Dataflow analysis

Theory and Applications

Control-flow graph

- Graphical representation of runtime control-flow paths
- Nodes of graph: basic blocks (straight-line computations)
- Edges of graph: flows of control
- Useful for collecting information about computation
- Detect loops, remove redundant computations, register allocation, instruction scheduling...
- Alternative CFG: Each node contains a single statement

Building control-flow graphs Identifying basic blocks

- Input: a sequence of three-address statements
- Output: a list of basic blocks
- Method:
- Determine each statement that starts a new basic block, including
- The first statement of the input sequence
- Any statement that is the target of a goto statement
- Any statement that immediately follows a goto statement
- Each basic block consists of
- A starting statement S0 (leader of the basic block)
- All statements following S0 up to but not including the next starting statement (or the end of input)

```
......
\[
i:=0
\]
\[
\text { s0: if i < } 50 \text { goto s1 }
\]
goto s2
```

s1: t1 := b * 2
$\mathrm{a}:=\mathrm{a}+\mathrm{t} 1$
goto s0
S2: ...
Starting statements:
i : = 0
S0,
goto S2
S1,
S2

Building control-flow graphs

- Identify all the basic blocks
- Create a flow graph node for each basic block
- For each basic block B1
- If B1 ends with a jump to a statement that starts basic block B2, create an edge from B1 to B2
- If B1 does not end with an unconditional jump, create an edge from B1 to the basic block that immediately follows B1 in the original evaluation order

```
    i := 0
    s0: if i < 50 goto s1
        goto s2
    s1: t1 := b * 2
        a := a + t1
        goto s0
    S2: ..
```


Example Dataflow Live variable analysis

- A data-flow analysis problem
- A variable v is live at CFG point p iff there is a path from p to a use of v along which v is not redefined
- At any CFG point p, what variables are alive?
- Live variable analysis can be used in
- Global register allocation
\square Dead variables no longer need to be in registers
- Useless-store elimination
\square Dead variable don't need to be stored back to memory
- Uninitialized variable detection
\square No variable should be alive at program entry point

Computing live variables

\square For each basic block n, let

- $\operatorname{UEVar}(\mathrm{n})=$ variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)
for each basic block n:S1;S2;S3;...;Sk


```
VarKill := \varnothing
UEVar(n) := \varnothing
for i = 1 to k
    suppose Si is "x := y op z"
    if y }\not\in\mathrm{ VarKill
        UEVar(n) = UEVar(n) \cup {y}
    if z # VarKill
        UEVar(n) = UEVar(n) U {z}
    VarKill = VarKill \cup{x}
```


Computing live variables

- Domain
- All variables inside a function
- For each basic block n, let
- UEVar(n) vars used before defined
- VarKill(n)
vars defined (killed by n)
Goal: evaluate vars alive on entry to and exit from n
LiveOut(n) $=\cup_{m \in s u c c}(n) \operatorname{LiveIn}(m)$
LiveIn $(m)=\operatorname{UEVar}(m) \cup$
(LiveOut(m)-VarKill(m))
= =>
LiveOut(n) $=\bigcup$ mesucc(n) (UEVar(m) U
(LiveOut(m)-VarKill(m))

Algorithm: computing live variables

- For each basic block n, let
- UEVar(n)=variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)

Goal: evaluate names of variables alive on exit from n

- LiveOut(n)= $\underset{m \in \operatorname{Succ}(n)}{\cup}(\operatorname{UEVar}(m) \cup(\operatorname{LiveOut}(m)-\operatorname{VarKill}(m))$
for each basic block bi compute UEVar(bi) and VarKill(bi) LiveOut(bi) := \varnothing
for (changed := true; changed;)
changed = false
for each basic block bi

$$
\begin{aligned}
& \text { old = LiveOut(bi) } \\
& \text { LiveOut(bi) }=\underset{\text { m } \in \operatorname{SuCC}(b i)}{\cup}(\operatorname{UEVar}(\mathrm{m}) \cup(\text { LiveOut }(\mathrm{m})-\operatorname{VarKill(m))} \\
& \text { if (LiveOut(bi) }!=\text { old) changed }:=\text { true }
\end{aligned}
$$

