Interprocedural Analysis and Abstract Interpretation

Outline

Interprocedural analysis

- control-flow graph
- MVP: "Meet" over Valid Paths
- Making context explicit
 Context based on call-strings
 Context based on assumption sets
- Abstract interpretation

Control-flow graph for a whole

program

At each function definition proc p(x)

- Create two special CFG nodes:
 - init(p) and final(p)
- Build CFG for the function body
 - Use init(p) as the function entry node
 - Connect every return node to final(p)
- At each function call to p(x) with
 - Split the original function call into two stmts
 - Enter p(x) (before making the call) and exit p(x) (after the call exits)
 - Connect enter p(x) ->init(p), final(p) -> exit p(x)
 - Connect enter p(x) -> exit p(x) to allow the flow of extra context info
- Three kinds of CFG edges
 - Intra-procedural: internal control-flow within a procedure
 - Procedure calls: from enter p(x) to init(p)
 - Procedure returns: from final(p) to exit p(x)

Interprocedural CFG Example

Problem: matching between function calls and returns

Extending monotone frameworks

Monotone frameworks consists of

- A complete lattice (L,≤) that satisfies the Ascending Chain Condition
- A set F of monotone transfer functions from L to L that
 - contains the identity function and
 - □ is closed under function composition
- Transfer functions for procedure definitions
 - For simplicity, both init(p) and final(p) have identity transfer functions
- Transfer functions for procedure calls
 - For procedure entry: assign values to formal parameters
 - For procedure exit: assign return values to outside

Problem: calling context upon return

- Matching between function calls and returns
 - Calculating solutions on non-existing paths could seriously detriment precision
 - □ E.g. enter fib(z-2) -> init(fib) -> ... -> exit fib(z-1) -> ...

MVP: "Meet" over Valid Paths

- Problem: matching procedure entries and exits (function calls and returns)
- A complete path must
 - Have proper nesting of procedure entries and exits
 - A procedure always return to the point immediately after it is called
- A valid path must
 - Start at the entry node of the main program
 - All the procedure exits match the corresponding entries
 - Some procedures may be entered but not yet exited
- The MVP solution
 - At each program point t, the solution for t is
 MVP(t) = Λ { sol(p) : p is a valid path to t }

Making Context Explicit

Context sensitive analysis

 Maintain separate solutions for different callers of a function

Extending the monotone framework

- Starting point (context-insensitive)
 - □ A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
 - L = Power(D) where D is the domain of each solution

A set F of monotone transfer functions from L to L

- Extension
 - L = Power(D * C), where C includes all calling contexts
 - F = L -> L, a separate sub-solution is calculated for each calling context
 - F (procedure entry) : attach caller info. to incoming solution
 - F (procedure exit): match caller info, eliminate solution for invalid paths

Different Kinds of Context

Call strings --- contexts based on control flow

- Remember a list of procedure calls leading to the current program point
 - Call strings of unbounded length --- remember all the preceding calls
 - Call strings of bounded length (k) --- remember only the last k calls
- Assumption sets --- contexts based on data flow
 - Assumption sets
 - Use the solution before entering proc p(x) as calling context (e.g., each context makes distinct presumptions about values of function parameters)
 - Large vs. small assumption sets
 - How large is the context: use the entire solution or pick a single constraint from the solution

Example Context-sensitive Analysis

Range analysis: for each variable reference x, is its value >= or <= a constant value? (i.e, x >= x1; z<=n2)?</p>

Example Range Analysis

Variables: x,z, t1, t2, fib, t; Contexts: A0, B2, B3,none; Domain: Variables * (<=n, =n, >=n,?,any)

