Dataflow analysis

Theory and Applications

Control-flow graph

Graphical representation of runtime control-flow paths

- Nodes of graph: basic blocks (straight-line computations)
- Edges of graph: flows of control
- Useful for collecting information about computation
 - Detect loops, remove redundant computations, register allocation, instruction scheduling...
- Alternative CFG: Each node contains a single statement

Building control-flow graphs Identifying basic blocks

- Input: a sequence of three-address statements
- Output: a list of basic blocks
- Method:
 - Determine each statement that starts a new basic block, including
 - The first statement of the input sequence
 - Any statement that is the target of a goto statement
 - Any statement that immediately follows a goto statement
 - Each basic block consists of
 - A starting statement S0 (leader of the basic block)
 - All statements following S0 up to but not including the next starting statement (or the end of input)

i := 0	Starting statements:
s0: if i < 50 goto s1	i := 0
goto s2	S0,
s1: t1 := b * 2	goto S2
a := a + t1	S1,
└_ goto s0	S2
∟ S2:	

Building control-flow graphs

- Identify all the basic blocks
 - Create a flow graph node for each basic block
- For each basic block B1
 - If B1 ends with a jump to a statement that starts basic block B2, create an edge from B1 to B2
 - If B1 does not end with an unconditional jump, create an edge from B1 to the basic block that immediately follows B1 in the original evaluation order

Example Dataflow Live variable analysis

A data-flow analysis problem

- A variable v is live at CFG point p iff there is a path from p to a use of v along which v is not redefined
- At any CFG point p, what variables are alive?
- Live variable analysis can be used in
 - Global register allocation
 - Dead variables no longer need to be in registers
 - Useless-store elimination
 - Dead variable don't need to be stored back to memory
 - Uninitialized variable detection
 - No variable should be alive at program entry point

Computing live variables

For each basic block n, let

- UEVar(n)=variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)

for each basic block n:S1;S2;S3;...;Sk

```
\begin{array}{l} \text{VarKill} := \varnothing \\ \text{UEVar}(n) := \varnothing \\ \text{for i = 1 to k} \\ \text{suppose Si is ``x := y op z''} \\ \text{if } y \notin \text{VarKill} \\ \text{UEVar}(n) = \text{UEVar}(n) \cup \{y\} \\ \text{if } z \notin \text{VarKill} \\ \text{UEVar}(n) = \text{UEVar}(n) \cup \{z\} \\ \text{VarKill} = \text{VarKill} \cup \{x\} \end{array}
```

Computing live variables

Domain

- All variables inside a function
- For each basic block n, let
 - UEVar(n) vars used before defined
 - VarKill(n)

vars defined (killed by n) Goal: evaluate vars alive on entry to and exit from n LiveOut(n)=Um∈succ(n)LiveIn(m) LiveIn(m)=UEVar(m) ∪ (LiveOut(m)-VarKill(m))

==>

LiveOut(n)= U m∈succ(n) (UEVar(m) ∪ (LiveOut(m)-VarKill(m))

Algorithm: computing live variables

For each basic block n, let

- UEVar(n)=variables used before any definition in n
- VarKill(n)=variables defined (modified) in n (killed by n)
- Goal: evaluate names of variables alive on exit from n
 - LiveOut(n) = ∪ (UEVar(m) ∪ (LiveOut(m) VarKill(m)) m∈succ(n)

```
for each basic block bi
  compute UEVar(bi) and VarKill(bi)
  LiveOut(bi) := Ø
for (changed := true; changed; )
  changed = false
  for each basic block bi
    old = LiveOut(bi)
  LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))
    m∈succ(bi)
  if (LiveOut(bi) != old) changed := true
```

