
cs6463 1

Interprocedural Analysis
and Abstract
Interpretation

cs6463 2

Outline
 Interprocedural analysis

 control-flow graph
 MVP: “Meet” over Valid Paths
 Making context explicit

 Context based on call-strings
 Context based on assumption sets

 Abstract interpretation

cs6463 3

Control-flow graph for a whole
program
 At each function definition proc p(x)

 Create two special CFG nodes:
 init(p) and final(p)

 Build CFG for the function body
 Use init(p) as the function entry node
 Connect every return node to final(p)

 At each function call to p(x) with
 Split the original function call into two stmts

 Enter p(x) (before making the call) and exit p(x) (after the call exits)

 Connect enter p(x) ->init(p), final(p) -> exit p(x)
 Connect enter p(x) -> exit p(x) to allow the flow of extra context info

 Three kinds of CFG edges
 Intra-procedural: internal control-flow within a procedure
 Procedure calls: from enter p(x) to init(p)
 Procedure returns: from final(p) to exit p(x)

cs6463 4

Interprocedural CFG Example

 Problem: matching between function calls and
returns

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 5

Extending monotone frameworks
 Monotone frameworks consists of

 A complete lattice (L,≤) that satisfies the Ascending Chain
Condition

 A set F of monotone transfer functions from L to L that
 contains the identity function and
 is closed under function composition

 Transfer functions for procedure definitions
 For simplicity, both init(p) and final(p) have identity transfer

functions
 Transfer functions for procedure calls

 For procedure entry: assign values to formal parameters
 For procedure exit: assign return values to outside

cs6463 6

Problem: calling context upon return

 Matching between function calls and returns
 Calculating solutions on non-existing paths could seriously

detriment precision
 E.g. enter fib(z-2) -> init(fib) -> … -> exit fib(z-1) -> …

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 7

MVP: “Meet” over Valid Paths
 Problem: matching procedure entries and exits

(function calls and returns)
 A complete path must

 Have proper nesting of procedure entries and exits
 A procedure always return to the point immediately after

it is called

 A valid path must
 Start at the entry node of the main program
 All the procedure exits match the corresponding entries
 Some procedures may be entered but not yet exited

 The MVP solution
 At each program point t, the solution for t is

 MVP(t) = Λ { sol(p) : p is a valid path to t }

cs6463 8

Making Context Explicit
 Context sensitive analysis

 Maintain separate solutions for different callers of a
function

 Extending the monotone framework
 Starting point (context-insensitive)

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 L = Power(D) where D is the domain of each solution

 A set F of monotone transfer functions from L to L
 Extension

 L = Power(D * C), where C includes all calling contexts
 F = L -> L, a separate sub-solution is calculated for each

calling context
 F (procedure entry) : attach caller info. to incoming solution
 F (procedure exit): match caller info, eliminate solution for

invalid paths

cs6463 9

Different Kinds of Context
 Call strings --- contexts based on control flow

 Remember a list of procedure calls leading to the current
program point

 Call strings of unbounded length --- remember all the
preceding calls

 Call strings of bounded length (k) --- remember only the
last k calls

 Assumption sets --- contexts based on data flow
 Assumption sets

 Use the solution before entering proc p(x) as calling
context (e.g., each context makes distinct presumptions
about values of function parameters)

 Large vs. small assumption sets
 How large is the context: use the entire solution or pick a

single constraint from the solution

cs6463 10

Example Context-sensitive Analysis

 Range analysis: for each variable reference x, is its value
>= or <= a constant value? (i.e, x >= x1; z<=n2)?

int fib(int z) {
 if (z < 3) then return 1;
 else return fib(z-1) + fib(z-2);
}
Main program: return fib(15);

B0: init(fib)

B6: final(fib)

B1: if (z < 3)

B5: return 1

B2: enter fib(z-1)

B3:t1=exit fib(z-1)
 enter fib(z-2)

B4:t2=exit fib(z-2)
 return t1+t2;

A0:enter fib(15)

A1: t = exit fib(15)

cs6463 11

Example Range Analysis

(none,t=?)

(A0,z=15,fib=?)(B2/
B3,z=any,fib=1)

(B2/B3,z<=2)

(A0,z=15,t1/t2=?)(B
2/B3,z>=3,t1/t2=?)

