Interprocedural Analysis and Abstract Interpretation

Outline

- Interprocedural analysis
- control-flow graph
- MVP: "Meet" over Valid Paths
- Making context explicit
\square Context based on call-strings
- Context based on assumption sets
- Abstract interpretation

Control-flow graph for a whole

program

- At each function definition proc $p(x)$
- Create two special CFG nodes:
- init(p) and final(p)
- Build CFG for the function body
- Use init(p) as the function entry node
- Connect every return node to final(p)
- At each function call to $p(x)$ with
- Split the original function call into two stmts
- Enter $p(x)$ (before making the call) and exit $p(x)$ (after the call exits)
- Connect enter $p(x)$->init(p), final(p) -> exit $p(x)$
- Connect enter $p(x)$-> exit $p(x)$ to allow the flow of extra context info
- Three kinds of CFG edges
- Intra-procedural: internal control-flow within a procedure
- Procedure calls: from enter $p(x)$ to init(p)
- Procedure returns: from final(p) to exit $p(x)$
Interprocedural CFG Example
int fib(int $z)\{$
\quad if $(z<3)$ then return $1 ;$
\quad else return fib(z-1) + fib $(z-2) ;$
$\}$
Main program: return fib $(15) ;$
A0:enter fib(15)
- Problem: matching between function calls and returns

Extending monotone frameworks

- Monotone frameworks consists of
- A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
- A set F of monotone transfer functions from L to L that
\square contains the identity function and
\square is closed under function composition
- Transfer functions for procedure definitions
- For simplicity, both init(p) and final(p) have identity transfer functions
- Transfer functions for procedure calls
- For procedure entry: assign values to formal parameters
- For procedure exit: assign return values to outside

Problem: calling context upon return

int fib(int $z)\{$
\quad if $(\mathrm{z}<3)$ then return $1 ;$
\quad else return fib(z-1) $+\operatorname{fib}(\mathrm{z}-2) ;$
$\}$
Main program: return fib(15);

A0: enter fib(15)

A1: $\mathrm{t}=$ exit fib(15)

- Matching between function calls and returns
- Calculating solutions on non-existing paths could seriously detriment precision
- E.g. enter fib(z-2) -> init(fib) -> ... -> exit fib(z-1) -> ...

MVP: "Meet" over Valid Paths

- Problem: matching procedure entries and exits (function calls and returns)
- A complete path must
- Have proper nesting of procedure entries and exits
- A procedure always return to the point immediately after it is called
- A valid path must
- Start at the entry node of the main program
- All the procedure exits match the corresponding entries
- Some procedures may be entered but not yet exited
- The MVP solution
- At each program point t, the solution for t is
$\square \operatorname{MVP}(\mathrm{t})=\Lambda\{\operatorname{sol}(\mathrm{p}): \mathrm{p}$ is a valid path to t$\}$

Making Context Explicit

- Context sensitive analysis
- Maintain separate solutions for different callers of a function
- Extending the monotone framework
- Starting point (context-insensitive)
\square A complete lattice (L, s) that satisfies the Ascending Chain Condition
- $L=\operatorname{Power}(D)$ where D is the domain of each solution
\square A set F of monotone transfer functions from L to L
- Extension
$\square \mathrm{L}=\operatorname{Power}(\mathrm{D} * \mathrm{C})$, where C includes all calling contexts
$\square F=L->L$, a separate sub-solution is calculated for each calling context
- F (procedure entry) : attach caller info. to incoming solution
- F (procedure exit): match caller info, eliminate solution for invalid paths

Different Kinds of Context

- Call strings --- contexts based on control flow
- Remember a list of procedure calls leading to the current program point
- Call strings of unbounded length --- remember all the preceding calls
- Call strings of bounded length (k) --- remember only the last k calls
\square Assumption sets --- contexts based on data flow
- Assumption sets
\square Use the solution before entering proc $p(x)$ as calling context (e.g., each context makes distinct presumptions about values of function parameters)
- Large vs. small assumption sets
\square How large is the context: use the entire solution or pick a single constraint from the solution

Example Context-sensitive Analysis

- Range analysis: for each variable reference x, is its value $>=$ or $<=$ a constant value? (i.e, $x>=x 1 ; z<=n 2$)?

