
cs6463 1

Inter-procedural
Control Flow Analysis

Using Constraint-based
Approach

cs6463 2

The Dynamic Dispatch Problem
 Which function is called by p(x)?

int myFunc (int (*p)(int), …)
{
……
return p(x);
}

 P is a function pointer. What function could p point to (what is
the value of p)?

 P is a function parameter, so the value of p is unknown unless
inter-procedural dataflow analysis is performed

 But inter-procedural data-flow requires an inter-procedural control
flow graph (or a call graph)

 The problem is relevant for
 Imperative languages that allow functions as parameters
 Object oriented languages and functional languages

cs6463 3

Inter-procedural Control flow
Analysis
 Example code

int f (int (*x)(int) { return x(1); }
int g (int y) { return y + 2; }
int h (int z) { return z + 3; }
int main() {
 return f(g) + f(h);
}

 For each function call, what functions may
be invoked?

cs6463 4

Defining the Analysis
 What is the domain of analysis

 What is the solution space?
 What could be the values for each function pointer

expression?

 Specification of the analysis
 How to compute the solution?

 how to accommodate the information flow from function
definitions to function invocations

 Well-definedness of the analysis
 What are the properties of the solution space?
 Does it compute a solution?
 Does the algorithm terminate?
 Is the solution precise?

cs6463 5

Specification of Domain
 What is the solution?

 For each expression in the program, could it have a
function pointer value? If yes, what functions may it
point to? (if no, the solution is ∅)

 Must keep track of the values of variables (especially
function parameters)

 To represent the solution, label each expression
within the program, compute
 An abstract cache (C) so that for each expression e,

 C(e) contains the set of function values e may have

 An abstract environment (P) so that for each variable x,
 P(x) contains the set of function values x may have

cs6463 6

The Input Language
 Assume a small functional language

e ::= c // constant values
 | x // variable reference

 | fun f x => e0 // function with name f, parameter x, and body 30
 | e1 e2 // invoking function e1 with argument e2
 | if e0 then e1 else e2 //if e0 is true, return e1, else return e2
 | let x = e1 in e2 // introduce local variable x=e1 in e2

 Why functional language?
 Functions are first-class objects; allow nested functions/scopes

 Can be used to model virtual functions in object-oriented
programming

 Dataflow is explicit (a single symbolic value for each variable).
No variable is ever modified

 For imperative programming languages, perform global data-flow
analysis / build SSA

cs6463 7

Example Code and Control-flow
Analysis Solution
 Example code

 ((fun f x => x) (fun g y => y))
 Labels: 1: x;
 2: (fun f x => x)
 3: y;
 4: (fun g y => y)
 5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings)

 { fun g y => y}g

∅y
{fun f x => x}f

 { fun g y => y}x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1

cs6463 8

Solution Space of CFA
 Formally

 Abstract values: Val = Power(Term)
 Each term is a function definition in the form (fun f x => e0)

 Abstract environment: Env = Var -> Val
 Var: the set of all variables (including function parameters)

 Abstract cache: Cache = Label -> Val
 Label: the set of labels (expressions)

 Each solution: a pair of (P,C) ⊆(Env, Cache)

cs6463 9

Specification of CFA
 What properties must be satisfied by (P,C) to be a

correct/acceptable solution?
 (C,P) |= e means that (C,P) is an acceptable Control Flow Analysis

Solution for the expression e
 (C,P) |= c

Arbitrary solutions are acceptable for a constant value c

 (C,P) |= (x)l iff P(x) ⊆ C(l)
The solution for an variable must be a subset of the solution for its label

(each variable has a single value through each of its lifetime)

 (C,P) |= (fun f x => (e0)l0)l1 iff (C,P) |= (e0)l0 and

 {fun f x => e0} ⊆ C(l1) and {fun f x => e0} ⊆ P(f)
The solution for a function definition(abstraction) label must include the

function definition(abstraction)

cs6463 10

Specification of CFA (2)
 Function invocation (application)

 (C,P) |= ((e1)l1 (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and
 ∀ (fun f x => (e0)l0) ∈ C(l1): (C,P)|=(e0)l0, C(l2) ⊆ P(x) and C(l0) ⊆ C(l2)

