
cs6463 1

Inter-procedural
Control Flow Analysis

Using Constraint-based
Approach

cs6463 2

The Dynamic Dispatch Problem
 Which function is called by p(x)?

int myFunc (int (*p)(int), …)
{
……
return p(x);
}

 P is a function pointer. What function could p point to (what is
the value of p)?

 P is a function parameter, so the value of p is unknown unless
inter-procedural dataflow analysis is performed

 But inter-procedural data-flow requires an inter-procedural control
flow graph (or a call graph)

 The problem is relevant for
 Imperative languages that allow functions as parameters
 Object oriented languages and functional languages

cs6463 3

Inter-procedural Control flow
Analysis
 Example code

int f (int (*x)(int) { return x(1); }
int g (int y) { return y + 2; }
int h (int z) { return z + 3; }
int main() {
 return f(g) + f(h);
}

 For each function call, what functions may
be invoked?

cs6463 4

Defining the Analysis
 What is the domain of analysis

 What is the solution space?
 What could be the values for each function pointer

expression?

 Specification of the analysis
 How to compute the solution?

 how to accommodate the information flow from function
definitions to function invocations

 Well-definedness of the analysis
 What are the properties of the solution space?
 Does it compute a solution?
 Does the algorithm terminate?
 Is the solution precise?

cs6463 5

Specification of Domain
 What is the solution?

 For each expression in the program, could it have a
function pointer value? If yes, what functions may it
point to? (if no, the solution is ∅)

 Must keep track of the values of variables (especially
function parameters)

 To represent the solution, label each expression
within the program, compute
 An abstract cache (C) so that for each expression e,

 C(e) contains the set of function values e may have

 An abstract environment (P) so that for each variable x,
 P(x) contains the set of function values x may have

cs6463 6

The Input Language
 Assume a small functional language

e ::= c // constant values
 | x // variable reference

 | fun f x => e0 // function with name f, parameter x, and body 30
 | e1 e2 // invoking function e1 with argument e2
 | if e0 then e1 else e2 //if e0 is true, return e1, else return e2
 | let x = e1 in e2 // introduce local variable x=e1 in e2

 Why functional language?
 Functions are first-class objects; allow nested functions/scopes

 Can be used to model virtual functions in object-oriented
programming

 Dataflow is explicit (a single symbolic value for each variable).
No variable is ever modified

 For imperative programming languages, perform global data-flow
analysis / build SSA

cs6463 7

Example Code and Control-flow
Analysis Solution
 Example code

 ((fun f x => x) (fun g y => y))
 Labels: 1: x;
 2: (fun f x => x)
 3: y;
 4: (fun g y => y)
 5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings)

 { fun g y => y}g

∅y
{fun f x => x}f

 { fun g y => y}x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1

cs6463 8

Solution Space of CFA
 Formally

 Abstract values: Val = Power(Term)
 Each term is a function definition in the form (fun f x => e0)

 Abstract environment: Env = Var -> Val
 Var: the set of all variables (including function parameters)

 Abstract cache: Cache = Label -> Val
 Label: the set of labels (expressions)

 Each solution: a pair of (P,C) ⊆(Env, Cache)

cs6463 9

Specification of CFA
 What properties must be satisfied by (P,C) to be a

correct/acceptable solution?
 (C,P) |= e means that (C,P) is an acceptable Control Flow Analysis

Solution for the expression e
 (C,P) |= c

Arbitrary solutions are acceptable for a constant value c

 (C,P) |= (x)l iff P(x) ⊆ C(l)
The solution for an variable must be a subset of the solution for its label

(each variable has a single value through each of its lifetime)

 (C,P) |= (fun f x => (e0)l0)l1 iff (C,P) |= (e0)l0 and

 {fun f x => e0} ⊆ C(l1) and {fun f x => e0} ⊆ P(f)
The solution for a function definition(abstraction) label must include the

function definition(abstraction)

cs6463 10

Specification of CFA (2)
 Function invocation (application)