A0	(none)	(none)	(none)	(none)
B0	(none,	(A0,z=15) (B2/B3,	(A0,z=15)(B2,z>=2)	(A0,z=15)(B2,z>=2)
	z=?)	z=?)	(B3,z>=1)	(B3,z>=1)
B1	(none,	(A0,z=15) (B2/B3,	(A0,z=15)(B2,z>=2)	(A0,z=15)(B2,z>=2)
	z=?)	z=?)	(B3,z>=1)	(B3,z>=1)
B2	(none,	(A0,z=15) (B2/B3,	(A0,z=15)(B2/B3,z>	(A0,z=15)(B2/B3,z>=
	z=?)	z>=3)	=3)	3)
B3	(none,	(A0,z=15,t1=?)	(A0,z=15,t1=1)	(A0,z=15,t1>=1)
	z/t1=?)	(B2/B3,z>=3,t1=?)	(B2/B3,z>=3,t1=1)	(B2/B3,z>=3,t1>=1)
B4	(none,	(A0,z=15,t1/t2=?)(B	(A0,z=15,t1/t2=1)(B	(A0,z=15,t1/t2>=1)(B
	z/t1/t2=?)	2/B3,z>=3,t1/t2=?)	2/B3,z>=3,t1/t2=1)	2/B3,z>=3,t1/t2>=1)
B5	(none, z=?)	(B2/B3,z<=2)	(B2,z=2) (B3,z<=2)	(B2,z=2) (B3,z<=2)
B6	(none,z/fib	(A0,z=15,fib=?)(B2/	(A0,z=15,fib>=1)(B2	(A0,z=15,fib>=1)(B2/
	=?)	B3,z=any,fib=1)	/B3,z=any,fib>=1)	B3,z=any,fib>=1)
A1	(none,t=?)	(none,t=?)	(none,t >=1)	(none,t>=1)

Foundations of Abstract

Interpretation

Definition from Wikipedia

 abstract interpretation is a theory of sound approximation of the semantics of computer programs. It can be viewed as a partial execution of a computer program without performing all the calculations.

Outline

- Monotone frameworks
 - □ A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
 - A set F of monotone transfer functions from L to L that
 - contains the identity function and
 - is closed under function composition
- Galois connections, closures, and Moore families
- Soundness and completeness of operations on abstract data
- Soundness and completeness of execution trace computation

Galois Connections

- Two complete lattices
 - C: the "concrete" (execution) data
 - The execution of the entire program
 - Infinite and impossible to model precisely
 - A: the "abstract" (execution) data
 - Properties (abstractions) of the "concrete" data
 - The solution space (domain) of static program analysis
- **D** For complete lattices C and A, a Galois connection is
 - A pair of monotonic functions, α : C->A, γ : A -> C
 - For all $a \in A$ and $c \in C$: $c \leq \gamma (\alpha(c))$ and $\alpha(\gamma(a)) \leq a$
 - Is Written as C< α , γ >A

Galois Connections (2)

- $\label{eq:gamma} \begin{tabular}{ll} $\label{eq:gamma} $\label{e$
 - For all c∈γ(A),c=γ(α(c)); for all a∈α(C),a=α(γ(a))
 - The maps α are "homomorphism" mappings between C and A
- Galois connections are closed under
 - Composition, product, and so on
- Each instruction performs an action f: C->C
 - Can use α and γ to define an abstract transfer function f#: A->A for each f: C->C

Closure Maps

- For C< α,γ >A, it is common that A ⊆ C. This means A embeds into C as a sub-lattice
 - A's elements name distinguished sets in C
- A closure map defines the embedding of A within C.

Definition: ρ:C->C is a *closure map* if it is

- Monotonic: ∀ c1,c2 ∈ C, c1 ≤ c2 => ρ(c1) ≤ ρ(c2);
- extensive: $\forall c \in C, c \leq \rho(c);$
- *idempotent:* ∀ c ∈ C, ρ(ρ(c))=
 ρ(c) (i.e. ρ * ρ = ρ)

- Every Galois connection, C<α,γ>A defines a closure map α • γ;
- Every closure map, ρ:C->C,defines the Galois connection, C<ρ,id>ρ(C).