Example Range Analysis

Variables: x,z, t1, t2, fib, t; Contexts: A0, B2, B3,none;
Domain: Variables * (<=n, =n, >=n,?,any)

A0	(none)	(none)	(none)	(none)
B0	$\begin{aligned} & \text { (none, } \\ & \mathrm{z}=? \text { ? } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15)(\mathrm{B} 2 / \mathrm{B} 3, \\ & \mathrm{z}=?) \end{aligned}$	$\begin{aligned} & (A 0, z=15)(B 2, z>=2) \\ & (B 3, z>=1) \end{aligned}$	$\begin{aligned} & (A 0, z=15)(B 2, z>=2) \\ & (B 3, z>=1) \end{aligned}$
B1	$\begin{aligned} & \text { (none, } \\ & \mathrm{z}=? \text {) } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15)(\mathrm{B} 2 / \mathrm{B} 3, \\ & \mathrm{z}=?) \end{aligned}$	$\begin{aligned} & (A 0, z=15)(B 2, z>=2) \\ & (B 3, z>=1) \end{aligned}$	$\begin{aligned} & (A 0, z=15)(B 2, z>=2) \\ & (B 3, z>=1) \end{aligned}$
B2	$\begin{aligned} & \text { (none, } \\ & \text { z=?) } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15)(\mathrm{B} 2 / \mathrm{B} 3 \\ & \mathrm{z}>=3) \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15)(\mathrm{B} 2 / \mathrm{B} 3, \mathrm{z>} \\ & =3) \end{aligned}$	$(A 0, z=15)(B 2 / B 3, z>=$ 3)
B3	$\begin{aligned} & \hline \text { (none, } \\ & \text { z/t1=?) } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{t} 1=?) \\ & (\mathrm{B} 2 / \mathrm{B} 3, \mathrm{z}>=3, \mathrm{t} 1=?) \end{aligned}$	$\begin{aligned} & (A 0, z=15, t 1=1) \\ & (B 2 / B 3, z>=3, t 1=1) \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{t} 1>=1) \\ & (\mathrm{B} 2 / \mathrm{B} 3, \mathrm{z}>=3, \mathrm{t} 1>=1) \end{aligned}$
B4	$\begin{aligned} & \hline \text { (none, } \\ & \text { z/t1/t2=?) } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{t} 1 / \mathrm{t} 2=?)(\mathrm{B} \\ & 2 / \mathrm{B} 3, \mathrm{z}>=3, \mathrm{t} 1 / \mathrm{t} 2=? \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{t} 1 / \mathrm{t} 2=1)(\mathrm{B} \\ & 2 / \mathrm{B} 3, \mathrm{z}>=3, \mathrm{t} 1 / \mathrm{t} 2=1) \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{t} 1 / \mathrm{t} 2>=1)(\mathrm{B} \\ & 2 / \mathrm{B} 3, \mathrm{z}>=3, \mathrm{t} 1 / \mathrm{t} 2>=1) \end{aligned}$
B5	$\begin{aligned} & \text { (none, } \\ & \text { z=?) } \end{aligned}$	(B2/B3, $\mathrm{z}<=2$)	$(B 2, z=2)(B 3, z<=2)$	$(B 2, z=2)(B 3, z<=2)$
B6	$\begin{aligned} & \text { (none, z/fib } \\ & =? \text {) } \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{fib}=?)(\mathrm{B} 2 / \\ & \mathrm{B} 3, \mathrm{z}=\mathrm{any}, \mathrm{fib}=1) \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{fib}>=1)(\mathrm{B} 2 \\ & / \mathrm{B} 3, \mathrm{z}=\mathrm{any}, \mathrm{fib}>=1) \end{aligned}$	$\begin{aligned} & (\mathrm{A} 0, \mathrm{z}=15, \mathrm{fib}>=1)(\mathrm{B} 2 / \\ & \mathrm{B} 3, \mathrm{z}=\mathrm{any}, \mathrm{fib}>=1) \end{aligned}$
A1	(none,t=?)	(none,t=?)	(none, $\mathrm{t}>=1$)	(none,t>=1)