 (C,P) |= ((e1)l1 (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and
 ∀ (fun f x => (e0)l0) ∈ C(l1): (C,P)|=(e0)l0, C(l2) ⊆ P(x) and C(l0) ⊆ C(l2)

 The solution for function parameter (x) must contain that of the invocation
argument (e2);

 The solution of the function invocation must contain that of the function body
 Local variables (nested scopes)

 (C,P) |= (let x = (e1)l1 in (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2,
 C(l1) ⊆ P(x) and C(l2) ⊆ C(l3)

 The solution for the local variable (x) must contain that of its defined value
 The solution of the outer scope must contain that of the inner scope

 Conditionals
 (C,P) |= (if (e0)l0 then (e1)l1 else (e2)l2)l3 iff (C,P) |= (e0)l0, (C,P) |= (e1)l1,

(C,P) |= (e2)l2, and C(l2) ⊆ C(l3) and C(l2) ⊆ C(l3)
 The solution of the outer scope must contain that of the inner scopes (both

branches)

cs6463 11

Example Code and Control-flow
Analysis Solution
 Example code

 ((fun f x => x) (fun g y => y))
 Labels: 1: x;
 2: (fun f x => x)
 3: y;
 4: (fun g y => y)
 5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings). Are the valid?
 (C,P) (C’,P’)

∅∅y
{fun f x => x}{fun f x => x}f
 {fun g y => y} {fun g y => y}g

 { fun g y => y}

 {fun g y => y}
 {fun g y => y}

∅

{fun f x => x}

 {fun g y => y}

 ∅x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1

(C,P) |= ((fun f x => x) (fun g y => y))
(C’,P’) |= ((fun f x => x) (fun g y => y))

cs6463 12

Well-definedness of CFA Analysis
 Difficulty: Cannot build (C,P) |= e by structural

induction on the expression e
 E.g. function invocation (application)
 (C,P) |= ((e1)l1 (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and

 ∀ (fun f x => (e0)l0) ∈ C(l1), (C,P) |=(e0)l0, C(l2) ⊆ P(x) and C(l0) ⊆ C(l2)
 There is no guarantee that C(l0) has been computed correctly before

computing C(l2)

 Coinductive definition: the solution space includes all guesses of (C,P)
that satisfy the specifications
 Must apply all constraints to iteratively modify the solutions until they

become correct
 The best solution is the smallest one that satisfies all the constraints

cs6463 13

Correctness of Specification
 If there is a possible evaluation of the program

such that the function at a call point evaluates to
some function definition
 then this definition has to be in the set of possible

definitions computed by the analysis.

 Existence of solutions
 Every expression accepts a least CFA solution

cs6463 14

Constraint based Analysis
 Syntax-directed analysis

 Reformulate the analysis specification
 Construct a finite set of constraints based on structural

induction
 Compute the least solution of the set of constraints

 Each constraint has the form
(sol1 ⊆ sol2) or ({t} ⊆ sol) or ({t} ⊆ sol1 => sol2 ⊆ sol3)

 where
 Each sol is either C(l) or P(x)

 l is label, x is a variable
 Each t is either (fn x => e0) or (fun f x => e0)

cs6463 15

Constraint-based Analysis
 For each expression e, compute Cond[e]

 Cond[c] = ∅ //constants
 Cond[(x)l] = { P(x) ⊆ C(l) } // variables
 Cond[(fun f x => e0)l] = Cond[e0] ∪
 { {fun f x=>e0}⊆ C(l) } ∪ { {fun f x => e0} ⊆ P(f) } // function def.
 Cond[((e1)l1 (e2)l2)l3] = Cond[e1] ∪ Cond[e2] ∪
{ {t} ∈ C(l1)=>C(l2) ⊆ P(x) ∀ t = (fun f x => (e0)l0) } ∪
{ {t} ∈ C(l1)=> C(l0) ⊆ C(l3) ∀ t = (fun f x => (e0)l0) }
 Cond[(let x = (e1)l1 in (e2)l2)l3] =
 Cond[e1] ∪ Cond[e2] ∪ {C(l1) ⊆ P(x)} ∪ {C(l2) ⊆ C(l3)}
 Cond [(if (e0)l0 then (e1)l1 else (e2)l2)l3] =