Solution

Computing live variables

Another Example Available Expressions Analysis

- The aim of the Available Expressions Analysis is to determine
- For each program point, which expressions must have already been computed, and not later modified, on all paths to the program point.
- Example

$$
\left.\begin{array}{l}
{[\mathrm{x}:=\mathrm{a}+\mathrm{b}] 1 ;} \\
{[\mathrm{y}:=\mathrm{a}=\mathrm{b}] 2 ;} \\
\text { while }[\mathrm{y}>\mathrm{y}+\mathrm{b}] 3\{ \\
\quad[\mathrm{a}=\mathrm{a}+1] 4 ; \\
{[\mathrm{x}:=\mathrm{a}+\mathrm{b}] 5}
\end{array}\right\}
$$

Optimized code:

$$
\begin{aligned}
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}] 1 ;} \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}] 2 ;} \\
& \text { while }[\mathrm{y}>\mathrm{x}] 3\{ \\
& {[\mathrm{a}:=\mathrm{a}+1] 4 ;} \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}] 5} \\
& \}
\end{aligned}
$$

Available Expression Analysis

- Domain of analysis
- All expressions within a function
- For each basic block n, let
- DEexp(n)

Exps evaluated without any operand redefined

- ExpKill(n)

Exps whose operands are redefined (exps killed by n)
Goal: evaluate exps available on all paths entering n
AvailIn(n) $=$ १mepred(n)AvailOut(m)
AvailOut(m) $=\operatorname{DExp}(m) \cup$
(AvailIn(m)-ExpKill(m))
= =>
AvailIn(n) $=\cap \operatorname{mepred}(\mathrm{n})$
$(\operatorname{DExp}(m) \cup$
(AvailIn(m)-ExpKill(m))

Algorithm: computing available expressions

- For each basic block n, let
- DEexp(n)=expressions evaluated without any operand redefined
- ExpKill(n)=expressions whose operands are redefined in n

Goal: evaluate expressions available from entry to n
AvailIn(n) $=\cap \operatorname{m\in pred}(n)(\operatorname{DEexp}(m) \cup($ AvailIn $(m)-E x p K i l l(m))$

```
for each basic block bi
    compute DEexp(bi) and ExpKill(bi)
    AvailIn(bi) := isEntry(bi)? \varnothing : Domain(Exp);
for (changed := true; changed; )
    changed = false
    for each basic block bi
        old = Avail(bi)
        AvailIn(bi)= \cap m\inpred(bi)(DEexp(m) \cup (AvailIn(m)-ExpKill(m))
        if (AvailIn(bi) != old) changed := true
```


Solution

Available Expression Analysis

Iterative dataflow algorithm

```
for each basic block bi
    compute Gen(bi) and Kill(bi)
    Result(bi) := \varnothing or Domain
for (changed := true; changed; )
    changed = false
    for each basic block bi
        old = Result(bi)
        Result(bi)=
        \cap or U
    [m\inpred(bi) or succ(bi)]
(Gen(m)\cup (Result(m)-Kill(m))
    if (Result(bi) != old)
            changed := true
```

- Iterative evaluation of result sets until a fixed point is reached
- Does the algorithm always terminate?
\square If the result sets are bounded and grow monotonically, then yes; Otherwise, no.
- Fixed-point solution is independent of evaluation order
- What answer does the algorithm compute?
- Unique fixed-point solution
- The meet-over-all-paths solution
- How long does it take the algorithm to terminate?
\square Depends on traversing order of basic blocks

Traversing order of basic blocks

- Facilitate fast convergence to the fixed point
- Postorder traversal
- Visits as many of a nodes successors as possible before visiting the node
- Used in backward data-flow analysis
- Reverse postorder traversal
- Visits as many of a node's predecessors as possible before visiting the node
- Used in forward data-flow analysis

The Overall Pattern

ㅁ Each data-flow analysis takes the form
Input(n) $:=\varnothing$ if n is program entry/exit $:=\Lambda$ m $\in \operatorname{Flow}(n) \operatorname{Result}(m)$ otherwise
$\operatorname{Result}(\mathrm{n})=f \mathrm{n}(\operatorname{lnput}(\mathrm{n}))$

- where Λ is \cap or \cup (may vs. must analysis)
\square May analysis: detect properties satisfied by at least one path (U)
\square Must analysis: detect properties satisfied by all paths(\cap)
- Flow(n) is either pred(n) or succ(n) (forward vs. backward flow)
\square Forward flow: data flow forward along control-flow edges.
- Input(n) is data entering n, Result is data exiting n
- Input(n) is \varnothing if n is program entry
\square Backward flow: data flow backward along control-flow edges.
- Input(n) is data exiting n, Result is data entering n
- Input(n) is \varnothing if n is program exit
- Function $f \mathrm{n}$ is the transfer function associated with each block n