(A0,z=15,t1=?)
(B2/B3,z>=3,t1=?)

(A0,z=15) (B2/B3,
z>=3)

(A0,z=15) (B2/B3,
z=?)

(A0,z=15) (B2/B3,
z=?)

(none)

(none,t>=1)(none,t >=1)(none,t=?)A1

(A0,z=15,fib>=1)(B2/
B3,z=any,fib>=1)

(A0,z=15,fib>=1)(B2
/B3,z=any,fib>=1)

(none,z/fib
=?)

B6

(B2,z=2) (B3,z<=2)(B2,z=2) (B3,z<=2)(none,
z=?)

B5

(A0,z=15,t1/t2>=1)(B
2/B3,z>=3,t1/t2>=1)

(A0,z=15,t1/t2=1)(B
2/B3,z>=3,t1/t2=1)

(none,
z/t1/t2=?)

B4

(A0,z=15,t1>=1)
(B2/B3,z>=3,t1>=1)

(A0,z=15,t1=1)
(B2/B3,z>=3,t1=1)

(none,
z/t1=?)

B3

(A0,z=15)(B2/B3,z>=
3)

(A0,z=15)(B2/B3,z>
=3)

(none,
z=?)

B2

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(none,
z=?)

B1

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(A0,z=15)(B2,z>=2)
(B3,z>=1)

(none,
z=?)

B0

(none)(none)(none)A0

Variables: x,z, t1, t2, fib, t; Contexts: A0, B2, B3,none;
Domain: Variables * (<=n, =n, >=n,?,any)

cs6463 12

Foundations of Abstract
Interpretation
 Definition from Wikipedia

 abstract interpretation is a theory of sound approximation of
the semantics of computer programs. It can be viewed as a
partial execution of a computer program without performing
all the calculations.

 Outline
 Monotone frameworks

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 A set F of monotone transfer functions from L to L that

 contains the identity function and
 is closed under function composition

 Galois connections, closures,and Moore families
 Soundness and completeness of operations on abstract data
 Soundness and completeness of execution trace computation

cs6463 13

Galois Connections
 Two complete lattices

 C: the “concrete” (execution) data
 The execution of the entire program
 Infinite and impossible to model precisely

 A: the “abstract” (execution) data
 Properties (abstractions) of the “concrete” data
 The solution space (domain) of static program analysis

 For complete lattices C and A, a Galois connection is
 A pair of monotonic functions, α : C->A, γ : A -> C
 For all a ∈ A and c ∈ C: c ≤ γ (α(c)) and α(γ (a)) ≤ a
 Is Written as C<α,γ>A

C A

cs6463 14

Galois Connections (2)
 γ and α are inverse maps of each

other’s image
 For all c∈γ(A),c=γ(α(c)); for all

a∈α(C),a=α(γ(a))
 The maps α are

“homomorphism” mappings
between C and A

 Galois connections are closed
under
 Composition, product, and so

on
 Each instruction performs an

action f: C->C
 Can use α and γ to define an

abstract transfer function f#:
A->A for each f: C->C

{1}

{1,3,5,7…}

{1,3,5}

{}

{2,4}
{1,2,3}

{1,2,3,4,…}

oddeven

none

all

α

γ

cs6463 15

Closure Maps
 For C<α,γ>A, it is common that

A ⊆ C. This means A embeds
into C as a sub-lattice
 A’s elements name

distinguished sets in C
 A closure map defines the

embedding of A within C.
 Definition: ρ:C->C is a closure

map if it is
 Monotonic: ∀ c1,c2 ∈ C, c1 ≤

c2 => ρ(c1) ≤ ρ(c2);
 extensive: ∀ c ∈ C, c ≤ ρ(c);
 idempotent: ∀ c ∈ C, ρ(ρ(c))=

ρ(c) (i.e. ρ * ρ = ρ)

{1}

{1,3,5,7…}

{1,3,5}

{}

{2,4}
{1,2,3}

{1,2,3,4,…}

oddeven

none

allα

γ

1) Every Galois connection,
C<α,γ>A defines a closure
map α • γ;

2) Every closure map, ρ:C-
>C,defines the Galois
connection, C<ρ,id>ρ(C).

cs6463 16

Moore Families
 Given C, can we define a closure map on it by choosing some

elements of C?
 Yes, if the elements we select are closed under greatest-lower-bounds

(meet) operation
 That is, the new set of elements forms a complete lattice

 Definition: M ⊆ C is a Moore family iff for all S ⊆ M, (^S) ∈ M.
 We can define a closure map as ρ(c)=^{c’ ∈ M | c ≤ c’}.
 That is, we map each element in C to the closest abstraction

(approximation) in M
 For each closure map, ρ:C->C, its image, ρ(C), is a Moore family.

