p]);

Constraint Solving Algorithm(2)

Step 3 Iteration

while worklist is not empty do

q := Remove-first(W);

for each cc in Edge[q] do

case cc of p1 \subseteq p2: add(p2, Val[p1]);

 $\{t\} \subseteq p \Rightarrow p1 \subseteq p2$: if $t \subseteq Val[p]$ then add(val(p1), p2);

Val	Iteration 0	Propogate C(2)	Propoage P(x)	Propoage C(1)
C(1)	Ø	Ø	{fun g y => y}	{fun g y => y}
C(2)	{fun f x => x}			
C(3)	Ø	Ø	Ø	Ø
C(4)	{fun g y => y}			
C(5)	Ø	Ø	Ø	{fun g y => y}
P(x)	Ø	{fun g y => y}	{fun g y => y}	{fun g y => y}
P(y)	Ø	Ø	Ø	Ø
P(f)	{fun f x => x}			
P(g)	{fun g y => y}			

Summary

Recording the solution of CFA analysis

for each label l (or variable x) do
 □ C(l) = Val[C(l)] (P(x) = Val[P(x)])

Correctness and Termination

- The worklist algorithm terminates and the result produced by the algorithm is the least solution to C[[e]].
- Complexity: The algorithm takes at most O(n3) steps if the original expression e has size n.