Datatlow analysis

Theory and Applications

cs6463



o Graphical representation of runtime control-flow paths
Nodes of graph: basic blocks (straight-line computations)
Edges of graph: flows of control

o Useful for collecting information about computation

Detect loops, remove redundant computations, register
allocation, instruction scheduling...

o Alternative CFG: Each node contains a single statement

while (i < 50) {

tl =b * 2;
a=a+tl t1 -

=i+ 1; .
i

¥
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Building control-tlow graphs
Identitying basic blocks

o Input: a sequence of three-address statements

o Output: a list of basic blocks
o Method:

= Determine each statement that starts a new basic block, including
The first statement of the input sequence

Any statement that is the target of a goto statement

Any statement that immediately follows a goto statement

» Each basic block consists of

[ s0:ifi< 50 goto sl

L

E

A starting statement SO (leader of the basic block)

All statements following SO up to but not including the next starting
statement (or the end of input)

sl:

goto s2
tl :=b *2
a:=a+tl
goto sO

L S2: ..

Starting statements:
i:=0
SO,
goto S2
S1,
S2
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Building control-tlow graphs

o Identify all the basic blocks
= Create a flow graph node for each basic block
o For each basic block B1

= If Bl ends with a jump to a statement that starts basic block B2,
create an edge from B1 to B2

= If B1 does not end with an unconditional jump, create an edge from
B1 to the basic block that immediately follows B1 in the original
evaluation order

i :=0

B i 1=

%50: if i < 50 goto s1 SO: if i < 50 goto s1
goto s2

sl:tl:=b*2 . /* \

a:=a+tl 51t1=b 2 g/
goto s0 a:=a+tl goto s

L s2: .. goto sO v ~

\52/ .....
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o A data-flow analysis problem

A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

At any CFG point p, what variables are alive?

O Live variable analysis can be used in
Global register allocation
Dead variables no longer need to be in registers
Useless-store elimination
Dead variable don’t need to be stored back to memory

Uninitialized variable detection
No variable should be alive at program entry point
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Computing live variables

0 For each basic block n, let
= UEVar(n)=variables used before any definition in n

= VarKill(n)=variables defined (modified) in n (killed by n)

for each basic block n:S1;S2;S3;...;Sk

VarKill 1= @
UEVar(n) := @
fori=1tok
suppose Siis 'x := vy op z”
if y & VarKill
UEVar(n) = UEVar(n) U {y}
if z & VarKill
UEVar(n) = UEVar(n) U {z}
VarKill = VarKill U {x}
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Computigetive variables

o Domain

A m:=a+b
n:=a+b
B s
p:=c+d c|a:=atb
r:=c+d ri=c+d
/ \*
e:=b+18 e:=a+17
Ds:=a+b | E|t}=c+d
u:=e+f u:=e+f
\ |
v:=a+b
Flw:i=c+d
m:=a+b
G n:=c+d
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m All variables inside a function

o For each basic block n, let

= UEVar(n)

vars used before defined
= VarKill(n)

vars defined (killed by n)

Goal: evaluate vars alive on

entry to and exit from n

LiveOut(n)=Umesucc(n)LiveIn(m)

LiveIn(m)=UEVar(m) U

(LiveOut(m)-VarKill(m))
==>
LiveOut(n)= U mesucc(n)
(UEVar(m) U

(LiveOut(m)-VarKill(m))



Algorithm: computing live variables

o For each basic block n, let
= UEVar(n)=variables used before any definition in n
= VarKill(n)=variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

= LiveOut(n)= U ((UEVar(m) U (LiveOut(m) - VarKill(m))
me&succ(n)

for each basic block bi
compute UEVar(bi) and VarKill(bi)
LiveOut(bi) :=
for (changed := true; changed; )
changed = false
for each basic block bi
old = LiveOut(bi)

leeOut(bl)mELéu(ééIE\b/%r(m) U (LiveOut(m) - VarKill(m))

if (LiveOut(bi) '= old) changed := true
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Solution

