Interprocedural Analysis and Abstract Interpretation
Outline

- Interprocedural analysis
 - control-flow graph
 - MVP: “Meet” over Valid Paths
 - Making context explicit
 - Context based on call-strings
 - Context based on assumption sets

- Abstract interpretation
Control-flow graph for a whole program

- At each function definition proc $p(x)$
 - Create two special CFG nodes:
 - init(p) and final(p)
 - Build CFG for the function body
 - Use init(p) as the function entry node
 - Connect every return node to final(p)

- At each function call to $p(x)$ with
 - Split the original function call into two stmts
 - Enter $p(x)$ (before making the call) and exit $p(x)$ (after the call exits)
 - Connect enter $p(x)$ -> init(p), final(p) -> exit $p(x)$
 - Connect enter $p(x)$ -> exit $p(x)$ to allow the flow of extra context info

- Three kinds of CFG edges
 - Intra-procedural: internal control-flow within a procedure
 - Procedure calls: from enter $p(x)$ to init(p)
 - Procedure returns: from final(p) to exit $p(x)$
Interprocedural CFG Example

Example:

```c
int fib(int z) {
    if (z < 3) then return 1;
    else return fib(z-1) + fib(z-2);
}
```

Main program: return fib(15);

```c
t = exit fib(15)
```

Problem: matching between function calls and returns
Extending monotone frameworks

- Monotone frameworks consists of
 - A complete lattice \((L, \leq)\) that satisfies the Ascending Chain Condition
 - A set \(F\) of monotone transfer functions from \(L\) to \(L\) that
 - contains the identity function and
 - is closed under function composition

- Transfer functions for procedure definitions
 - For simplicity, both \(\text{init}(p)\) and \(\text{final}(p)\) have identity transfer functions

- Transfer functions for procedure calls
 - For procedure entry: assign values to formal parameters
 - For procedure exit: assign return values to outside
Problem: calling context upon return

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

- Matching between function calls and returns
 - Calculating solutions on non-existing paths could seriously
detriment precision
 - E.g. enter fib(z-2) -> init(fib) -> ... -> exit fib(z-1) -> ...

- 
- Matching between function calls and returns
- Calculating solutions on non-existing paths could seriously
detriment precision
- E.g. enter fib(z-2) -> init(fib) -> ... -> exit fib(z-1) -> ...

B0: init(fib)
B1: if (z < 3)
B2: enter fib(z-1)
B3: t1 = exit fib(z-1) enter fib(z-2)
B4: t2 = exit fib(z-2) return t1 + t2;
B5: return 1
B6: final(fib)
MVP: “Meet” over Valid Paths

- Problem: matching procedure entries and exits (function calls and returns)
- A complete path must
 - Have proper nesting of procedure entries and exits
 - A procedure always return to the point immediately after it is called
- A valid path must
 - Start at the entry node of the main program
 - All the procedure exits match the corresponding entries
 - Some procedures may be entered but not yet exited
- The MVP solution
 - At each program point t, the solution for t is
 - $\text{MVP}(t) = \land \{ \text{sol}(p) : p \text{ is a valid path to } t \}$
Making Context Explicit

- **Context sensitive analysis**
 - Maintain separate solutions for different callers of a function

- **Extending the monotone framework**
 - Starting point (context-insensitive)
 - A complete lattice \((L, \leq)\) that satisfies the Ascending Chain Condition
 - \(L = \text{Power}(D)\) where \(D\) is the domain of each solution
 - A set \(F\) of monotone transfer functions from \(L\) to \(L\)
 - Extension
 - \(L = \text{Power}(D \ast C)\), where \(C\) includes all calling contexts
 - \(F = L \rightarrow L\), a separate sub-solution is calculated for each calling context
 - \(F\) (procedure entry): attach caller info. to incoming solution
 - \(F\) (procedure exit): match caller info, eliminate solution for invalid paths
Different Kinds of Context