Solution

Computing live variables

Domain

a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,w

	UE var	Vark ill	Live Out	LiveOu t	LiveOut
А	a,b	m,n	Ø	a,b,c,d ,f	a,b,c,d, f
В	c,d	p,r	Ø	a,b,c,d	a,b,c,d
С	a,b, c,d	q,r	Ø	a,b,c,d ,f	a,b,c,d, f
D	a,b, f	e,s, u	Ø	a,b,c,d	a,b,c,d, f
E	a,c, d,f	e,t,u	Ø	a,b,c,d	a,b,c,d, f
F	a,b, c,d	v,w	Ø	a,b,c,d	a,b,c,d, f
G	a,b, c,d	m,n	Ø	Ø	Ø

Another Example Available Expressions Analysis

- The aim of the Available Expressions Analysis is to determine
 - For each program point, which expressions must have already been computed, and not later modified, on all paths to the program point.
 - Example

Optimized code:

Available Expression Analysis

- Domain of analysis
 - All expressions within a function
- For each basic block n, let
 - DEexp(n)
 Exps evaluated without any operand redefined
 - ExpKill(n) Exps whose operands are redefined (exps killed by n)

Goal: evaluate exps available on all paths entering n

AvailIn(n)= $\bigcap m \in pred(n)AvailOut(m)$ AvailOut(m) = DEexp(m)U

(AvailIn(m)-ExpKill(m))

==>

AvailIn(n) = $\cap m \in pred(n)$ (DEexp(m) \cup (AvailIn(m)-ExpKill(m))

Algorithm: computing available expressions

- □ For each basic block n, let
 - DEexp(n)=expressions evaluated without any operand redefined
 - ExpKill(n)=expressions whose operands are redefined in n

Goal: evaluate expressions available from entry to n

AvailIn(n) = \cap m \in pred(n)(DEexp(m) \cup (AvailIn(m)-ExpKill(m))

```
for each basic block bi
   compute DEexp(bi) and ExpKill(bi)
   AvailIn(bi) := isEntry(bi)? Ø : Domain(Exp);
for (changed := true; changed; )
   changed = false
   for each basic block bi
      old = Avail(bi)
      AvailIn(bi) = ∩ m∈pred(bi)(DEexp(m) ∪ (AvailIn(m)-ExpKill(m)))
      if (AvailIn(bi) != old) changed := true
```

Solution Available Expression Analysis

Domain: a+b(1), c+d(2), b+18(3),e+f(4), a+17(5)

	DEexp	ExpKil	Avail	Avail
А	2	1,3	Ø	Ø
В	1,2	4	12345	2
С	1,2	4	12345	2
D	3,4	1,4,5	12345	1,2
E	2,4,5	1,3,4	12345	1,2
F	1,4	Ø	12345	2,4
G	1,2	2	12345	1,2

Iterative dataflow algorithm

- Iterative evaluation of result sets until a fixed point is reached
 - Does the algorithm always terminate?
 - If the result sets are bounded and grow monotonically, then yes; Otherwise, no.
 - Fixed-point solution is independent of evaluation order
 - What answer does the algorithm compute?
 - Unique fixed-point solution
 - The meet-over-all-paths solution
 - How long does it take the algorithm to terminate?
 - Depends on traversing order of basic blocks

Traversing order of basic blocks

The Overall Pattern

Each data-flow analysis takes the form

Input(n) := \emptyset if n is program entry/exit

 $:= \Lambda m \in Flow(n) Result(m)$ otherwise

Result(n) = fn (Input(n))

• where Λ is \cap or \cup (may vs. must analysis)

- May analysis: detect properties satisfied by at least one path (\cup)
- Must analysis: detect properties satisfied by all paths(\cap)
- Flow(n) is either pred(n) or succ(n) (forward vs. backward flow)
 - Forward flow: data flow forward along control-flow edges.
 - Input(n) is data entering n, Result is data exiting n
 - Input(n) is ∅ if n is program entry
 - Backward flow: data flow backward along control-flow edges.
 - Input(n) is data exiting n, Result is data entering n
 - Input(n) is ∅ if n is program exit
- Function fn is the transfer function associated with each block n