Computing live variables
/ o Domain

A m:=a+b u alblcldlelflmlnlplqlrlsltluIVIW
n:=a+b UE | Vark | Live | LiveOu | LiveOut
. =a+
p: =c+d C C|. _ a db Alab |mn | ¢ a,b,c,d | a,b,cd,
ri=c+d ri=c+ f f
/ \\L Blcd |pr | a,b,c,d | a,b,c,d
e:=b+18 e:=a+17 clanb = oo d o e d
T — T — al I qlr al ICI al ICI I
D s:=a+b E|t:=c+d cd y: f
u:=e+f u:=e+f
D|ab, |es, |O a,b,c,d | a,b,c,d,
T~ f u f
F vi=a+b Elac |etu|y a,b,c,d | a,b,c,d,
w:=c+d d,f f
/ Flab, |vvw | O a,b,c,d | a,b,cd,
c,d f
G m:=a+b G a,b, m,n @ @ @
n:=c+d c,d
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Another Example
Avalilable Expressions Analysis

O The aim of the Available Expressions Analysis is to

determine

= For each program point, which expressions must have already
been computed, and not later modified, on all paths to the
program point.

= Example Optimized code:
[x:=a+b ]1; [x:=a+b]1;
[y:=a*b]2; [y:=a*b]2;
while [y> a+b |3 { while [y> x ]3 {
[a:=a+1]4; [a:=a+1]4;
[X:=a+b |5 [X:=a+b]5
Y Y
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Available Expression Analysis

o Domain of analysis
= All expressions within a

A m:=a+b
b:=c+d function
5 — e o For each basic block n, let
p:=a+b c|a:=a+tb = DEexp(n)
e:=c+d eimctd e et agout any
— T . E)I:ZpKiII(n)
e:=b+18 e:Fa+17 Exps whose operands are
D s:=a+b E|lt:=c+d redefined (exps killed by n)
a:=e+f b:=e+f | Goal: evaluate exps available
T~ on all paths entering n
W:=a+b Availln(n)=MNmepred(n)AvailOut(m)
F |l x:=e+f AvailOut(m) = DEexp(m)U
/ (Availln(m)-ExpKill(m))
==>
C Availln(n)= M mepred(n)
G Z:=2—:-Ct|) (DEexp(m) U
(Availln(m)-ExpKill(m))
11
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Algorithm: computing available
expressions

O For each basic block n, let

= DEexp(n)=expressions evaluated without any operand redefined
= ExpKill(n)=expressions whose operands are redefined in n

Goal: evaluate expressions available from entry to n
Availln(n)= M mepred(n)(DEexp(m) U (Availln(m)-ExpKill(m))

for each basic block bi
compute DEexp(bi) and ExpKill(bi)
Availln(bi) := isEntry(bi)? & : Domain(Exp);
for (changed := true; changed; )
changed = false
for each basic block bi
old = Avail(bi)
Availln(bi)= M mepred(bi)(DEexp(m) U (Availln(m)-ExpKill(m))
if (Availln(bi) '= old) changed : = true
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Solution

cs6463

Available Expression Analysis
Domain: a+b(1), c+d(2),
A | Mm:=a+b b+18(3),e+f(4), a+17(5)
/b:=c+d\ DEexp | ExpKil | Avail | Avail
e =c+d e:=c+d
' L — Bl12 |4 12345 | 2
=b+ Ea+
a:=\e+i b:=e+f D34 |145 |12345]1,2
w:=a+b El245 1,34 |12345]1,2
FolX:=e+f
/ F|14 %) 12345 | 2,4
q yi=a+b Gl12 |2 12345 | 1,2
c:=c+d
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for each basic block bi
compute Gen(bi) and Kill(bi)
Result(bi) := & or Domain
for (changed := true; changed; )
changed = false
for each basic block bi
old = Result(bi)
Result(bi)=
M or U
[mepred(bi) or succ(bi)]
(Gen(m) U (Result(m)-Kill(m))
if (Result(bi) '= old)
changed : = true

o Iterative evaluation of result
sets until a fixed point is
reached

Does the algorithm always
terminate?