- **Call strings --- contexts based on control flow**
 - Remember a list of procedure calls leading to the current program point
 - Call strings of unbounded length --- remember all the preceding calls
 - Call strings of bounded length (k) --- remember only the last k calls

- **Assumption sets --- contexts based on data flow**
 - Assumption sets
 - Use the solution before entering proc p(x) as calling context (e.g., each context makes distinct presumptions about values of function parameters)
 - Large vs. small assumption sets
 - How large is the context: use the entire solution or pick a single constraint from the solution
Example Context-sensitive Analysis

Range analysis: for each variable reference x, is its value \geq or \leq a constant value? (i.e., $x \geq x_1; z \leq n_2$)?
Example Range Analysis

Variables: $x, z, t_1, t_2, \text{fib, } t$; Contexts: A0, B2, B3, none; Domain: Variables * ($\leq n, = n, \geq n, ?, \text{any}$)

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexts:</td>
<td>(none)</td>
<td>(none, z=?(A0,z=15) (B2/B3, z=?)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none, z=?(A0,z=15) (B2/B3, z=?)</td>
<td>(none)</td>
<td>(none)</td>
</tr>
<tr>
<td>Domain:</td>
<td>Variables * ($\leq n, = n, \geq n, ?, \text{any}$)</td>
<td>(B0,z=15) (B2/B3, z=?)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>A0</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>(none, z=?(A0,z=15) (B2/B3, z=?)</td>
<td>(none)</td>
<td>(none)</td>
</tr>
<tr>
<td>B0</td>
<td>(none, z=?)</td>
<td>(A0,z=15) (B2/B3, z=?)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>B1</td>
<td>(none, z=?)</td>
<td>(A0,z=15) (B2/B3, z=?)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/z>=2) (B3/z>=1)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>B2</td>
<td>(none, z=?)</td>
<td>(A0,z=15) (B2/B3, z=?)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>B3</td>
<td>(none, z=t1/?(A0,z=15,t1=?) (B2/B3,z>=3,t1=?)</td>
<td>(A0,z=15)(B2/z>=3) (B3,z1=t1=1)</td>
<td>(A0,z=15)(B2/z>=3) (B3,z1=t1=1)</td>
<td>(A0,z=15)(B2/z>=3) (B3,z1=t1=1)</td>
<td>(A0,z=15)(B2/z>=3) (B3,z1=t1=1)</td>
<td>(A0,z=15)(B2/z>=3) (B3,z1=t1=1)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>B4</td>
<td>(none, z/t1/t2=?)</td>
<td>(A0,z=15)(t1/t2=?) (B2/B3,z>=3)</td>
<td>(A0,z=15)(t1/t2=1) (B2/B3,z>=3)</td>
<td>(A0,z=15)(t1/t2=1) (B2/B3,z>=3)</td>
<td>(A0,z=15)(t1/t2=1) (B2/B3,z>=3)</td>
<td>(A0,z=15)(t1/t2=1) (B2/B3,z>=3)</td>
<td>(A0,z=15)(B2/B3,z>=3)</td>
<td>(A0,z=15) (B2/z>=3) (B3/z>=1)</td>
<td>(none)</td>
</tr>
<tr>
<td>B5</td>
<td>(none, z=?)</td>
<td>(B2/B3,z<=?2)</td>
<td>(B2,z=2) (B3,z<=?2)</td>
<td>(B2,z=2) (B3,z<=?2)</td>
<td>(B2,z=2) (B3,z<=?2)</td>
<td>(B2,z=2) (B3,z<=?2)</td>
<td>(B2,z=2) (B3,z<=?2)</td>
<td>(A0,z=15)(B2/z>=3)</td>
<td>(A0,z=15) (B2/z>=3)</td>
</tr>
<tr>
<td>B6</td>
<td>(none,z/fib=?)</td>
<td>(A0,z=15,fib=?) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15,fib=1) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15,fib=1) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15,fib=1) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15,fib=1) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15,fib=1) (B2/B3,z=any,fib=1)</td>
<td>(A0,z=15) (B2/z>=3)</td>
<td>(A0,z=15) (B2/z>=3)</td>
</tr>
<tr>
<td>A1</td>
<td>(none,t=?)</td>
<td>(none,t=?)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
<td>(none,t>=1)</td>
</tr>
</tbody>
</table>
Foundations of Abstract Interpretation