Foundations of Abstract Interpretation

- Definition from Wikipedia
- abstract interpretation is a theory of sound approximation of the semantics of computer programs. It can be viewed as a partial execution of a computer program without performing all the calculations.
- Outline
- Monotone frameworks
\square A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
\square A set F of monotone transfer functions from L to L that
- contains the identity function and
- is closed under function composition
- Galois connections, closures, and Moore families
- Soundness and completeness of operations on abstract data
- Soundness and completeness of execution trace computation

Galois Connections

- Two complete lattices
- C: the "concrete" (execution) data
\square The execution of the entire program
- Infinite and impossible to model precisely
- A: the "abstract" (execution) data
- Properties (abstractions) of the "concrete" data
- The solution space (domain) of static program analysis
- For complete lattices C and A, a Galois connection is
- A pair of monotonic functions, $\alpha: \mathrm{C}->\mathrm{A}, \gamma: \mathrm{A}->\mathrm{C}$
- For all $\mathrm{a} \in \mathrm{A}$ and $\mathrm{c} \in \mathrm{C}: \mathrm{c} \leq \gamma(\alpha(\mathrm{c}))$ and $\alpha(\gamma(\mathrm{a})) \leq \mathrm{a}$
- Is Written as $\mathrm{C}<\alpha, \gamma>\mathrm{A}$

Galois Connections (2)

- γ and α are inverse maps of each other's image
- For all $c \in \gamma(A), c=\gamma(\alpha(c))$; for all $\mathrm{a} \in \alpha(\mathrm{C}), \mathrm{a}=\alpha(\gamma(\mathrm{a}))$
- The maps α are "homomorphism" mappings between C and A
- Galois connections are closed under
- Composition, product, and so on

- Each instruction performs an action f: C->C
- Can use α and γ to define an abstract transfer function f : A->A for each f: C->C

Closure Maps

- For $\mathrm{C}<\alpha, \gamma>\mathrm{A}$, it is common that $A \subseteq C$. This means A embeds into C as a sub-lattice
- A's elements name distinguished sets in C
- A closure map defines the embedding of A within C.
Definition: $\rho: \mathrm{C}->\mathrm{C}$ is a closure map if it is
- Monotonic: $\forall c 1, c 2 \in \mathrm{C}, \mathrm{c} 1 \leq$ $c 2=>\rho(c 1) \leq \rho(c 2)$;
- extensive: $\forall c \in \mathrm{C}, \mathrm{c} \leq \rho(\mathrm{c})$;
- idempotent: $\forall c \in C, \rho(\rho(c))=$ $\rho(\mathrm{c})$ (i.e. $\rho^{*} \rho=\rho$)

1) Every Galois connection, $\mathrm{C}<\alpha, \gamma>A$ defines a closure map $\alpha \cdot \gamma$;
2) Every closure map, $\rho: \mathrm{C}$ $>$ C,defines the Galois connection, $C<\rho$, $i d>\rho(C)$.

Moore Families

\square Given C, can we define a closure map on it by choosing some elements of C ?

- Yes, if the elements we select are closed under greatest-lower-bounds (meet) operation
- That is, the new set of elements forms a complete lattice
- Definition: $M \subseteq C$ is a Moore family iff for all $S \subseteq M,(\wedge S) \in M$.
- We can define a closure map as $\rho(\mathrm{c})=\wedge\left\{c^{\prime} \in \mathrm{M} \mid \mathrm{c} \leq \mathrm{c}^{\prime}\right\}$.
- That is, we map each element in C to the closest abstraction (approximation) in M
ㅁ For each closure map, $\rho: C->C$, its image, $\rho(C)$, is a Moore family.