If the result sets are
bounded and grow
monotonically, then yes;
Otherwise, no.

Fixed-point solution is
independent of evaluation
order
What answer does the
algorithm compute?
Unique fixed-point solution
The meet-over-all-paths
solution
How long does it take the
algorithm to terminate?

Depends on traversing order
of basic blocks
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Traversing order of basic blocks

o Facilitate fast convergence to
the fixed point

postorder T Postorder traversal
= Visits as many of a nodes
successors as possible before
visiting the node

m Used in backward data-flow
analysis

o Reverse postorder traversal

= Visits as many of a node’s
predecessors as possible

é before visiting the node
e Reverse = Used in forward data-flow
vsi
! postorder analysis
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0 Each data-flow analysis takes the form
Input(n) := g if n is program entry/exit
:= A meFlow(n) Result(m) otherwise
Result(n) = fn (Input(n))

where A is N or U (may vs. must analysis)

May analysis: detect properties satisfied by at least one path (U)
Must analysis: detect properties satisfied by all paths(N)
Flow(n) is either pred(n) or succ(n) (forward vs. backward flow)
Forward flow: data flow forward along control-flow edges.
= |nput(n) is data entering n, Result is data exiting n
= Input(n) is & if n is program entry
Backward flow: data flow backward along control-flow edges.
= |nput(n) is data exiting n, Result is data entering n
= |nput(n) is & if n is program exit
Function fnis the transfer function associated with each block n
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The Mathematical Foundation of
Datatlow Analysis

0 Mathematical formulation of dataflow analysis

= The property space L is used to represent the data flow domain
information

= The combination operator A: P(L) — L is used to combine
information from different paths

0 A set P is an ordered set if a partial order < can be
defined s.t. Vx,y,zeP
= X = X (reflexive)
m Ifx <yandy < x, then x =y (asymmetric)
m If x<yandy=<zimpliesx <z (transitive)
o Example: Power(L) with C define the partial order
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Upper and lower bounds

o Given an ordered set (P, <), foreach SCP

o Upper bound:
m X is an upper bound of Sif x € P and VyeS: y < X

= X is the least upper bound of S if
X is an upper bound of S, and
x <y for all upper bounds y of S

= The join operation V
V S is the least upper bound of S
x V y is the least upper bound of {x,y}

O Lower bound:
m X is alower bound of Sif x € Pand VyeS: x <y
= X is the greatest lower bound of S if
X is an lower bound of S, and
y =< x for all lower bounds y of S

m The meet operation A
A S is the least upper bound of S
X Ay is the least upper bound of {x,y}

cs6463
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An ordered set (L, <, V, A) is a lattice
If X Ay and x V y exist for all x,yeL
An lattice (L,=<, A) is a complete lattice if
Each subset Y C L has a least upper bound and a greatest lower bound

LeastUpperBound(Y) = Vmey m
GreatestLowerBound(Y) = A mevym

All finite lattices are complete
Example lattice that is not complete: the set of all integers 1
For any x, y&€I, x Ay = min(x,y), X Vy = max(x,y)
But LeastUpperBound(I) does not exist
I U {+x,-x} is a complete lattice
Each complete lattice has
A top element: the least element
A bottom element: the greatest element
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A set Sis achainif VX,y&S.y=sXxorx =y
A set S has no infinite chains if every chain in S is finite
A set S satisfies the finite ascending chain condition if
For all sequences X, = X, = ..., there exists n such that
Xy = Xpgpg = oo
That is, all chains in S have an finite upper bound

A complete lattice L satisfies the finite ascending chain condition if
each ascending chain of L eventually stabilizes
If 1< 12 <13 < ..., then there is an upper bound In = In+1=In+2...