Definition from Wikipedia

- **abstract interpretation** is a theory of sound approximation of the semantics of computer programs. It can be viewed as a partial execution of a computer program without performing all the calculations.

Outline

- Monotone frameworks
 - A complete lattice \((L,\leq)\) that satisfies the Ascending Chain Condition
 - A set \(F\) of monotone transfer functions from \(L\) to \(L\) that
 - contains the identity function and
 - is closed under function composition

- Galois connections, closures, and Moore families

- Soundness and completeness of operations on abstract data

- Soundness and completeness of execution trace computation
Galois Connections

- Two complete lattices
 - C: the “concrete” (execution) data
 - The execution of the entire program
 - Infinite and impossible to model precisely
 - A: the “abstract” (execution) data
 - Properties (abstractions) of the “concrete” data
 - The solution space (domain) of static program analysis

- For complete lattices C and A, a Galois connection is
 - A pair of monotonic functions, $\alpha : C \rightarrow A$, $\gamma : A \rightarrow C$
 - For all $a \in A$ and $c \in C$: $c \leq \gamma(\alpha(c))$ and $\alpha(\gamma(a)) \leq a$
 - Is Written as $C<\alpha,\gamma>A$
\textbf{Galois Connections (2)}

- γ and α are inverse maps of each other's image
 - For all $c \in \gamma(A), c = \gamma(\alpha(c))$; for all $a \in \alpha(C), a = \alpha(\gamma(a))$
 - The maps α are "homomorphism" mappings between C and A
- Galois connections are closed under
 - Composition, product, and so on
- Each instruction performs an action $f: C \rightarrow C$
 - Can use α and γ to define an abstract transfer function $f^\# : A \rightarrow A$ for each $f: C \rightarrow C$
Closure Maps

- For $C<\alpha,\gamma> A$, it is common that $A \subseteq C$. This means A embeds into C as a sub-lattice
 - A’s elements name distinguished sets in C
- A closure map defines the embedding of A within C.

Definition: $\rho: C \rightarrow C$ is a closure map if it is

- **Monotonic:** $\forall c1, c2 \in C, c1 \leq c2 \Rightarrow \rho(c1) \leq \rho(c2)$;
- **extensive:** $\forall c \in C, c \leq \rho(c)$;
- **idempotent:** $\forall c \in C, \rho(\rho(c)) = \rho(c)$ (i.e. $\rho \circ \rho = \rho$)

1) Every Galois connection, $C<\alpha,\gamma> A$ defines a closure map $\alpha \cdot \gamma$;
2) Every closure map, $\rho: C \rightarrow C$, defines the Galois connection, $C<\rho, id> \rho(C)$.

Moore Families

- Given C, can we define a closure map on it by choosing some elements of C?
 - Yes, if the elements we select are closed under greatest-lower-bounds (meet) operation
 - That is, the new set of elements forms a complete lattice
- **Definition:** M ⊆ C is a *Moore family* iff for all S ⊆ M, (^S) ∈ M.
 - We can define a closure map as ρ(c)={c’ ∈ M | c ≤ c’}.
 - That is, we map each element in C to the closest abstraction (approximation) in M
- For each closure map, ρ:C->C, its image, ρ(C), is a Moore family.