Given C , we can define an abstract interpretation by selecting some M $\subseteq \mathrm{C}$ that is a Moore family

Closed Binary Relations

- Often the solution of an analysis is a power set of its domain
- The Galois connection can be written as $\operatorname{Power}(\mathrm{D})<\alpha, \gamma>\mathrm{A}$
- Given unordered set D and complete lattice A, it is natural to relate the elements in D to those in A by a binary relation, $R \subseteq D$ * A, s.t.
- $(\mathrm{d}, \mathrm{a}) \in \mathrm{R}$ (or d R a, d I=r a) means "d has property a".
- Example: $\mathrm{D}=\mathrm{Int}, \mathrm{A}=\{$ none,neg,pos,zero,nonneg,nonpos,any\}.
\square Then $2 R$ nonneg, $2 R$ pos, and $2 R$ any.
- The adjoint function, $\gamma:$ A->Power(D), can be defined as
- $\gamma(\mathrm{a})=\{\mathrm{d} \in \mathrm{D} \mid \mathrm{d} R \mathrm{a}\}$. E.g., $\gamma($ nonneg $)=\{0,1,2, \ldots\}$.
- If R defines a Galois collection, then $\gamma(\mathrm{A})$ defines a Moore family.
- Proposition: $R \subseteq D^{*} A$ defines a Galois connection between (Power(D), A) iff
- R is U-closed: c R a and $\mathbf{a} \leq \mathrm{a}^{\prime}$ imply c $\mathrm{R} \mathrm{a}^{\prime}$;
- R is G-closed: c R^{\wedge} \{a Ic R a \}

Concrete and Abstract Operations

- Now that we know how to model a solution space via abstraction function $\alpha: \mathrm{C}->\mathrm{A}$,
- We must model concrete computation steps, f:C->C, by abstract computation steps, f : $\mathrm{A} \rightarrow \mathrm{A}$.
- Example: we have concrete domain, Nat, and concrete operation, succ: Nat $->$ Nat, defined as $\operatorname{succ}(n)=n+1$.
■ abstract domain, Parity = \{any, even, odd, none\}.
- abstract operation, succ\#:Parity -> Parity, defined as
succ\#(even)=odd, succ\#(odd)=even, succ\#(any)=any, succ\#(none)=none,
- succ\# must be consistent (sound) with respect to succ:
if n Rn a, then succ(n) Rn succ\#(a),
- where Rn \subseteq Nat * Parity relates numbers to their parities (e.g., 2 Rn even, 5 Rn odd, etc.).

Sound Approximation

- Given
- Galois connection $\mathrm{C}<\alpha, \gamma>\mathrm{A}$ and
- functions $\mathrm{f}: \mathrm{C}->\mathrm{C}$ and f \#:A-> A ,
f \# is a sound approximation of f iff
- For all $c \in C, \alpha(f(c)) \leq f \#(\alpha(c))$
- For all $\mathrm{a} \in \mathrm{A}, \mathrm{f}(\gamma(\mathrm{a})) \leq \gamma(\mathrm{f} \#(\mathrm{a}))$
- That is, α defines a "semi-homomorphism" with respect to f and $\ddagger \#$

Sound Approximation Example

- Given
- Galois connection Power(Nat)<a, $\gamma>$ Parity and
- Concrete transfer function succ : Nat->Nat, $\operatorname{succ}(S)=\{n+1 I n \in S\}$
- Abstract transfer function succ\#: Parity -> Parity, succ\#(even)=odd, succ\#(odd)=even succ\#(any)=any, succ\#(none)=none
- succ\# is a sound approximation of succ
- For all $c \in \operatorname{Nat}, \alpha(\operatorname{succ}(c))=\operatorname{succ} \#(\alpha(c))$