The Mathematical Foundation of
 Dataflow Analysis

- Mathematical formulation of dataflow analysis
- The property space L is used to represent the data flow domain information
- The combination operator $\Lambda: P(L) \rightarrow L$ is used to combine information from different paths
- A set P is an ordered set if a partial order \leq can be defined s.t. $\forall x, y, z \in P$
- $\mathrm{x} \leq \mathrm{X}$ (reflexive)
- If $x \leq y$ and $y \leq x$, then $x=y$ (asymmetric)
- If $x \leq y$ and $y \leq z$ implies $x \leq z \quad$ (transitive)
- Example: Power(L) with \subseteq define the partial order

Upper and lower bounds

- Given an ordered set (P, \leq), for each $S \subseteq P$
- Upper bound:
- x is an upper bound of S if $x \in P$ and $\forall y \in S: y \leq x$
- x is the least upper bound of S if
- x is an upper bound of S, and
- $x \leq y$ for all upper bounds y of S
- The join operation V
- $V S$ is the least upper bound of S
$\square x \vee y$ is the least upper bound of $\{x, y\}$
- Lower bound:
- x is a lower bound of S if $x \in P$ and $\forall y \in S: x \leq y$
- x is the greatest lower bound of S if
- x is an lower bound of S, and
- $y \leq x$ for all lower bounds y of S
- The meet operation Λ
- ΛS is the least upper bound of S
$\square x \Lambda y$ is the least upper bound of $\{x, y\}$

Lattices

- An ordered set (L, \leq, V, Λ) is a lattice
- If $x \Lambda y$ and $x \vee y$ exist for all $x, y \in L$
- An lattice ($\mathrm{L}, \leq, \Lambda$) is a complete lattice if
- Each subset $Y \subseteq L$ has a least upper bound and a greatest lower bound
- LeastUpperBound $(\mathrm{Y})=\mathrm{V}_{\mathrm{m} \in \mathrm{Y}} \mathrm{m}$
- GreatestLowerBound $(\mathrm{Y})=\Lambda_{\mathrm{m} \in \mathrm{Y}} \mathrm{m}$
- All finite lattices are complete
- Example lattice that is not complete: the set of all integers I
- For any $x, y \in I, x \Lambda y=\min (x, y), x \vee y=\max (x, y)$
- But LeastUpperBound(I) does not exist
- I $\cup\{+\infty,-\infty\}$ is a complete lattice
\square Each complete lattice has
- A top element: the least element
- A bottom element: the greatest element

Chains

- A set S is a chain if $\forall x, y \in S . y \leq x$ or $x \leq y$
- A set S has no infinite chains if every chain in S is finite
- A set S satisfies the finite ascending chain condition if
- For all sequences $x_{1} \leq x_{2} \leq \ldots$, there exists n such that
- $\mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}=\ldots$
- That is, all chains in S have an finite upper bound
- A complete lattice L satisfies the finite ascending chain condition if each ascending chain of L eventually stabilizes
- If $\mathrm{I} 1 \leq \mathrm{I} 2 \leq \mathrm{I} 3 \leq \ldots$, then there is an upper bound $\mathrm{In}=\mathrm{In}+1=\mathrm{In}+2 \ldots$
- This means starting from an arbitrary element $e \in L$, one can only increase e by a finite number of times before reaching an upper bound

Application to Dataflow Analysis

- Dataflow information will be lattice values
- Transfer functions operate on lattice values
- Solution algorithm will generate increasing sequence of values at each program point
- Ascending chain condition will ensure termination
- Can use V (join) or Λ (meet) to combine values at control-flow join points

Example Dataflow Analysis

\square Reaching Definitions
■ L = Power(Assignments)
$\square L$ is partially ordered by subset inclusion

- \leq is subset relation; V is set union
\square The least upper bound (join) operation is set union.
- The least (top) element is \varnothing
- L satisfies the finite ascending chain condition because Assignments is finite
\square What about live variable analysis and available expression analysis?