This means starting from an arbitrary element e € L, one can only
increase e by a finite number of times before reaching an upper bound
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o Dataflow information will be lattice values
Transfer functions operate on lattice values

Solution algorithm will generate increasing
sequence of values at each program point

Ascending chain condition will ensure
termination

o Can use V (join) or A (meet) to combine
values at control-flow join points
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Example Dataflow Analysis

0 Reaching Definitions

= L = Power(Assignments)

L is partially ordered by subset inclusion

= < iS subset relation:; V is set union
The least upper bound (join) operation is set union.
The least (top) element is @

= L satisfies the finite ascending chain condition
because Assignments is finite

0 What about live variable analysis and available
expression analysis?
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Transfer Functions

O Each basic block n in a data-flow analysis defines a transfer function
fn on the property space L (fn:L->L)
Out(n) = fn (In(n))
O The set of transfer functions F over L must satisfy the following
conditions
» F contains the identity function;

m F is closed under composition of functions
Composition of monotone functions are also monotone

o All transfer functions are monotone if
m Foreachel,e2€lL,if el <e2 then fn(el) < fn(e2);
O Sometimes transfer functions are distributive over the join/meet op

f(x ~y) =f(x) " f(y)
» Distributivity implies monotonicity
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Reaching Definitions

o P = power set of all definitions in program (all subsets of the set
of definitions in program)
= All transfer functions have the form
f(x) = GEN U (x-KILL)

O Does it satisfy required lattice properties?

= Does it support the required operations?

Three operations: <, V, A; bottom and top
= Does it satisfy finite ascending chain condition?

O Are transfer functions monotone (distributive)?

= Are they valid transfer functions?
Df(x) = @ U (x- &) is the identity function
what about composition?
= Are they monotone?
if x Cy, then GEN U (x-KILL) € GEN U (y-KILL) ?

= Are they distributive?
(GEN U (x-KILL)) U (GEN U (y-KILL)) = GEN U ((x U y) -KILL) ?

cs6463
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Reaching Definitions
Composition and Distributivity

o Composition: given two transfer functions (f1 and f2)
= f;(X) = a; U (x-b;) and f,(x) = a, U (x-b,), f,(f,(x)) can be
expressed as a U (x - b)
f1(Fy(x)) = a; U ((a, U (x-by)) - by)
=a; U ((az - b1) U ((X'bz) - bl))
= (a; U (a, - by)) U ((x-by) - by))
= (a; U (a, - by)) U (x-(b, U by))
= Leta =(a; U(a,-by)) and b = b, U b, then f(f,(x)) =
au (x-Db)
o Distributivity: f(x U y) = f(x) U f(y)
f(x) Uf(y) =(aU(x-Db))U(auU(y-Db))
=aU(X-b)u(y-b)=au((xuUy)-Db)
= f(x U y)
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A monotone framework consists of
A complete lattice (L,<) that satisfies the Ascending Chain Condition

A set F of monotone functions from L to L that
contains the identity function and
is closed under function composition

A distributive framework is a monotone framework (L,<, A,F) that
additionally satisfies

All functions f in F are required to be distributive
f(1A12)=f(@11) Af(12)
A bit-vector framework is a monotone framework that
L = Power(D), where D is a finite set
Each transfer function in F has the format Gen U (Res-Kill)
All bit-vector frameworks are distributive
Not all monotone frameworks are distributive
Example non-distributive framework: constant propagation

cs6463
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General Result

All GEN/KILL transfer function frameworks
satisfy
= Identity
= Composition
= Distributivity

Properties

cs6463
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Worklist Algorithm for Solving
Datatlow Equations

For each basic block n do
In, := @ orbomain; Out, := f (In,)
In, := @; 0ut, :=f o(In)
worklist := {all basic blocks}-{ entry/exit block n0}
while worklist = & do
remove a node n from worklist
Inn .= NorU[min pred(n) or succ(n)] Outm
Out, := f (In,)
if Out, changed then
worklist := worklist U [succ(n) or pred(n)]

cs6463
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Meet Over Paths Solution

o What is the ideal solution for dataflow analysis?
o Consider a path p = ny, ny, ..., NN
= forallin, €flow(n,,)

o The solution must take this path into account:
fp(top)= (fnk(fnk-l(---fnl(fno(top)) )) = Inn