Synthesizing $\mathrm{f} \#$ from f

- Given $\mathrm{C}<\alpha, \gamma>\mathrm{A}$, and function f : $\mathrm{C}->\mathrm{C}$, the most precise $\mathrm{f} \#: \mathrm{A}->\mathrm{A}$ that is sound with respect to f is
- $\mathrm{f} \#$ best $(\mathrm{a})=\alpha(\mathrm{f}(\gamma(\mathrm{a})))$
- Proposition: f \# is sound with respect to f iff
- For all $a \in A, f \#$ best(a) $\leq f \#(a)$
- Of course, f\#best has a mathematical definition-not an algorithmic one-f\#best might not be finitely computable!
- Parity example continued:
- succ\#best(even) $=\alpha(\operatorname{succ}(\gamma($ even $)))=\alpha(\operatorname{succ}\{2 n \mid n \geq 0\}))=\alpha$ (\{2n+1 I $n \geq 0\}$) = odd
■ Question: what about other operators on Nat, e.g., *, / ?

Completeness of Approximation(skip)

Given $\mathrm{C}<\alpha, \gamma>\mathrm{A}$, and function $\mathrm{f}: \mathrm{C}->\mathrm{C}$,

- Function f \#: $\mathrm{A}->\mathrm{A}$ is sound with respect to f iff
- For all $c \in C, \alpha(f(c)) \leq f \#(\alpha(c))$
- For all $\mathrm{a} \in \mathrm{A}, \mathrm{f}(\gamma(\mathrm{a})) \leq \gamma(\mathrm{f} \mathrm{\#}(\mathrm{a}))$
- Function f \#: $\mathrm{A}->\mathrm{A}$ is forwards (γ) complete with respect to f iff
- For all $a \in A, f(\gamma(a))=\gamma(f \#(a))$
- That is, $\gamma(A)$ is closed under $f: f(\gamma(A)) \subseteq \gamma(A)$
- Function f \#: $\mathrm{A}->\mathrm{A}$ is backwards(α) complete with respect to f iff
- For all $c \in C, \alpha(f(c))=f \#(\alpha(c))$
- That is, α partitions C into equivalence classes: $\alpha(c)=\alpha\left(c^{\prime}\right)$ implies $\alpha(f(c))=\alpha\left(f\left(c^{\prime}\right)\right)$
- For an f \# to be (forwards or backwards) complete, it must equal $\mathrm{f} \# \mathrm{best}=\alpha(\mathrm{f}(\gamma(\mathrm{a})))$
- The structure of $\mathrm{C}<\alpha, \gamma>\mathrm{A}$ and $\mathrm{f}: \mathrm{C}->\mathrm{C}$ determines whether $\mathrm{f} \#$ is complete.

Transfer Functions and

Computation steps

- Each program transition from program point pi to pj has an associated transfer function, fij:C->C (or f\#ij:A-> A), which describes the associated computation.
- This defines a computation step of the form, (pi,s) -> (pj,fij(s))
- Example:
- Assignment $p 0: x=x+1 ; p 1: \cdots$ has the transfer function f01(<...x:n...>) $=<\ldots x: n+1 \ldots>$
- For multiple transitions in conditionals, attach a transfer function to each possible transition (branch) to "filter" the data that arrives at a program point.
e.g. $p 0$: cases $x \leq y$: $p 1: y=y-x$;
$y \leq x: p 2: x=x-y$; end
- $\mathrm{fp} 1(\mathrm{~s})=$ if $\mathrm{s}[\mathrm{x}] \leq \mathrm{s}[y]$ then s else bot; (filter out s unless $\mathrm{s}[\mathrm{x}] \leq \mathrm{s}[y]$)
$\square \mathrm{fp2}(\mathrm{~s})=$ if $\mathrm{s}[\mathrm{y}] \leq \mathrm{s}[\mathrm{x}]$ then s else bot; (filter out s unless $s[y] \leq \mathrm{s}[\mathrm{x}]$)