Transfer Functions

- Each basic block n in a data-flow analysis defines a transfer function $f n$ on the property space $L(f n: L->L)$

$$
\operatorname{Out}(n)=f n(\ln (n))
$$

- The set of transfer functions F over L must satisfy the following conditions
- F contains the identity function;
- F is closed under composition of functions
- Composition of monotone functions are also monotone
- All transfer functions are monotone if
- For each e1, e2 $\in L$, if e1 $\leq e 2$, then $f n(e 1) \leq f n(e 2)$;
\square Sometimes transfer functions are distributive over the join/meet op

$$
f\left(x^{\wedge} y\right)=f(x)^{\wedge} f(y)
$$

- Distributivity implies monotonicity

Reaching Definitions

ㅁ $P=$ power set of all definitions in program (all subsets of the set of definitions in program)

- All transfer functions have the form
$f(x)=$ GEN $\cup(x-K I L L)$
- Does it satisfy required lattice properties?
- Does it support the required operations?
- Three operations: $\leq, ~ V, \Lambda$; bottom and top
- Does it satisfy finite ascending chain condition?
- Are transfer functions monotone (distributive)?
- Are they valid transfer functions?
$\square \operatorname{Df}(x)=\varnothing \cup(x-\varnothing)$ is the identity function
- What about composition?
- Are they monotone?
\square if $x \subseteq y$, then $G E N \cup(x-K I L L) \subseteq G E N \cup(y-K I L L) ?$
- Are they distributive?
$(G E N \cup(x-K I L L)) \cup(G E N \cup(y-K I L L))=G E N \cup((x \cup y)-$ KILL $)$?

Reaching Definitions

Composition and Distributivity

- Composition: given two transfer functions (f1 and f2)
- $f_{1}(x)=a_{1} \cup\left(x-b_{1}\right)$ and $f_{2}(x)=a_{2} \cup\left(x-b_{2}\right), f_{1}\left(f_{2}(x)\right)$ can be expressed as a $\cup(x-b)$

$$
\begin{aligned}
f_{1}\left(f_{2}(x)\right) & =a_{1} \cup\left(\left(a_{2} \cup\left(x-b_{2}\right)\right)-b_{1}\right) \\
& =a_{1} \cup\left(\left(a_{2}-b_{1}\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right) \\
& \left.=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right) \\
& =\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(x-\left(b_{2} \cup b_{1}\right)\right)
\end{aligned}
$$

- Let $a=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right)$ and $b=b_{2} \cup b_{1}$, then $f_{1}\left(f_{2}(x)\right)=$ $a \cup(x-b)$
- Distributivity: $f(x \cup y)=f(x) \cup f(y)$

$$
\begin{aligned}
f(x) \cup f(y) & =(a \cup(x-b)) \cup(a \cup(y-b)) \\
& =a \cup(x-b) \cup(y-b)=a \cup((x \cup y)-b) \\
& =f(x \cup y)
\end{aligned}
$$

Monotone Frameworks

- A monotone framework consists of
- A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
- A set F of monotone functions from L to L that
\square contains the identity function and
- is closed under function composition
- A distributive framework is a monotone framework (L, \leq, Λ, F) that additionally satisfies
- All functions f in F are required to be distributive
$\square \mathrm{f}(\mathrm{l} 1 \Lambda \mathrm{l} 2)=\mathrm{f}(\mathrm{l} 1) \Lambda \mathrm{f}(\mathrm{l} 2)$
- A bit-vector framework is a monotone framework that
- $L=\operatorname{Power}(D)$, where D is a finite set
- Each transfer function in F has the format Gen \cup (Res-Kill)
- All bit-vector frameworks are distributive
- Not all monotone frameworks are distributive
- Example non-distributive framework: constant propagation

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Composition
- Distributivity

Properties

Worklist Algorithm for Solving Dataflow Equations

For each basic block n do
$\mathrm{In}_{\mathrm{n}}:=\varnothing$ or Domain; Out $\mathrm{n}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{In}_{\mathrm{n}}\right)$
$\mathrm{In}_{\mathrm{n} 0}:=\varnothing$; Out $\mathrm{n}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n} 0}\left(\mathrm{In}_{\mathrm{n} 0}\right)$
worklist : = \{all basic blocks\}-\{ entry/exit block n0\}
while worklist $\neq \varnothing$ do
remove a node n from worklist
$\mathrm{In}_{\mathrm{n}}:=\cap$ or $\cup[\mathrm{m}$ in $\operatorname{pred}(\mathrm{n})$ or $\operatorname{succ}(\mathrm{n})]$ Out $_{m}$
Out $_{n}:=f_{n}\left(\right.$ In $\left._{n}\right)$
if Out ${ }_{n}$ changed then
worklist : = worklist $\cup[\operatorname{succ}(n)$ or pred(n)]

