
Program Analysis in
Software Development

Summary of Papers



Program Analysis
Application Areas
 Compilation and Optimization

 LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation

 Obfuscation Generation and Detection
 Abstract Stack Graph to Detect Obfuscated Calls in Binaries

 Model checking and code generation
 Model Checking and Code Generation for UML State Machines and

Collaborations
 Reverse engineering

 Static Control-Flow Analysis for Reverse Engineering of UML Sequence
Diagrams

 Program understanding
 Selecting, Refining, and Evaluating Predicates for Program Analysis

 Error detection and Testing
 Variably Interprocedural Program Analysis for Runtime Error Detection

 Program Maintenance
 Evaluation of Software Modernization Estimation Methods Using NIMSAD Meta

Framework



Studying The Literature
 For each of the papers presented

 What does it try to accomplish?
 What are the main steps in the proposed approach?
 What can it be used for?
 What are its limitations?

 What is the role of program analysis in each of
the application areas?



Example:
Compilation and Optimization
 LLVM: A Compilation Framework for Lifelong Program Analysis &

Transformation
 What does it try to accomplish?

 provide high-level information to compiler transformations at
 compile-time, link-time, run-time, and in idle time between runs

 What are the main steps in the proposed approach?
 a common low-level code representation in SSA form

 a simple, language-independent type-system
 instruction for typed address arithmetic
 simple mechanism for exception handling

 A compiler design that preserves program information and support
 Offline code generation, profiling, whole-program optimization,…



Example:
Compilation and Optimization
 LLVM: A Compilation Framework for Lifelong Program Analysis &

Transformation
 What can it be used for?

 Enable life-long optimization for whole-programs, e.g.,
 compile-time, link-time, run-time, and in idle time between runs

 What are its limitations? (would you use it? What are your concerns?)
 Requires the adoption of a new IR (intermediate/internal representation) and

a new virtual machine (LLVM)
 Conversion between other languages?

 Support offline code generation, but is that sufficient?
 Others …

 The role of program analysis in compilation and
optimization
 Discover semantics of programs (persistent program information)
 Discover opportunities for optimization



Other application areas?
 Obfuscation Generation and Detection

 Abstract Stack Graph to Detect Obfuscated Calls in Binaries
 Model checking and code generation

 Model Checking and Code Generation for UML State Machines and
Collaborations

 Reverse engineering
 Static Control-Flow Analysis for Reverse Engineering of UML Sequence

Diagrams
 Program understanding

 Selecting, Refining, and Evaluating Predicates for Program Analysis
 Error detection and Testing

 Variably Interprocedural Program Analysis for Runtime Error Detection
 Program Maintenance

 Evaluation of Software Modernization Estimation Methods Using
NIMSAD Meta Framework