Moore Families

- Given C, can we define a closure map on it by choosing some elements of C?
 - Yes, if the elements we select are closed under greatest-lower-bounds (meet) operation
 - That is, the new set of elements forms a complete lattice
- **Definition:** $M \subseteq C$ is a *Moore family* iff for all $S \subseteq M$, (^S) $\in M$.
 - We can define a closure map as $\rho(c)=^{C} \in M \mid c \leq c^{2}$.
 - That is, we map each element in C to the closest abstraction (approximation) in M
- **D** For each closure map, ρ :C->C, its image, ρ (C), is a Moore family.

Given C, we can define an abstract interpretation by selecting some M \subseteq C that is a Moore family

Closed Binary Relations

- Often the solution of an analysis is a power set of its domain
 - The Galois connection can be written as $Power(D) < \alpha, \gamma > A$
- Given unordered set D and complete lattice A, it is natural to relate the elements in D to those in A by a binary relation, R ⊆ D * A, s.t.
 - **(d,a)** \in **R** (or **d R a**, **d I**=_{**R**} **a**) means "d has property **a**".
 - Example: D=Int, A={none,neg,pos,zero,nonneg,nonpos,any}.
 Then 2 R nonneg, 2 R pos, and 2 R any.
- **D** The adjoint function, γ : A->Power(D),can be defined as
 - $\gamma(a) = \{d \in D \mid d \in R \}$. E.g., γ (nonneg)= $\{0, 1, 2, ...\}$.
 - If R defines a Galois collection, then $\gamma(A)$ defines a Moore family.
- Proposition: R D*A defines a Galois connection between (Power(D), A) iff
 - R is *U-closed*: **c** R **a** and **a** ≤ **a**' imply **c** R **a**';
 - R is G-closed: c R ^ {a | c R a }

Concrete and Abstract Operations

- Now that we know how to model a solution space via abstraction function α : C -> A,
 - We must model concrete computation steps, f:C->C, by abstract computation steps, f#:A -> A.
- Example: we have concrete domain, Nat, and concrete operation, succ: Nat -> Nat, defined as succ(n)=n+1.
 - abstract domain, Parity = {any, even, odd, none}.
 - abstract operation, succ#:Parity -> Parity, defined as succ#(even)=odd, succ#(odd)=even, succ#(any)=any, succ#(none)=none,
 - succ# must be consistent (sound) with respect to succ:

if n Rn a, then succ(n) Rn succ#(a),

where Rn ⊆ Nat * Parity relates numbers to their parities (e.g., 2 Rn even, 5 Rn odd, etc.).

Sound Approximation

Given

Galois connection C<α,γ>A and

functions f : C->C and f#:A-> A,

f# is a sound approximation of f iff

- For all $c \in C$, $\alpha(f(c)) \leq f\#(\alpha(c))$
- For all $a \in A$, $f(\gamma(a)) \leq \gamma(f#(a))$

That is, α defines a "semi-homomorphism" with respect to f and f#

Sound Approximation Example

- Given
 - Galois connection Power(Nat)<α,γ>Parity and
 - Concrete transfer function succ : Nat->Nat, succ(S) = { n + 1 | n ∈ S }
 - Abstract transfer function succ#: Parity -> Parity, succ#(even)=odd, succ#(odd)=even succ#(any)=any, succ#(none)=none
- □ succ# is a *sound approximation* of succ
 - For all $c \in Nat$, $\alpha(succ(c)) = succ#(\alpha(c))$

Synthesizing f# from f

Given C<α,γ>A, and function f : C->C, the most precise f#:A->A that is sound with respect to f is

f# best (a) = α (f (γ (a)))

Proposition: f# is sound with respect to f iff

For all $a \in A$, f# best(a) $\leq f#(a)$

Of course, f#best has a mathematical definition—not an algorithmic one—f#best might not be finitely computable!

Parity example continued:

- succ#best(even)= α (succ (γ (even))) = α (succ {2n | n≥0 })) = α ({2n+1 | n≥0}) = odd
- Question: what about other operators on Nat, e.g., *, / ?