Given C, we can define an abstract interpretation by selecting some M ⊆ C that is a Moore family
Closed Binary Relations

- Often the solution of an analysis is a power set of its domain
 - The Galois connection can be written as $\text{Power}(D) < \alpha, \gamma > A$
- Given unordered set D and complete lattice A, it is natural to relate the elements in D to those in A by a binary relation, $R \subseteq D \times A$, s.t.
 - $(d,a) \in R$ (or $d \ R a$, $d \models R a$) means “d has property a”.
 - Example: $D=\text{Int}$, $A=\{\text{none, neg, pos, zero, nonneg, nonpos, any}\}$.
 - Then $2 \ R \text{nonneg}$, $2 \ R \text{pos}$, and $2 \ R \text{any}$.
- The adjoint function, $\gamma : A \rightarrow \text{Power}(D)$, can be defined as
 - $\gamma(a) = \{d \in D \mid d \ R a\}$. E.g., $\gamma(\text{nonneg})=\{0,1,2,\ldots\}$.
 - If R defines a Galois collection, then $\gamma(A)$ defines a Moore family.
- **Proposition:** $R \subseteq D \times A$ defines a Galois connection between $(\text{Power}(D), A)$ iff
 - R is U-closed: $c \ R a$ and $a \leq a'$ imply $c \ R a'$;
 - R is G-closed: $c \ R \{a \mid c \ R a\}$
Concrete and Abstract Operations

Now that we know how to model a solution space via abstraction function $\alpha : C \rightarrow A$,
- We must model concrete computation steps, $f : C \rightarrow C$, by abstract computation steps, $f^# : A \rightarrow A$.

Example: we have concrete domain, Nat, and concrete operation, $\text{succ} : \text{Nat} \rightarrow \text{Nat}$, defined as $\text{succ}(n) = n + 1$.
- abstract domain, Parity = {any, even, odd, none}.
- abstract operation, $\text{succ}^# : \text{Parity} \rightarrow \text{Parity}$, defined as
 - $\text{succ}^#(\text{even}) = \text{odd}$,
 - $\text{succ}^#(\text{odd}) = \text{even}$,
 - $\text{succ}^#(\text{any}) = \text{any}$,
 - $\text{succ}^#(\text{none}) = \text{none}$,
- $\text{succ}^#$ must be consistent (sound) with respect to succ:
 - if $n \text{ Rn a}$, then $\text{succ}(n) \text{ Rn succ}^#(a)$,
- where $\text{Rn} \subseteq \text{Nat} \times \text{Parity}$ relates numbers to their parities (e.g., 2 Rn even, 5 Rn odd, etc.).
Sound Approximation

- Given
 - Galois connection $C<\alpha, \gamma> A$ and
 - functions $f : C \rightarrow C$ and $f^# : A \rightarrow A$,

 $f^#$ is a *sound approximation* of f iff
 - For all $c \in C$, $\alpha(f(c)) \leq f^#(\alpha(c))$
 - For all $a \in A$, $f(\gamma(a)) \leq \gamma(f^#(a))$

- That is, α defines a “semi-homomorphism” with respect to f and $f^#$

\[c \xrightarrow{\alpha} \alpha(c) \]
\[\downarrow f \quad \downarrow f^# \]
\[f(c) \xrightarrow{\alpha} \alpha(f(c)) \leq f^#(\alpha(c)) \]
Sound Approximation Example

- Given
 - Galois connection \(\text{Power}(\text{Nat}) \prec \alpha, \gamma \succ \text{Parity} \) and
 - Concrete transfer function \(\text{succ} : \text{Nat} \rightarrow \text{Nat}, \quad \text{succ}(S) = \{ n + 1 \mid n \in S \} \)
 - Abstract transfer function \(\text{succ}# : \text{Parity} \rightarrow \text{Parity}, \)
 \[\text{succ}#(\text{even}) = \text{odd}, \quad \text{succ}#(\text{odd}) = \text{even} \]
 \[\text{succ}#(\text{any}) = \text{any}, \quad \text{succ}#(\text{none}) = \text{none} \]
- \(\text{succ}# \) is a sound approximation of \(\text{succ} \)
 - For all \(c \in \text{Nat}, \quad \alpha(\text{succ}(c)) = \text{succ}#(\alpha(c)) \)

\[
\begin{array}{c}
\{2,6\} \\
\downarrow \text{succ} \\
\{3,7\}
\end{array}
\xrightarrow{\alpha}
\begin{array}{c}
\text{even} \\
\downarrow \text{succ}# \\
\text{odd}
\end{array}
\]
Synthesizing f# from f

