
cs6463 1

Principles of Program
Analysis

An overview of approaches

cs6463 2

The Nature of static analysis
--- approximation
 Static program analysis --- predict the dynamic behavior of

programs without running them
 Example: at each program execution step, what is the value of each

variable?
int x, y, z;
read(&x);
if (x>0) { y=x; z = 1}
else { y= - x; z = 2}

 The question cannot be answered precisely b/c the program input is
unknown

 We don’t know the value of x, and therefore cannot predict which branch will
be taken (whether the value of x is greater than 0)

 However, we can predict all the possible values for z and that y is >= 0 at the
end of code.

 Program analysis approach: tries to give approximate answers; tries to
prove properties of program entities (variables, functions, types)

cs6463 3

The Nature of Approximation
--- may and must analysis
 Since the behavior of programs cannot be predicted

precisely, there are two ways to approximate
 Over approximation: what may happen when all possible

inputs are considered?
 The answer is a superset of what happens at runtime

 Under approximation: what must always happen in spite of
different inputs?

 The answer is a subset of what happens at runtime

 What approximation to use depends on what the results will
be used for
 Should always err on the safe side

 Example: if we want to remove all useless evaluations in the
program, should we find evaluations that may or must be useless?

 The relation between may and must analysis
 Find all evaluations that are always useless (must analysis)
 <=> find all evaluations that may be useful (may analysis)

cs6463 4

The Precision of Approximation ---
How input sensitive is the analysis?
 Flow sensitivity: Is solution sensitive to the control flow within a

function?
 Flow-insensitive analysis

 Example: what variables may be accessed by a code?
 Solution: find all the variables that appear in the code

 Flow sensitive analysis
 Example: what values a variable may have at each program point
 A different solution must be found for each program point

 Context sensitivity: Is solution sensitive to the calling context of a
function?
 Context-insensitive: a single solution is computed for each function, no

matter who calls the function
 Context-sensitive: different solutions are computed for different chains

of callers
 Path sensitivity? Is solution sensitive to different execution paths of

a program?
 Path sensitive: different solutions are computed for different paths from

program entry to each statement

cs6463 5

Scopes of Program Analysis
 What code are examined to find the solution?

 Local analysis
 Operate on a straight-line sequence of statements (a basic block)
 Often used as basis for more advanced analysis approaches

 Regional analysis
 Operate on code with limited control flow, e.g., loops, conditionals
 Useful for special-purpose optimizations (e.g., loop optimizations)

 Global (intra-procedural) analysis
 Operate on a single procedure/subroutine/function
 Required by most flow-sensitive analysis problems

 Whole-program (inter-procedural) analysis
 Operate on an entire program (all sources must be available)
 Required by context and path sensitive analysis

cs6463 6

Common Approaches to
Program Analysis
 A family of techniques

 Data flow analysis: operate on control-flow graph
 Define a set of data to evaluate at entry and exit of each basic block
 evaluate the flow of data between pred/succ basic blocks

 Constraint based analysis
 For each program entity to be analyzed, define a set of constraints involving

information of interest
 Solve the constraint system via mathematical approaches

 Abstract interpretation
 Define a set of data to evaluate at each program point; Map each

statement/construct to a finite sequence of semantic actions
 Statically interpret each instruction in program execution order

 Type and effect systems
 Categorize different properties into a collection of types/groups
 Infer the type/group of each program entity from how it is used

 Techniques differ in algorithmic methods, semantic foundations,
language paradigms

cs6463 7

Example Dataflow Analysis
Reaching Definitions

 [y := x;]1
 [z := 1;]2
 while [y > 0]3 {
 [z := z * y;]4
 [y := y - 1;]5
 }
 [y = 0;]6

Example program with labels

[y := x;]1
[z := 1;]2

[y > 0]3

[z := z * y;]4
[y := y - 1;]5

[y = 0;]6

An assignment [x := a]i reaches j if there is an execution path from
entry to j where x was last assigned at i