Completeness of Approximation(skip)

Given C< α , γ >A, and function f : C->C,

- □ Function f#: A->A is sound with respect to f iff
 - For all $c \in C$, α (f (c)) \leq f# (α (c))
 - For all $a \in A$, $f(\gamma(a)) \leq \gamma(f#(a))$
- Function f#: A->A is forwards(γ) complete with respect to f iff

For all $a \in A$, $f(\gamma(a)) = \gamma(f#(a))$

• That is, $\gamma(A)$ is closed under f : $f(\gamma(A)) \subseteq \gamma(A)$

□ Function f#: A->A is *backwards(\alpha) complete* with respect to f iff

- For all $c \in C$, α (f (c)) = f# (α (c))
- That is, α partitions C into equivalence classes: α(c)= α(c') implies α(f(c))=α(f(c'))
- For an f# to be (forwards or backwards) complete, it must equal f#best=α (f (γ (a)))
 - The structure of C< α , γ >A and f: C->C determines whether f# is complete.

Transfer Functions and

Computation steps

- Each program transition from program point pi to pj has an associated *transfer function*, fij:C->C (or f#ij:A-> A), which describes the associated computation.
 - This defines a computation step of the form, (pi,s) -> (pj,fij(s))

Example:

- Assignment p0:x=x+1;p1:... has the transfer function f01(<...x:n...>) = <...x:n+1...>
- For multiple transitions in conditionals, attach a transfer function to each possible transition (branch) to "filter" the data that arrives at a program point.

e.g. p0: cases x≤y: p1:y=y-x;

y≤x: p2:x=x-y; end

- □ fp1(s) = if $s[x] \le s[y]$ then s else bot; (filter out s unless $s[x] \le s[y]$)
- □ $fp2(s) = if s[y] \le s[x]$ then s else bot; (filter out s unless $s[y] \le s[x]$)

Execution Traces

An execution trace is a (possibly infinite) sequence, $(p0,s0) \rightarrow (p1,s1) \rightarrow \dots \rightarrow (pj,sj) \rightarrow \dots, s.t.$ for all $i \ge 0$: (pi,si) -> psucc(i),fi,succ(i)(si) Two concrete traces No si equals bot ((pi,v) means (pi,x=v)):p0,4 p0,6 P0: while (x != 1) { p1,4 p1,6 P1: if Even(x) p2,4 p2,6 $\mathbf{x} = \mathbf{x} \operatorname{div2};$ **P2**: p0,2 p0,3 P3: else p1,2 p1,3 $x = 3^*x + 1;$ p2,2 p2,3 p0,1 p0,10 P5: exit; p4,1

p4,1

. . .

Using Approximation to build abstract traces

Abstract over approximating trace:

- Each concrete transition is generated by an fij;
- 2. Each abstract transition is generated by the corresponding f#ij.

- Each concrete transition, (pi,s)-> (pj,fij(s)), is reproduced by a corresponding abstract transition, (pi,a)->(pj,f#ij(a)), where $s \in \gamma(a)$
- The traces embedded in the abstract trace tree "cover" (simulate) the concrete traces

Shape Analysis

Goal

To obtain a finite representation of the memory storage

The analysis result can be used for

- Detection of pointer aliasing
- Detection of sharing between structures
- Software development tools
 - Detection of pointer errors, e.g. dereferences of nil-pointers
- Program verification
 - E.g., reverse transforms a non-cyclic list to a non-cyclic list

The Concrete Solution Space

Model the memory (stack and heap)

Storage of local variables

Stack = Var -> (Value \cup Loc)

Map each local variable into a value or a unique location

The heap storage

Heap = (Loc * Sel) -> (Value \cup Loc)

Map pairs of locations and selectors to values or locations

- Model the operational semantics of programs
 - Program state: State = ProgramPoint * Stack * Heap Example: (p1, (x:3,y:Ly), ((Ly,val):5)) is a program state
 - Each statement modifies Stack and Heap of the previous state
 Stmt: State -> State