- Given $C^{<\alpha,\gamma>}A$, and function $f : C \rightarrow C$, the most precise $f# : A \rightarrow A$ that is sound with respect to f is
 - $f#_{\text{best}}(a) = \alpha(f(\gamma(a)))$

- **Proposition:** $f#$ is sound with respect to f iff
 - For all $a \in A$, $f#_{\text{best}}(a) \leq f#(a)$
 - Of course, $f#_{\text{best}}$ has a *mathematical* definition—not an algorithmic one—$f#_{\text{best}}$ might not be finitely computable!

- **Parity example continued:**
 - $\text{succ#}_{\text{best}}(\text{even}) = \alpha(\text{succ}(\gamma(\text{even}))) = \alpha(\text{succ}\{2n \mid n\geq0\}) = \alpha\{2n+1 \mid n\geq0\} = \text{odd}$
 - Question: what about other operators on Nat, e.g., *, / ?
Completeness of Approximation (skip)

Given $C^{\alpha, \gamma}A$, and function $f : C \rightarrow C$,

- Function $f^\#: A \rightarrow A$ is sound with respect to f iff
 - For all $c \in C$, $\alpha(f(c)) \leq f^\#(\alpha(c))$
 - For all $a \in A$, $f(\gamma(a)) \leq \gamma(f^\#(a))$

- Function $f^\#: A \rightarrow A$ is forwards(γ) complete with respect to f iff
 - For all $a \in A$, $f(\gamma(a)) = \gamma(f^\#(a))$
 - That is, $\gamma(A)$ is closed under $f : f(\gamma(A)) \subseteq \gamma(A)$

- Function $f^\#: A \rightarrow A$ is backwards(α) complete with respect to f iff
 - For all $c \in C$, $\alpha(f(c)) = f^\#(\alpha(c))$
 - That is, α partitions C into equivalence classes: $\alpha(c) = \alpha(c')$ implies $\alpha(f(c)) = \alpha(f(c'))$

- For an $f^\#$ to be (forwards or backwards) complete, it must equal $f^\#_{\text{best}} = \alpha(f(\gamma(a)))$
 - The structure of $C^{\alpha, \gamma}A$ and $f : C \rightarrow C$ determines whether $f^\#$ is complete.
Transfer Functions and Computation steps

- Each program transition from program point p_i to p_j has an associated *transfer function*, $f_{ij}: C \rightarrow C$ (or $f_{#ij}: A \rightarrow A$), which describes the associated computation.
 - This defines a computation step of the form, $(p_i, s) \rightarrow (p_j, f_{ij}(s))$

- **Example:**
 - Assignment $p_0: x = x + 1; p_1: \cdots$ has the transfer function
 $$f_{01}(<\ldots x: n\ldots>) = <\ldots x: n+1\ldots>$$
 - For multiple transitions in conditionals, attach a transfer function to each possible transition (branch) to “filter” the data that arrives at a program point.
 e.g. p_0: cases $x \leq y$: $p_1: y = y - x$;
 $y \leq x$: $p_2: x = x - y$; end
 - $f_{p1}(s) = \text{if } s[x] \leq s[y] \text{ then } s \text{ else bot};$ (filter out s unless $s[x] \leq s[y]$)
 - $f_{p2}(s) = \text{if } s[y] \leq s[x] \text{ then } s \text{ else bot};$ (filter out s unless $s[y] \leq s[x]$)
Execution Traces