Control-flow graph

B1

B2

B3

B4

cs6463 8

Reaching Definition Analysis
The best solution

{(x, ?), (y, ?), (z, ?)}

{(x, ?), (y, 1), (z, ?)}

{(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)}

{(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)}

{(x, ?), (y, 1), (y, 5), (z, 4)}

{(x, ?), (y, 5), (z, 4)}

{(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)}

{(x, ?), (y, 6), (z, 2), (z, 4)}

 [y := x;]1

 [z := 1;]2

 while [y > 0]3 {

 [z := z * y;]4

 [y := y - 1;]5

 }

 [y = 0;]6

cs6463 9

Solving the data-flow problem
Reaching definitions
 Domain of analysis

 The set of all definition points in a procedure/function
 A definition point d of variable v reaches CFG point p iff there is a path

from d to p along which v is not redefined
 At any CFG point p, what definition points can reach p?

 Reaching definition analysis can be used in
 Building dafa-flow graphs

 Provide info where each operand is defined
 SSA (static single assignment) construction

π A representation that encodes both control and data flow of a procdure

 For each basic block n, let
 DEDef(n)= definition points whose variables are not redefined in n
 DefKill(n)= definitions obscured by redefinition of the same name in n d

 Goal: evaluate all definition points that can reach entry of n
 RD(n)= ∪ (DEDef(m) ∪ (RD(m) - DefKill(m))
 m∈pred(n)

cs6463 10

Dataflow Analysis Algorithm
Computing Reaching Definitions
 For each basic block n, compute

 DEDef(n)= definition points whose variables are not redefined in n
 DefKill(n)= definitions obscured by redefinition of the same name in n d

for each basic block bi
 compute DEDef(bi) and DefKill(bi)
 RD(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = RD(bi)
 RD(bi)= ∪ (DEDef(m) ∪ (RD(m) - DefKill(m))

 m∈pred(bi)
 if (RD(bi) != old) changed := true

Goal: evaluate all definition points that can reach entry of n

 RD(n)= ∪ (DEDef(m) ∪ (RD(m) - DefKill(m))
 m∈pred(n)

cs6463 11

Example solution: reaching
definition analysis

 [y := x;]1
 [z := 1;]2
 while [y > 0]3 {
 [z := z * y;]4
 [y := y - 1;]5
 }
 [y = 0;]6

Domain: 1 2 4 5 6
 y z z y y

∅

∅

∅

∅

RD

1,2,4,51,2,4,516B4

1,2,4,51,2,4,51,2,64,5B3

1,2,4,51,2,4,5∅∅B2

∅∅5,6,41,2B1

RDRDDefKillDEDef

[y := x;]1
[z := 1;]2

[y > 0]3

[z := z * y;]4
[y := y - 1;]5

[y = 0;]6

B1

B2

B3

B4

cs6463 12

Example Constraint-based Analysis
Loop dependence analysis

for (i=0;i<N;++i) {
for (j=0;j<N;++j) {

C[i*N+j]=(C[(i-1)*N+j]+C[i*N+j-1])/2;
 }
}

Example code

A loop iteration (i,j) depends on another iteration (i’,j’) if it uses
the value computed by (i’,j’) or if it writes to a common location
written by (i’,j’)

If a loop iteration (i,j) depends on iteration (i’,j’), the ordering
of the two iterations cannot be switched.

cs6463 13

Loop dependence analysis
Solving a system of equations

 A loop iteration (i,j) depends on another iteration (i’,j’) if
(i’,j’) computes the value used by (i,j), that is
 If (C[i’*N+j’], C[(i-1)*N+j])

 (C[i’*N+j’], C[i*N+j-1])

 or (C[i’*N+j’], C[I*N+j]) refer to the same location.