Building Abstract Domains

Given an unordered set, D, of concrete data values, we might ask,

- "What are the properties about D that I wish to calculate?"
- Can I relate these properties a ∈ A, to elements d ∈ D via a UG-closed binary relation, R: D*A?
- Given a set, A, and a binary relation, R: D * A
 - Define γ : A->Power(D) as $\gamma(a) = \{d \in D \mid d \in R \}$
 - Define partial ordering on A: $a \le a'$ iff $\gamma(a) \le \gamma(a')$
 - If there are distinct a and a' such that γ(a)=γ(a'), then merge them to force Uclosure
 - Ensure that γ(A) is a Moore family by adding greatest-lower-bound elements to A as needed.
 - This forces G-closure
 - Use the existing machinery to define the Galois connection between Power(D) and A

Abstracting the Program State

- Build a binary relation, Rd: Data*AbsData
 - Rv: Value -> AbsValue ; RI: Loc -> AbsLoc
 - May ignore the values of non-pointer variables.
- **D** Build induced Galois connection, Power(Data) $<\alpha,\gamma>$ AbsData, we can
 - Build Galois connections that abstract the concrete data
 <xi : vi> Rs <xi : ai> iff vi Rd ai

Example: <x:3, y:4> Rs <x:any, y:any>

- A program point is abstracted to itself: p Rp p, the abstract domain of program points is ProgramPoint ∪ {top, bot} (to make it a complete lattice)
- Finally, we can relate each concrete state to an abstract one:
 - (p,s) Rs (p',s') iff p = p' and s Rs s'

Shape Graphs

- Shape analysis uses a shape graph to abstract the memory storage
 - Graph nodes denote a finite number of abstract locations:
 - □ Aloc = {Nx | Nx is pointed to by a set of local variables} \cup N ϕ
 - Nx : the node represents all concrete Locations referred to by variables in x
 - $N\phi$: abstract summary location (all the other locations)
 - Each graph node abstracts a distinctive set of concrete Locations
 - If variables x and y may be aliased, they must share a single graph node
 - A graph edge sel connect nodes n1 and n2 if n2 is pointed to by n1.sel

Abstraction of Program States

Abstraction of memory storage

Abstract Stack

AbsStack = Var -> ALoc

Map each pointer variable into a unique abstract location (a shape graph node)

Abstract heap

 $AbsHeap = (ALoc * Sel) \rightarrow (ALoc)$

Mapping pairs of abs locations and selectors to abs locations

- Sharing information
 - □ IS : ALoc -> { yes, no}

For each abstract location in the shape graph, is it shared by pointers in the heap?

 If IS(Nx) = yes, then Nx must have an incoming edge from Nφ or have more than one incoming edges

Transfer functions: P(AbsState) -> P(AbsState)

- Program state: AbsState=ProgramPoint * AbsStack * AbsHeap * IS
- Each statement modifies mappings in the previous state

Transfer functions(1)

\square x = nil

- F (S,H,IS) = (S',H',IS') where (S',H',IS') is obtained from (S,H,IS) by
 - Removing x from all mappings (killing all previous info. about x)
 - $\hfill\square$ Merging all $N\varphi$ nodes

Transfer functions(2)

Transfer functions(3)

\square x = y.sel

- Remove the old binding for x
- Establish a new binding for x to be the same as y.sel
 - If there is no abstract location defined for y
 - Error: dereference a null pointer
 - If there is an abstract location Ny s.t. S[y] = Ny, but there is no abstract location for (Ny,sel)
 - Error dereference a non-existing field
 - If there exist abstract locations Ny and Nz s.t. S[y] = Ny and H[Ny,sel] = Nz.
 - Modify the mappings so that x points to Nz
- Other transfer functions
 - E.g. x.sel = y; x.sel = nil; allocate(x);