The Mathematical Foundation of Dataflow Analysis

Mathematical formulation of dataflow analysis

- The property space L is used to represent the data flow domain information
- The combination operator Λ : P(L) \rightarrow L is used to combine information from different paths
- A set P is an ordered set if a partial order ≤ can be defined s.t. ∀x,y,z∈P
 - $x \le X$ (reflexive)
 - If $x \le y$ and $y \le x$, then x = y (asymmetric)
 - If $x \le y$ and $y \le z$ implies $x \le z$ (transitive)
- **\square** Example: Power(L) with \subseteq define the partial order

Upper and lower bounds

- □ Given an ordered set (P, \leq), for each S ⊆ P
- Upper bound:
 - x is an upper bound of S if $x \in P$ and $\forall y \in S: y \leq x$
 - x is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - The join operation V
 - V S is the least upper bound of S
 - x V y is the least upper bound of {x,y}
- Lower bound:
 - x is a lower bound of S if $x \in P$ and $\forall y \in S: x \leq y$
 - x is the greatest lower bound of S if
 - x is an lower bound of S, and
 - $y \le x$ for all lower bounds y of S
 - The meet operation Λ
 - Λ S is the least upper bound of S
 - $x \wedge y$ is the least upper bound of $\{x,y\}$

Lattices

□ An ordered set (L, \leq , V, Λ) is a lattice

- If $x \land y$ and $x \lor y$ exist for all $x,y \in L$
- □ An lattice (L, \leq, Λ) is a complete lattice if
 - Each subset $Y \subseteq L$ has a least upper bound and a greatest lower bound
 - LeastUpperBound(Y) = $V_{m \in Y} m$
 - GreatestLowerBound(Y) = $\Lambda \mod M$
- All finite lattices are complete
- Example lattice that is not complete: the set of all integers I
 - For any x, $y \in I$, x Λ y = min(x,y), x V y = max(x,y)
 - But LeastUpperBound(I) does not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice
- Each complete lattice has
 - A top element: the least element
 - A bottom element: the greatest element

Chains

- □ A set S is a chain if $\forall x, y \in S$. $y \le x$ or $x \le y$
- □ A set S has no infinite chains if every chain in S is finite
- □ A set S satisfies the finite ascending chain condition if
 - For all sequences $x_1 \le x_2 \le ...$, there exists n such that

 $\square \quad \mathbf{x}_{n} = \mathbf{x}_{n+1} = \dots$

- That is, all chains in S have an finite upper bound
- A complete lattice L satisfies the finite ascending chain condition if each ascending chain of L eventually stabilizes
 - If $|1 \le |2 \le |3 \le ...$, then there is an upper bound |n = |n+1=|n+2...
 - This means starting from an arbitrary element $e \in L$, one can only increase e by a finite number of times before reaching an upper bound

Application to Dataflow Analysis

Dataflow information will be lattice values

- Transfer functions operate on lattice values
- Solution algorithm will generate increasing sequence of values at each program point
- Ascending chain condition will ensure termination
- □ Can use V (join) or Λ (meet) to combine values at control-flow join points

Example Dataflow Analysis

Reaching Definitions

- L = Power(Assignments)
 - L is partially ordered by subset inclusion
 - ≤ is subset relation; V is set union
 - □ The least upper bound (join) operation is set union.
 - □ The least (top) element is Ø
- L satisfies the finite ascending chain condition because Assignments is finite
- What about live variable analysis and available expression analysis?