Execution Traces

- An execution trace is a (possibly infinite) sequence, ($\mathrm{p} 0, \mathrm{~s} 0$) $->(\mathrm{p} 1, \mathrm{~s} 1)->\cdots->(\mathrm{pj}, \mathrm{sj})->\cdots$, s.t.
- for all $i \geq 0$: (pi,si) $->$ psucc(i),fi,succ(i)(si)

Two concrete traces

- No si equals bot
((pi,v) means (pi,x=v)):
P0: while (x != 1) \{
P1: if Even(x)
P2: $\quad x=x$ div2;
P3: else

$$
x=3^{*} x+1 ;
$$

\}
P5: exit;

$\mathrm{p} 0,4$	$\mathrm{p} 0,6$
$\mathrm{p} 1,4$	$\mathrm{p} 1,6$
$\mathrm{p} 2,4$	$\mathrm{p} 2,6$
$\mathrm{p0}, 2$	$\mathrm{p}, 3$
$\mathrm{p} 1,2$	$\mathrm{p} 1,3$
$\mathrm{p} 2,2$	$\mathrm{p} 2,3$
$\mathrm{p} 0,1$	$\mathrm{p} 0,10$
$\mathrm{p} 4,1$	$\mathrm{p} 4,1$

Using Approximation to build abstract traces

Abstract over approximating trace:

1. Each concrete transition is generated by an fij;
2. Each abstract transition is generated by the corresponding f\#ij.

- Each concrete transition, (pi,s)-> (pj,fij(s)), is reproduced by a corresponding abstract transition, (pi,a)->(pj,f\#ij(a)), where $s \in \gamma(a)$
- The traces embedded in the abstract trace tree "cover" (simulate) the concrete traces

Shape Analysis

\square Goal

- To obtain a finite representation of the memory storage
\square The analysis result can be used for
- Detection of pointer aliasing
- Detection of sharing between structures
- Software development tools
\square Detection of pointer errors, e.g. dereferences of nil-pointers
- Program verification
\square E.g.,reverse transforms a non-cyclic list to a non-cyclic list

The Concrete Solution Space

- Model the memory (stack and heap)
- Storage of local variables Stack = Var -> (Value \cup Loc)
Map each local variable into a value or a unique location
- The heap storage

$$
\text { Heap }=(\text { Loc * Sel) }->\text { (Value } \cup \text { Loc })
$$

Map pairs of locations and selectors to values or locations

- Model the operational semantics of programs
- Program state: State = ProgramPoint * Stack * Heap

Example: (p1, (x:3,y:Ly), ((Ly,val):5)) is a program state

- Each statement modifies Stack and Heap of the previous state
\square Stmt: State -> State

Building Abstract Domains

- Given an unordered set, D, of concrete data values, we might ask,
- "What are the properties about D that I wish to calculate?
- Can I relate these properties $\mathrm{a} \in \mathrm{A}$, to elements $\mathrm{d} \in \mathrm{D}$ via a UG-closed binary relation, R: D*A?
- Given a set, A, and a binary relation, R: D * A
- Define γ : A->Power(D) as $\gamma(\mathrm{a})=\{\mathrm{d} \in \mathrm{D} \mid \mathrm{d} \mathrm{R}$ a\}
- Define partial ordering on A : $a \leq a^{\prime}$ iff $\gamma(a) \leq \gamma\left(a^{\prime}\right)$
- If there are distinct a and a^{\prime} such that $\gamma(a)=\gamma\left(a^{\prime}\right)$, then merge them to force \mathbf{U} closure
- Ensure that $\gamma(\mathrm{A})$ is a Moore family by adding greatest-lower-bound elements to A as needed.
- This forces G-closure
- Use the existing machinery to define the Galois connection between Power(D) and A