Given C, we can define an abstract interpretation by selecting some M
⊆ C that is a Moore family

cs6463 17

Closed Binary Relations
 Often the solution of an analysis is a power set of its domain

 The Galois connection can be written as Power(D)<α,γ>A
 Given unordered set D and complete lattice A, it is natural to relate

the elements in D to those in A by a binary relation, R ⊆ D * A, s.t.
 (d,a) ∈ R (or d R a, d |=R a) means “d has property a”.
 Example: D=Int, A={none,neg,pos,zero,nonneg,nonpos,any}.

 Then 2 R nonneg, 2 R pos, and 2 R any.
 The adjoint function, γ : A->Power(D),can be defined as

 γ(a) = {d ∈ D | d R a}. E.g., γ (nonneg)={0,1,2,...}.
 If R defines a Galois collection, then γ(A) defines a Moore family.

 Proposition: R⊆D*A defines a Galois connection between
(Power(D), A) iff
 R is U-closed: c R a and a ≤ a’ imply c R a’;
 R is G-closed: c R ^ {a | c R a }

cs6463 18

Concrete and Abstract Operations
 Now that we know how to model a solution space via

abstraction function α : C -> A,
 We must model concrete computation steps, f:C->C, by abstract

computation steps, f#:A -> A.
 Example: we have concrete domain, Nat, and concrete

operation, succ: Nat -> Nat, defined as succ(n)=n+1.
 abstract domain, Parity = {any, even, odd, none}.
 abstract operation, succ#:Parity -> Parity, defined as

 succ#(even)=odd, succ#(odd)=even, succ#(any)=any,
succ#(none)=none,

 succ# must be consistent (sound) with respect to succ:
 if n Rn a, then succ(n) Rn succ#(a),
 where Rn ⊆ Nat * Parity relates numbers to their parities (e.g., 2 Rn

even, 5 Rn odd, etc.).

cs6463 19

Sound Approximation
 Given

 Galois connection C<α,γ>A and
 functions f : C->C and f#:A-> A,

 f# is a sound approximation of f iff
 For all c ∈ C, α(f(c)) ≤ f#(α(c))
 For all a ∈ A, f(γ(a)) ≤ γ(f#(a))

 That is, α defines a “semi-homomorphism” with respect
to f and f#

c α(c)

f(c) α(f(c)) ≤ f#(α(c))

α

α
f f#

cs6463 20

Sound Approximation Example
 Given

 Galois connection Power(Nat)<α,γ>Parity and
 Concrete transfer function succ : Nat->Nat, succ(S) = { n + 1 | n ∈ S }
 Abstract transfer function succ#: Parity -> Parity,
 succ#(even)=odd, succ#(odd)=even
 succ#(any)=any, succ#(none)=none

 succ# is a sound approximation of succ
 For all c ∈ Nat, α(succ(c)) = succ#(α(c))

{2,6} even

{3,7} odd

α

α
succ succ#

cs6463 21

Synthesizing f# from f
 Given C<α,γ>A, and function f : C->C, the most precise

f#:A->A that is sound with respect to f is
 f# best (a) = α (f (γ (a)))

 Proposition: f# is sound with respect to f iff
 For all a ∈ A, f# best(a) ≤ f#(a)
 Of course, f#best has a mathematical definition—not an

algorithmic one—f#best might not be finitely computable!
 Parity example continued:

 succ#best(even)= α (succ (γ (even))) = α (succ {2n | n≥0 })) = α
({2n+1 | n≥0}) = odd

 Question: what about other operators on Nat, e.g., *, / ?

cs6463 22

Completeness of Approximation(skip)
Given C<α,γ>A, and function f : C->C,
 Function f#: A->A is sound with respect to f iff