Meet Over Paths Solution

- What is the ideal solution for dataflow analysis?
\square Consider a path $\mathrm{p}=\mathrm{n}_{0}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}} \mathrm{n}$
- for all i $n_{i} \in$ flow $\left(n_{i+1}\right)$
- The solution must take this path into account: $\mathrm{fp}($ top $)=\left(\mathrm{f}_{\mathrm{nk}}\left(\mathrm{f}_{\mathrm{nk}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\right.\right.\right.\right.$ top $\left.\left.\left.)\right) \ldots\right)\right) \leq \mathrm{In}_{\mathrm{n}}$
- So the solution must have the property that $\wedge\left\{\mathrm{f}_{\mathrm{p}}\right.$ (top). p is a path to n$\} \leq \mathrm{In}_{\mathrm{n}}$ and ideally

$$
\wedge\left\{f_{p} \text { (top) } \cdot p \text { is a path to } n\right\}=\operatorname{In}_{n}
$$

Distributivity

- Distributivity preserves control-flow precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
- For each basic block n :
$\wedge\left\{\mathrm{f}_{\mathrm{p}}\right.$ (top) $\cdot \mathrm{p}$ is a path to n$\}=\mathrm{In}_{\mathrm{n}}$

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

- Actual lattice records a single value for each variable
- Example element: $[a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]$

Lack of Distributivity Anomaly

How to Make Analysis Distributive

- Keep combinations of values on different paths

$$
\begin{aligned}
a=2 \\
b=3
\end{aligned} \quad \begin{aligned}
& a=3 \\
& \{[a \rightarrow 2, b \rightarrow 3]\} \\
& \\
& \{[a \rightarrow 2, b \rightarrow 3, c \rightarrow 5],[a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\}
\end{aligned}
$$

Issues

- Basically simulating all combinations of values in all executions
- Exponential blowup
- Non-termination because of infinite ascending chains
- Non-termination solution
- Use widening operator to eliminate blowup (can make it work at granularity of variables)
- Lose precision in many cases

Termination Argument

\square Why does algorithm terminate?
\square For each basic block n,

- Sequence of values taken on by In_{n} or Out n_{n} is a chain.
- If values stop increasing, worklist empties and algorithm terminates.
\square If lattice has ascending chain property, algorithm terminates
- Algorithm terminates for finite lattices
- For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
- Lattice is set of all subsets of integers
- Could be used to collect possible values taken on by variable during execution of program
- Widening operator might raise all sets of size n or greater to Bottom (likely to be useful for loops)

General Sources of Imprecision

- Abstraction Imprecision
- Concrete values (integers) abstracted as lattice values (e.g., use $>0,=0,<0$ to approximate values of a variable)
- Lattice values less precise than execution values
- Abstraction function throws away information
- Control Flow Imprecision
- One lattice value for all possible control flow paths
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join/meet operation moves up in lattice to combine values from different execution paths
- Typically if $x \leq y$, then x is more precise than y

More about dataflow analysis

- Other data-flow problems
- Reaching definition analysis
\square A definition point d of variable v reaches CFG point p iff there is a path from d to p along which v is not redefined
\square At any CFG point p, what definition points can reach p?
- Very busy expression analysis
\square An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
- At any CFG point p, what expressions are very busy?
- Constant propagation analysis
\square A variable-value pair (v, c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c
- At any CFG point p, what variables have constants?
- Sign analysis
\square A variable-sign $(>0,0,<0)$ pair (v, s) is valud at a CFG point p is on every path from procedure entry to p, variable v has sign s.

Theory and Application

- Dataflow analysis works (always terminates) on monotone frameworks
- Correctness
- the iterative dataflow analysis algorithm always terminates and it computes the least (or Minimal Fixed Point) solution to the instance of monotone framework given as input
- Complexity
- Suppose that the input control-flow graph contains
- at most $b \geq 1$ distinct basic blocks (nodes)
- at most $e \geq b$ edges
- Suppose the complete lattice L has a finite height at most $h \geq 1$
- Suppose each transfer function takes a single op (constant time)
- Then there will be at most $\mathrm{O}(\mathrm{e} \cdot \mathrm{h})$ basic operations.
- Example: build instances of monotone frameworks for various dataflow analysis