 The solution for function parameter (x) must contain that of the invocation
argument (e2);

 The solution of the function invocation must contain that of the function body
 Local variables (nested scopes)

 (C,P) |= (let x = (e1)l1 in (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2,
 C(l1) ⊆ P(x) and C(l2) ⊆ C(l3)

 The solution for the local variable (x) must contain that of its defined value
 The solution of the outer scope must contain that of the inner scope

 Conditionals
 (C,P) |= (if (e0)l0 then (e1)l1 else (e2)l2)l3 iff (C,P) |= (e0)l0, (C,P) |= (e1)l1,

(C,P) |= (e2)l2, and C(l2) ⊆ C(l3) and C(l2) ⊆ C(l3)
 The solution of the outer scope must contain that of the inner scopes (both

branches)

cs6463 11

Example Code and Control-flow
Analysis Solution
 Example code

 ((fun f x => x) (fun g y => y))
 Labels: 1: x;
 2: (fun f x => x)
 3: y;
 4: (fun g y => y)
 5: ((fun f x => x) (fun g y => y))

 Example CFA solution (guesses of the (C,P) mappings). Are the valid?
 (C,P) (C’,P’)

∅∅y
{fun f x => x}{fun f x => x}f
 {fun g y => y} {fun g y => y}g

 { fun g y => y}

 {fun g y => y}
 {fun g y => y}

∅

{fun f x => x}

 {fun g y => y}

 ∅x
 {fun g y => y}5
 {fun g y => y}4

∅3
{fun f x => x}2
 {fun g y => y}1

(C,P) |= ((fun f x => x) (fun g y => y))
(C’,P’) |= ((fun f x => x) (fun g y => y))

cs6463 12

Well-definedness of CFA Analysis
 Difficulty: Cannot build (C,P) |= e by structural

induction on the expression e
 E.g. function invocation (application)
 (C,P) |= ((e1)l1 (e2)l2)l3 iff (C,P) |= (e1)l1, (C,P) |= (e2)l2, and

 ∀ (fun f x => (e0)l0) ∈ C(l1), (C,P) |=(e0)l0, C(l2) ⊆ P(x) and C(l0) ⊆ C(l2)
 There is no guarantee that C(l0) has been computed correctly before

computing C(l2)

 Coinductive definition: the solution space includes all guesses of (C,P)
that satisfy the specifications
 Must apply all constraints to iteratively modify the solutions until they

become correct
 The best solution is the smallest one that satisfies all the constraints

cs6463 13

Correctness of Specification
 If there is a possible evaluation of the program

such that the function at a call point evaluates to
some function definition
 then this definition has to be in the set of possible

definitions computed by the analysis.

 Existence of solutions
 Every expression accepts a least CFA solution

cs6463 14

Constraint based Analysis
 Syntax-directed analysis

 Reformulate the analysis specification
 Construct a finite set of constraints based on structural

induction
 Compute the least solution of the set of constraints

 Each constraint has the form
(sol1 ⊆ sol2) or ({t} ⊆ sol) or ({t} ⊆ sol1 => sol2 ⊆ sol3)

 where
 Each sol is either C(l) or P(x)

 l is label, x is a variable
 Each t is either (fn x => e0) or (fun f x => e0)

cs6463 15

Constraint-based Analysis
 For each expression e, compute Cond[e]

 Cond[c] = ∅ //constants
 Cond[(x)l] = { P(x) ⊆ C(l) } // variables
 Cond[(fun f x => e0)l] = Cond[e0] ∪
 { {fun f x=>e0}⊆ C(l) } ∪ { {fun f x => e0} ⊆ P(f) } // function def.
 Cond[((e1)l1 (e2)l2)l3] = Cond[e1] ∪ Cond[e2] ∪
{ {t} ∈ C(l1)=>C(l2) ⊆ P(x) ∀ t = (fun f x => (e0)l0) } ∪
{ {t} ∈ C(l1)=> C(l0) ⊆ C(l3) ∀ t = (fun f x => (e0)l0) }
 Cond[(let x = (e1)l1 in (e2)l2)l3] =
 Cond[e1] ∪ Cond[e2] ∪ {C(l1) ⊆ P(x)} ∪ {C(l2) ⊆ C(l3)}
 Cond [(if (e0)l0 then (e1)l1 else (e2)l2)l3] =