 For all c ∈ C, α (f (c)) ≤ f# (α(c))
 For all a ∈ A, f(γ(a)) ≤ γ(f#(a))

 Function f#: A->A is forwards(γ) complete with respect to f iff
 For all a ∈ A, f(γ(a)) = γ(f#(a))
 That is, γ(A) is closed under f : f(γ(A))⊆ γ(A)

 Function f#: A->A is backwards(α) complete with respect to f iff
 For all c ∈ C, α (f (c)) = f# (α(c))
 That is, α partitions C into equivalence classes: α(c)= α(c’) implies
α(f(c))=α(f(c’))

 For an f# to be (forwards or backwards) complete, it must equal
f#best=α (f (γ (a)))
 The structure of C<α,γ>A and f: C->C determines whether f# is complete.

cs6463 23

Transfer Functions and
Computation steps
 Each program transition from program point pi to pj has

an associated transfer function, fij:C->C (or f#ij:A-> A),
which describes the associated computation.
 This defines a computation step of the form, (pi,s) -> (pj,fij(s))

 Example:
 Assignment p0:x=x+1;p1:··· has the transfer function
 f01(<…x:n…>) = <…x:n+1…>
 For multiple transitions in conditionals, attach a transfer function

to each possible transition (branch) to “filter” the data that arrives
at a program point.

 e.g. p0: cases x≤y: p1:y=y-x;
 y≤x: p2:x=x-y; end

 fp1(s) = if s[x] ≤ s[y] then s else bot; (filter out s unless s[x] ≤ s[y])
 fp2(s) = if s[y] ≤ s[x] then s else bot; (filter out s unless s[y] ≤ s[x])

cs6463 24

Execution Traces
 An execution trace is a (possibly infinite) sequence,

(p0,s0)->(p1,s1)->···->(pj,sj)-> ···,s.t.
 for all i≥0: (pi,si) -> psucc(i),fi,succ(i)(si)
 No si equals bot

P0: while (x != 1) {
P1: if Even(x)
P2: x = x div2;
P3: else
 x = 3*x + 1;
}
P5: exit;

Two concrete traces
((pi,v) means (pi,x=v)):

p0,4
p1,4
p2,4
p0,2
p1,2
p2,2
p0,1
p4,1

p0,6
p1,6
p2,6
p0,3
p1,3
p2,3
p0,10
p4,1
···

cs6463 25

Using Approximation to build
abstract traces

 Each concrete transition, (pi,s)-> (pj,fij(s)), is reproduced by a
corresponding abstract transition, (pi,a)->(pj,f#ij(a)), where s∈ γ(a)

 The traces embedded in the abstract trace tree “cover” (simulate)
the concrete traces

1. Each concrete
transition is generated
by an fij;

2. Each abstract transition
is generated by the
corresponding f#ij.

Abstract over approximating trace:
p0,even
p1,even

p4,odd
p1,any

p3,odd

p2,even
p0,any

cs6463 26

Shape Analysis
 Goal

 To obtain a finite representation of the memory
storage

 The analysis result can be used for
 Detection of pointer aliasing
 Detection of sharing between structures
 Software development tools

 Detection of pointer errors, e.g. dereferences of nil-pointers
 Program verification

 E.g.,reverse transforms a non-cyclic list to a non-cyclic list

cs6463 27

The Concrete Solution Space
 Model the memory (stack and heap)

 Storage of local variables
 Stack = Var -> (Value ∪ Loc)

 Map each local variable into a value or a unique location
 The heap storage

 Heap = (Loc * Sel) -> (Value ∪ Loc)
Map pairs of locations and selectors to values or locations

 Model the operational semantics of programs
 Program state: State = ProgramPoint * Stack * Heap
 Example: (p1, (x:3,y:Ly), ((Ly,val):5)) is a program state
 Each statement modifies Stack and Heap of the previous state

 Stmt: State -> State

cs6463 28

Building Abstract Domains
 Given an unordered set, D, of concrete data values, we might ask,

 “What are the properties about D that I wish to calculate?
 Can I relate these properties a ∈ A, to elements d ∈ D via a UG-closed

binary relation, R: D*A?
 Given a set, A, and a binary relation, R: D * A

 Define γ: A->Power(D) as γ(a) = {d ∈ D | d R a}
 Define partial ordering on A: a ≤ a’ iff γ(a) ≤ γ(a’)

 If there are distinct a and a’ such that γ(a)=γ(a’), then merge them to force U-
closure

 Ensure that γ(A) is a Moore family by adding greatest-lower-bound
elements to A as needed.