- An *execution trace* is a (possibly infinite) sequence,
 \[(p_0,s_0)\rightarrow(p_1,s_1)\rightarrow\cdots\rightarrow(p_j,s_j)\rightarrow\cdots\]
 s.t.
 - for all \(i \geq 0\): \((p_i,s_i) \rightarrow p_{\text{succ}(i)}, f_{\text{succ}(i)}(s_i)\)
 - No \(s_i\) equals bot

Two concrete traces
\((p_i,v)\) means \((p_i,x=v)\):

P0: while (x != 1) {
P1: if Even(x)
P2: x = x div2;
P3: else
 x = 3*x + 1;
P5: exit;
Using Approximation to build abstract traces

Abstract over approximating trace:

1. Each concrete transition is generated by an f_{ij};
2. Each abstract transition is generated by the corresponding $f\#ij$.

- Each concrete transition, $(pi,s) \rightarrow (pj,fij(s))$, is reproduced by a corresponding abstract transition, $(pi,a) \rightarrow (pj,f\#ij(a))$, where $s \in \gamma(a)$
- The traces embedded in the abstract trace tree “cover” (simulate) the concrete traces
Shape Analysis

- **Goal**
 - To obtain a finite representation of the memory storage

- The analysis result can be used for
 - Detection of pointer aliasing
 - Detection of sharing between structures
 - Software development tools
 - Detection of pointer errors, e.g. dereferences of nil-pointers
 - Program verification
 - E.g., reverse transforms a non-cyclic list to a non-cyclic list
The Concrete Solution Space

- Model the memory (stack and heap)
 - Storage of local variables
 \(\text{Stack} = \text{Var} \rightarrow (\text{Value} \cup \text{Loc}) \)
 Map each local variable into a value or a unique location
 - The heap storage
 \(\text{Heap} = (\text{Loc} \times \text{Sel}) \rightarrow (\text{Value} \cup \text{Loc}) \)
 Map pairs of locations and selectors to values or locations

- Model the operational semantics of programs
 - Program state: \(\text{State} = \text{ProgramPoint} \times \text{Stack} \times \text{Heap} \)
 Example: \((p1, (x:3,y:Ly), ((Ly,val):5))\) is a program state
 - Each statement modifies Stack and Heap of the previous state
 - Stmt: \(\text{State} \rightarrow \text{State} \)
Building Abstract Domains

- Given an unordered set, D, of concrete data values, we might ask,
 - “What are the properties about D that I wish to calculate?
 - Can I relate these properties $a \in A$, to elements $d \in D$ via a UG-closed binary relation, $R: D \times A$?

- Given a set, A, and a binary relation, $R: D \times A$
 - Define $\gamma: A \rightarrow \text{Power}(D)$ as $\gamma(a) = \{d \in D \mid d \, R \, a\}$
 - Define partial ordering on A: $a \leq a'$ iff $\gamma(a) \leq \gamma(a')$
 - If there are distinct a and a' such that $\gamma(a) = \gamma(a')$, then merge them to force U-closure
 - Ensure that $\gamma(A)$ is a Moore family by adding greatest-lower-bound elements to A as needed.
 - This forces G-closure
 - Use the existing machinery to define the Galois connection between Power(D) and A
Abstracting the Program State

- Build a binary relation, $R_d: \text{Data} \times \text{AbsData}$
 - $R_v: \text{Value} \rightarrow \text{AbsValue}$; $R_l: \text{Loc} \rightarrow \text{AbsLoc}$
 - May ignore the values of non-pointer variables.