 Cond[e0] ∪ Cond[e1] ∪ Cond[e2] ∪ {C(l2) ⊆ C(l3)} ∪ {C(l2) ⊆ C(l3) }

cs6463 16

Example: Constraint Construction
Cond[((fun f x => (x)1)2 (fun g y => (y)3)4)5]
 = { {fun f x => (x)} ⊆ C(2), {fun f x => (x)} ⊆ P(f),

 P(x) ⊆ C(1),
{fun g y => (y)}⊆C(4), {fun g y => (y)}⊆P(g),

 P(y) ⊆ C(3),
{fun f x => (x)} ⊆ C(2) => C(4) ⊆ P(x),
{fun f x => (x)} ⊆ C(2) => C(1) ⊆ C(5),
{fun g y => (y)} ⊆ C(2) => C(4) ⊆ P(y),
{fun g y => (y)} ⊆ C(2) => C(3) ⊆ C(5) }

cs6463 17

Solving the constraints
 Input: a set of constraints for the entire program
 Output: the least solution (C,P) to the constraints
 Idea: equivalent to finding the least fixed point of a

monotone function defined by the constraints
 Straight-forward iterative algorithm has n^5 cost, where n is

the size of the program (expression)
 A more sophisticated algorithm takes n^3 complexity

 The graph-based algorithm
 Build a graph where

 Each node n corresponds to a unique C(l) or P(x) =>val(n)

 Add an edge from node n1 to n2 if any change to val(n1)
may require modifications to val(n2)

 Use a worklist to keep track of nodes to change

cs6463 18

Constraint Solving Algorithm (1)
 Define add(t, p) = { if (t ⊆ p) { p = p ∪ t; append(p,worklist);} }
 Step 1 Initialization

 worklist := nil;
 for each label l (or variable x) do

 Val[C(l)] = nil; Edge(C(l)) = nil; (or Val[P(x)] = nil; Edge(P(x)) = nil)
 Step 2 Building the graph

 for each cc in Cond[program] do
 case cc of {t} ⊆ p: add(t,Val(p));

 p1 ⊆ p2: append(cc, Edge[p1]);
 {t} ⊆ p => p1 ⊆ p2: append(cc,Edge[p1]); append(cc,Edge[p]);

 C(5)
C(1) C(2) C(3) C(4)

 P(x) P(y) P(f) P(g)

cs6463 19

Constraint Solving Algorithm(2)
 Step 3 Iteration

 while worklist is not empty do
 q := Remove-first(W);
 for each cc in Edge[q] do
 case cc of p1 ⊆ p2: add(p2, Val[p1]);

 {t} ⊆ p => p1 ⊆ p2: if t ⊆ Val[p] then add(val(p1), p2);

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
 {fun g y => y}

Propoage P(x)

 {fun g y => y}
{fun f x => x}

∅

 {fun g y => y}
∅

 {fun g y => y}

∅

{fun f x => x}
∅

Propogate C(2)… Propoage C(1)Iteration 0Val

∅∅P(y)
{fun f x => x}{fun f x => x}P(f)
 {fun g y => y} {fun g y => y}P(g)

∅

∅

 {fun g y => y}

∅

{fun f x => x}
∅

 {fun g y => y}P(x)
{fun g y => y}C(5)
 {fun g y => y}C(4)

∅C(3)
{fun f x => x}C(2)
 {fun g y => y}C(1)

cs6463 20

Summary
 Recording the solution of CFA analysis

 for each label l (or variable x) do
 C(l) = Val[C(l)] (P(x) = Val[P(x)])

 Correctness and Termination
 The worklist algorithm terminates and the result produced by the

algorithm is the least solution to C[[e]].
 Complexity: The algorithm takes at most O(n3) steps if the original

expression e has size n.