Abstracting the Program State

- Build a binary relation, Rd: Data*AbsData
- Rv: Value -> AbsValue ; RI: Loc -> AbsLoc
- May ignore the values of non-pointer variables.
- Build induced Galois connection, Power(Data) $<\alpha, \gamma>A b s D a t a$, we can
- Build Galois connections that abstract the concrete data
<xi : vi> Rs <xi : ai> iff vi Rd ai
Example: <x:3, y:4> Rs <x:any, y:any>
- A program point is abstracted to itself: p Rp p , the abstract domain of program points is ProgramPoint \cup \{top, bot\} (to make it a complete lattice)
- Finally, we can relate each concrete state to an abstract one: (p, s) Rs (p ', s^{\prime}) iff $p=p^{\prime}$ and s Rs s'

Shape Graphs

\square Shape analysis uses a shape graph to abstract the memory storage

- Graph nodes denote a finite number of abstract locations:
\square Aloc $=\{N x \mid N x$ is pointed to by a set of local variables $\} \cup N \phi$
- Nx : the node represents all concrete Locations referred to by variables in x
- $\mathrm{N} \phi$: abstract summary location (all the other locations)
\square Each graph node abstracts a distinctive set of concrete Locations
- If variables x and y may be aliased, they must share a single graph node
- A graph edge sel connect nodes n1 and n2 if n2 is pointed to by n1.sel

$\mathbf{y} \longrightarrow \mathrm{N}\{\mathrm{y}\} \longrightarrow \underset{\text { next }}{ } \rightarrow \mathbf{n e x t}$

Abstraction of Program States

- Abstraction of memory storage
- Abstract Stack

AbsStack = Var -> ALoc
Map each pointer variable into a unique abstract location (a shape graph node)

- Abstract heap
AbsHeap = (ALoc * Sel) -> (ALoc)

Mapping pairs of abs locations and selectors to abs locations

- Sharing information
- IS : ALoc -> \{ yes, no\}

For each abstract location in the shape graph, is it shared by pointers in the heap?

- If IS(Nx) = yes, then $N x$ must have an incoming edge from $N \phi$ or have more than one incoming edges
- Transfer functions: $\mathrm{P}($ AbsState $)->P($ AbsState $)$
- Program state: AbsState=ProgramPoint * AbsStack * AbsHeap * IS
- Each statement modifies mappings in the previous state

Transfer functions(1)

ㅁ $\mathrm{X}=\mathrm{nil}$

- $\mathrm{F}(\mathrm{S}, \mathrm{H}, \mathrm{IS})=\left(\mathrm{S}^{\prime}, \mathrm{H}^{\prime}, \mathrm{IS}\right)$ where $\left(\mathrm{S}^{\prime}, \mathrm{H}^{\prime}, \mathrm{IS}\right)$ is obtained from ($\mathrm{S}, \mathrm{H}, \mathrm{IS}$) by
\square Removing x from all mappings (killing all previous info. about x)
- Merging all $\mathbf{N} \phi$ nodes

Transfer functions(2)

ㅁ X = Y

- F (S,H,IS) = (S', H',IS') where
$\square\left(\mathrm{S}^{\prime}, \mathrm{H}^{\prime}, \mathrm{IS}\right)$ is obtained by modifying mappings for x to be identical to those for y

Transfer functions(3)

■ X = y.sel

- Remove the old binding for x
- Establish a new binding for x to be the same as y.sel
\square If there is no abstract location defined for y
- Error: dereference a null pointer
- If there is an abstract location Ny s.t. $\mathrm{S}[\mathrm{y}]=\mathrm{Ny}$, but there is no abstract location for (Ny,sel)
- Error dereference a non-existing field
- If there exist abstract locations Ny and Nz s.t. $\mathrm{S}[\mathrm{y}]=\mathrm{Ny}$ and $\mathrm{H}[\mathrm{Ny}$, sel $]=\mathrm{Nz}$.
- Modify the mappings so that x points to Nz
- If $N z=N \phi$, create a new node $N\{x\}$ for x--- may need to create multiple shape graphs to cover different cases
- Other transfer functions
- E.g. x.sel = y; x.sel = nil; allocate(x);