 That is, if i’*N+j’ = (i-1)*N+j, i’*N+j’ = i*N+j-1,

 or i’*N+j’=i*N+j

for (i=0;i<N;++i) {
for (j=0;j<N;++j) {

C[i*N+j]=(C[(i-1)*N+j]+C[i*N+j-1])/2;
 }
}

Example code

cs6463 14

Example abstract interpretation analysis
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 Define the data to evaluate
 A set of locations for each

pointer variable
 Keep track of constant values

for non-pointer variables
 Define a semantic action for

each statement
 Modifies the location set of

pointer variables
 Allocate new locations

 Limit the number of locations
for each stmt

 Control flow (conditionals,
loops, and function calls)

 Assume all branches are
taken when not sure

cs6463 15

Abstract interpretation of points-to locations
 [h = t = NULL;]1
 [i=0;]2
 if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
[++i]4
if [i<N]3;
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 else {[t->next = p; t = p;]8
 [++i]4 if [i<N]3;

 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> ?
 h -> 0 t -> 0 p -> new[5]
 h -> 0 t -> 0 p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->new[5] t ->new[5] p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->{0,new[5]} p -> new[5]
 h ->{0,new[5]} t ->new[5] p -> new[5]
 Exit loop if evaluation has stopped changing
 h ->{0,new[5]} t ->{0,new[5]} p -> {?,new[5]}

cs6463 16

Abstract Interpretation
AbstractInterpretation(op)
 if (is_assignment(op))
 modify_memory_from_assignment(memory(op), op)
 else if (is_conditional(op)) then
 AbstractInterpretation(cond(op));
 AbstractInterpretation(tree_branch(op));
 AbstractInterpretation(false_branch(op));
 else if (is_loop(op)) then
 repeat
 start_monitor_all_changes(memory(stmts(op)))
 AbstractInterpretation(stmts(op))
 until nothing changes in memory(stmts(op))
 else if (is_procedural_call(op)) then
 setup_parameters_and_return(op);
 AbstractInterpretation(body(op));
 else …

cs6463 17

Example Solution
Abstract Interpretation
struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

h->new[5]
t->new[5]
p->new[5]

h->new[5]
t->new[5]
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0
p->new[5]

h->0 t->0 p->?
h->0 t->0 p->?
h->0 t->0 p->?

h->? t->? p->?

h->new[5]
t->new[5]
p->new[5]

4

h->new[5]
t->new[5]
p->new[5]

8

h->new[5]
t->new[5]
p->new[5]

7

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

6

h->{0,new[5]}
t->{0,new[5]}
p->new[5]

5

h->{0,new[5]}
t->{0,new[5]}
p->{?,new[5]}

3
2
1

0

Domain: h,t,p

cs6463 18

Example type and effect analysis
Points-to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels

What locations can each pointer variable points to? (can they point to the
same location?)

 The type domain: locations
 Each statement that allocates a

new location
 Each variable that has a location

 Examine each statement and
infer a type (a group of
locations) for each pointer
variable
 Each pointer variable can have

only a single type, no matter
where it appears

 Flow insensitive

 If a distinct type is inferred for
each expression, then analysis
is flow sensitive

cs6463 19

Applying type and effect approach to points-
to analysis

struct Cell {
 int val;
 struct Cell* next;
} *h, *t, *p;
 [h = t = NULL;]1
 for (int [i=0]2; [i<N]3; [++i]4) {
 [p = new Cell(i,NULL);]5
 if ([h == NULL]6)
 [h = t = p;]7
 else {
 [t->next = p; t = p;]8
 }
 }

Example program with labels The type domain includes
 NULL, new[5]

 Examine the program text and
union all types (locations) for
each variable
 [h=t=NULL]1

 H->NULL; t->NULL;
 [p = new Cell(i,NULL);]5

 P-> new[5]
 [h = t = p;]7 and [t = p;]8

 Type(p) is a subset of Type(h)
 Type(p) is a subset of Type(t)

 Result:
 h=> {NULL,new[5]}
 t=> {NULL, new[5]}
 p=> new[5]

 Key: define typing rules

cs6463 20

Type Inference based points-to
analysis

For each pointer variable v
do
Type(v) = {}

For each operation that
assigns a new set of
locations L to pointer v
do
 Type(v) = Type(v) ∪ L

Flow-insensitive type inference:

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0,new[5]}
t->{0, new[5]}
p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{new[5]}

h->{0} t->{0} p->{}

h->{0} t->{0} p->{}
h->{0} t->{0} p->{}

h->{} t->{} p->{}

8

7

6

5

4

3

2
1

0