- Build induced Galois connection, $\text{Power(Data)} <\alpha, \gamma> \text{AbsData}$, we can
 - Build Galois connections that abstract the concrete data
 $<x_i : v_i> R_s <x_i : a_i> \text{ iff } v_i R_d a_i$
 Example: $<x:3, y:4> R_s <x:any, y:any>$
 - A program point is abstracted to itself: $p R_p p$,
 the abstract domain of program points is $\text{ProgramPoint} \cup \{\text{top, bot}\}$ (to make it a complete lattice)
 - Finally, we can relate each concrete state to an abstract one:
 $(p, s) R_s (p', s') \text{ iff } p = p' \text{ and } s R_s s'$
Shape Graphs

- Shape analysis uses a shape graph to abstract the memory storage
 - Graph nodes denote a finite number of abstract locations:
 - $\text{Alloc} = \{\text{Nx} \mid \text{Nx is pointed to by a set of local variables}\} \cup N_\phi$
 - Nx: the node represents all concrete Locations referred to by variables in x
 - N_ϕ: abstract summary location (all the other locations)
 - Each graph node abstracts a distinctive set of concrete Locations
 - If variables x and y may be aliased, they must share a single graph node
 - A graph edge sel connect nodes n_1 and n_2 if n_2 is pointed to by $n_1.\text{sel}$

Diagram:

- x connects $N\{x\}$ to $N\{z\}$
- y connects $N\{y\}$ to N_ϕ
- Z connects $N\{z\}$ to N_ϕ
- next labels the edges
Abstraction of Program States

- Abstraction of memory storage
 - Abstract Stack
 \[\text{AbsStack} = \text{Var} \rightarrow \text{ALoc} \]
 Map each pointer variable into a unique abstract location (a shape graph node)
 - Abstract heap
 \[\text{AbsHeap} = (\text{ALoc} \times \text{Sel}) \rightarrow (\text{ALoc}) \]
 Mapping pairs of abs locations and selectors to abs locations
 - Sharing information
 \[\text{IS} : \text{ALoc} \rightarrow \{ \text{yes, no} \} \]
 For each abstract location in the shape graph, is it shared by pointers in the heap?
 - If \(\text{IS}(N_x) = \text{yes} \), then \(N_x \) must have an incoming edge from \(N_\phi \) or have more than one incoming edges

- Transfer functions: \(P(\text{AbsState}) \rightarrow P(\text{AbsState}) \)
 - Program state: \(\text{AbsState} = \text{ProgramPoint} \times \text{AbsStack} \times \text{AbsHeap} \times \text{IS} \)
 - Each statement modifies mappings in the previous state
Transfer functions(1)

- $x = \text{nil}$
 - $F(S, H, IS) = (S', H', IS')$ where (S', H', IS') is obtained from (S, H, IS) by:
 - Removing x from all mappings (killing all previous info. about x)
 - Merging all $N\phi$ nodes
Transfer functions(2)

- $x = y$
 - $F(S, H, IS) = (S', H', IS')$ where
 - (S', H', IS') is obtained by modifying mappings for x to be identical to those for y
Transfer functions (3)

- \(x = y \texttt{.sel} \)
 - Remove the old binding for \(x \)
 - Establish a new binding for \(x \) to be the same as \(y \texttt{.sel} \)
 - If there is no abstract location defined for \(y \)
 - Error: dereference a null pointer
 - If there is an abstract location \(\texttt{N} y \) s.t. \(S[y] = \texttt{N} y \), but there is no abstract location for \((\texttt{N} y, \texttt{sel}) \)
 - Error dereference a non-existing field
 - If there exist abstract locations \(\texttt{N} y \) and \(\texttt{N} z \) s.t. \(S[y] = \texttt{N} y \) and \(H[\texttt{N} y, \texttt{sel}] = \texttt{N} z \).
 - Modify the mappings so that \(x \) points to \(\texttt{N} z \)
 - If \(\texttt{N} z = \texttt{N} \phi \), create a new node \(\texttt{N} \{x\} \) for \(x \) --- may need to create multiple shape graphs to cover different cases

- Other transfer functions
 - E.g. \(x \texttt{.sel} = y \); \(x \texttt{.sel} = \texttt{nil} \); \(\texttt{allocate}(x) \);