 Cond[e0] ∪ Cond[e1] ∪ Cond[e2] ∪ {C(l2) ⊆ C(l3)} ∪ {C(l2) ⊆ C(l3) }

cs6463 16

Example: Constraint Construction
Cond[((fun f x => (x)1)2 (fun g y => (y)3)4)5]
 = { {fun f x => (x)} ⊆ C(2), {fun f x => (x)} ⊆ P(f),

 P(x) ⊆ C(1),
{fun g y => (y)}⊆C(4), {fun g y => (y)}⊆P(g),

 P(y) ⊆ C(3),
{fun f x => (x)} ⊆ C(2) => C(4) ⊆ P(x),
{fun f x => (x)} ⊆ C(2) => C(1) ⊆ C(5),
{fun g y => (y)} ⊆ C(2) => C(4) ⊆ P(y),
{fun g y => (y)} ⊆ C(2) => C(3) ⊆ C(5) }

cs6463 17

Solving the constraints
 Input: a set of constraints for the entire program
 Output: the least solution (C,P) to the constraints
 Idea: equivalent to finding the least fixed point of a

monotone function defined by the constraints
 Straight-forward iterative algorithm has n^5 cost, where n is

the size of the program (expression)
 A more sophisticated algorithm takes n^3 complexity

 The graph-based algorithm
 Build a graph where

 Each node n corresponds to a unique C(l) or P(x) =>val(n)

 Add an edge from node n1 to n2 if any change to val(n1)
may require modifications to val(n2)

 Use a worklist to keep track of nodes to change

cs6463 18

Constraint Solving Algorithm (1)
 Define add(t, p) = { if (t ⊆ p) { p = p ∪ t; append(p,worklist);} }
 Step 1 Initialization

 worklist := nil;
 for each label l (or variable x) do

 Val[C(l)] = nil; Edge(C(l)) = nil; (or Val[P(x)] = nil; Edge(P(x)) = nil)
 Step 2 Building the graph

 for each cc in Cond[program] do
 case cc of {t} ⊆ p: add(t,Val(p));

 p1 ⊆ p2: append(cc, Edge[p1]);
 {t} ⊆ p => p1 ⊆ p2: append(cc,Edge[p1]); append(cc,Edge[p]);

 C(5)
C(1) C(2) C(3) C(4)

 P(x) P(y) P(f) P(g)

cs6463 19

Constraint Solving Algorithm(2)
 Step 3 Iteration

 while worklist is not empty do
 q := Remove-first(W);
 for each cc in Edge[q] do
 case cc of p1 ⊆ p2: add(p2, Val[p1]);

 {t} ⊆ p => p1 ⊆ p2: if t ⊆ Val[p] then add(val(p1), p2);

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
 {fun g y => y}

Propoage P(x)

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
∅

Propogate C(2)… Propoage C(1)Iteration 0Val

∅∅P(y)
{fun f x => x}{fun f x => x}P(f)
 {fun g y => y} {fun g y => y}P(g)

∅

∅

 {fun g y => y}

∅

{fun f x => x}
∅

 {fun g y => y}P(x)
{fun g y => y}C(5)
 {fun g y => y}C(4)

∅C(3)
{fun f x => x}C(2)
 {fun g y => y}C(1)

cs6463 20

Summary
 Recording the solution of CFA analysis

 for each label l (or variable x) do
 C(l) = Val[C(l)] (P(x) = Val[P(x)])

 Correctness and Termination
 The worklist algorithm terminates and the result produced by the

algorithm is the least solution to C[[e]].
 Complexity: The algorithm takes at most O(n3) steps if the original

expression e has size n.