 This forces G-closure
 Use the existing machinery to define the Galois connection between

Power(D) and A

cs6463 29

Abstracting the Program State
 Build a binary relation, Rd: Data*AbsData

 Rv: Value -> AbsValue ; Rl: Loc -> AbsLoc
 May ignore the values of non-pointer variables.

 Build induced Galois connection, Power(Data)<α,γ>AbsData, we can
 Build Galois connections that abstract the concrete data
 <xi : vi> Rs <xi : ai> iff vi Rd ai
 Example: <x:3, y:4> Rs <x:any, y:any>
 A program point is abstracted to itself: p Rp p,
 the abstract domain of program points is ProgramPoint ∪ {top, bot} (to

make it a complete lattice)
 Finally, we can relate each concrete state to an abstract one:
 (p,s) Rs (p’,s’) iff p = p’ and s Rs s’

cs6463 30

Shape Graphs
 Shape analysis uses a shape graph to abstract the

memory storage
 Graph nodes denote a finite number of abstract locations:

 Aloc = {Nx | Nx is pointed to by a set of local variables} ∪ Nφ
 Nx : the node represents all concrete Locations referred to by variables

in x
 Nφ : abstract summary location (all the other locations)

 Each graph node abstracts a distinctive set of concrete Locations
 If variables x and y may be aliased, they must share a single graph

node
 A graph edge sel connect nodes n1 and n2 if n2 is pointed to by

n1.sel

N{x}

N{y}

N{z}

Nφ

x

y
znext

next next

cs6463 31

Abstraction of Program States
 Abstraction of memory storage

 Abstract Stack
 AbsStack = Var -> ALoc

 Map each pointer variable into a unique abstract location (a shape graph node)
 Abstract heap

 AbsHeap = (ALoc * Sel) -> (ALoc)
Mapping pairs of abs locations and selectors to abs locations

 Sharing information
 IS : ALoc -> { yes, no}
 For each abstract location in the shape graph, is it shared by pointers in the

heap?
 If IS(Nx) = yes, then Nx must have an incoming edge from Nφ or have more

than one incoming edges
 Transfer functions: P(AbsState) -> P(AbsState)

 Program state: AbsState=ProgramPoint * AbsStack * AbsHeap * IS
 Each statement modifies mappings in the previous state

cs6463 32

Transfer functions(1)
 x = nil

 F (S,H,IS) = (S’,H’,IS’) where (S’,H’,IS’) is obtained from (S,H,IS) by
 Removing x from all mappings (killing all previous info. about x)

 Merging all Nφ nodes

Nv

N{x} Nwx

sel1

sel2

Nφ Nv

Nw

sel1

sel2

Nφ

(S,H,IS) (S’,H’,IS’)

cs6463 33

Transfer functions(2)
 x = y

 F (S,H,IS) = (S’,H’,IS’) where
 (S’,H’,IS’) is obtained by modifying mappings for x to be

identical to those for y

Nv

N{y,..} Nwy

sel1

sel2

N{x,…}

(S,H,IS) (S’,H’,IS’)

x
Nv

N{x,y,.
}

Nwy

sel1

sel2

N{…}
x

cs6463 34

Transfer functions(3)
 x = y.sel

 Remove the old binding for x
 Establish a new binding for x to be the same as y.sel

 If there is no abstract location defined for y
 Error: dereference a null pointer

 If there is an abstract location Ny s.t. S[y] = Ny, but there is no
abstract location for (Ny,sel)

 Error dereference a non-existing field
 If there exist abstract locations Ny and Nz s.t. S[y] = Ny and

H[Ny,sel] = Nz.
 Modify the mappings so that x points to Nz
 If Nz = Nφ, create a new node N{x} for x --- may need to create

multiple shape graphs to cover different cases
 Other transfer functions

 E.g. x.sel = y; x.sel = nil; allocate(x);