O So the solution must have the property that
~Mf, (top) . pis a path to n} < In,

and ideally
~Mf, (top) . pis a path to n} = In,

cs6463
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o Distributivity preserves control-flow
precision

o If framework is distributive, then worklist
algorithm produces the meet over paths
solution

For each basic block n:
M, (top) . pis a path to n} = In,
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Lack of Distributivity Example

o Constant Calculator
o Flat Lattice on Integers

o Actual lattice records a single value for each
variable

= Example element: [a—3, b—2, c—=5]

cs6463
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Lack ot Distributivity Anomaly
Z////\\\&

a=?2 a=3
b=3 b=2
[b—3, a—2] [a—3, b—2]

[a=TOP, b=TOP] Lack of Distributivity Imprecision:
c =atb [a—TOP, b—TOP, c—5] more precise

[a—TOP, b—TOP, ¢c—=TOP,]
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How to Make Analysis Distributive

0 Keep combinations of values on different

paths T T~

a=?2 a=23
b=3 b=2
{[a—=2, b—=3]} {[a—3, b—=2]}

{[a—2, b—3], [a—3, b—2]}
c=atb

{[a—2, b—3,c—5], [a—3, b—>2,c—5]}

cs6463
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o Basically simulating all combinations of
values in all executions
Exponential blowup

Non-termination because of infinite ascending
chains

O Non-termination solution

Use widening operator to eliminate blowup
(can make it work at granularity of variables)

Lose precision in many cases

cs6463
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o Why does algorithm terminate?

0 For each basic block n,

Sequence of values taken on by In, or Out, is a
chain.

If values stop increasing, worklist empties and
algorithm terminates.

o If lattice has ascending chain property,
algorithm terminates
Algorithm terminates for finite lattices

For lattices without ascending chain property,
use widening operator
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o Detect lattice values that may be part of an
infinitely ascending chain

o Artificially raise value to least upper bound of
chain

o Example:
Lattice is set of all subsets of integers

Could be used to collect possible values taken
on by variable during execution of program

Widening operator might raise all sets of size n
or greater to Bottom (likely to be useful for
loops)
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o Abstraction Imprecision

Concrete values (integers) abstracted as lattice values (e.qg.,
use >0, =0, <0 to approximate values of a variable)

Lattice values less precise than execution values
Abstraction function throws away information

o Control Flow Imprecision
One lattice value for all possible control flow paths

Analysis result has a single lattice value to summarize
results of multiple concrete executions

Join/meet operation moves up in lattice to combine values
from different execution paths

Typically if x =y, then x is more precise than vy
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o Other data-flow problems

Reaching definition analysis

A definition point d of variable v reaches CFG point p iff there is a
path from d to p along which v is not redefined

At any CFG point p, what definition points can reach p?
Very busy expression analysis

An expression e is very busy at a CFG point p if it is evaluated on
every path leaving p, and evaluating e at p yields the same result.

At any CFG point p, what expressions are very busy?
Constant propagation analysis

A variable-value pair (v,c) is valid at a CFG point p if on every
path from procedure entry to p, variable v has value ¢

At any CFG point p, what variables have constants?
Sign analysis

A variable-sign (>0,0,<0) pair (v,s) is valud at a CFG point p is on
every path from procedure entry to p, variable v has sign s.
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Dataflow analysis works (always terminates) on monotone
frameworks
Correctness
the iterative dataflow analysis algorithm always terminates and it
computes the least (or Minimal Fixed Point) solution to the instance of
monotone framework given as input
Complexity
Suppose that the input control-flow graph contains
at most b = 1 distinct basic blocks (nodes)
at most e = b edges
Suppose the complete lattice L has a finite height at most h = 1
Suppose each transfer function takes a single op (constant time)
Then there will be at most O(e - h) basic operations.
Example: build instances of monotone frameworks for various
dataflow analysis
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