Transfer Functions

Each basic block n in a data-flow analysis defines a transfer function fn on the property space L (fn:L->L)

Out(n) = fn (In(n))

- The set of transfer functions F over L must satisfy the following conditions
 - F contains the identity function;
 - F is closed under composition of functions
 - Composition of monotone functions are also monotone
- □ All transfer functions are monotone if
 - For each e1, $e2 \in L$, if $e1 \le e2$, then $fn(e1) \le fn(e2)$;
- Sometimes transfer functions are distributive over the join/meet op

$$f(x \land y) = f(x) \land f(y)$$

Distributivity implies monotonicity

Reaching Definitions

- P = power set of all definitions in program (all subsets of the set of definitions in program)
 - All transfer functions have the form
 f(x) = GEN ∪ (x-KILL)
- Does it satisfy required lattice properties?
 - Does it support the required operations?
 - Three operations: \leq , V, Λ ; bottom and top
 - Does it satisfy finite ascending chain condition?
- Are transfer functions monotone (distributive)?
 - Are they valid transfer functions?
 - $Df(x) = \emptyset \cup (x \emptyset)$ is the identity function
 - What about composition?
 - Are they monotone?
 - □ if $x \subseteq y$, then GEN \cup (x-KILL) \subseteq GEN \cup (y-KILL) ?
 - Are they distributive?

 $(\mathsf{GEN} \cup (\mathsf{x}\text{-}\mathsf{KILL})) \cup (\mathsf{GEN} \cup (\mathsf{y}\text{-}\mathsf{KILL})) = \mathsf{GEN} \cup ((\mathsf{x} \cup \mathsf{y}) \text{-}\mathsf{KILL})?$

Reaching Definitions Composition and Distributivity

Composition: given two transfer functions (f1 and f2)

• $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$, $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$

$$f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$$

= $a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$
= $(a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$
= $(a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))$

■ Let $a = (a_1 \cup (a_2 - b_1))$ and $b = b_2 \cup b_1$, then $f_1(f_2(x)) = a \cup (x - b)$

Distributivity:
$$f(x \cup y) = f(x) \cup f(y)$$

$$f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$$

$$= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$$

$$= f(x \cup y)$$

Monotone Frameworks

- A monotone framework consists of
 - A complete lattice (L, \leq) that satisfies the Ascending Chain Condition
 - A set F of monotone functions from L to L that
 - contains the identity function and
 - is closed under function composition
- A distributive framework is a monotone framework (L,≤, Λ,F) that additionally satisfies
 - All functions f in F are required to be distributive
 f (I1 Λ I2) = f (I1) Λ f (I2)
- A bit-vector framework is a monotone framework that
 - L = Power(D), where D is a finite set
 - Each transfer function in F has the format Gen \cup (Res-Kill)
 - All bit-vector frameworks are distributive
- Not all monotone frameworks are distributive
 - Example non-distributive framework: constant propagation

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Composition
- Distributivity

Properties

Worklist Algorithm for Solving Dataflow Equations

For each basic block n do

$$\begin{split} & In_n := \varnothing \text{ or Domain; } Out_n := f_n(In_n) \\ & In_{n0} := \varnothing; Out_n := f_{n0}(In_{n0}) \\ & \text{worklist} := \{ \text{all basic blocks} \} - \{ \text{ entry/exit block n0} \} \\ & \text{while worklist} \neq \varnothing \text{ do} \\ & \text{remove a node n from worklist} \\ & In_n := \cap \text{ or } \cup [\text{m in pred}(n) \text{ or succ}(n)] \text{ Out}_m \end{split}$$

 $Out_n := f_n(In_n)$

if Out_n changed then

worklist := worklist \cup [succ(n) or pred(n)]

Meet Over Paths Solution

- What is the ideal solution for dataflow analysis?
- Consider a path $p = n_0, n_1, ..., n_k n_k$
 - for all i $n_i \in flow(n_{i+1})$
- The solution must take this path into account: $fp(top) = (f_{nk}(f_{nk-1}(...f_{n1}(f_{n0}(top)) ...)) \le In_n$
- □ So the solution must have the property that $^{f_n}(top)$. p is a path to n} ≤ In_n

and ideally

 $^{f_p}(top) \cdot p is a path to n = In_n$

Distributivity

- Distributivity preserves control-flow precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For each basic block n:

 $\{f_p(top) : p is a path to n\} = In_n$

Lack of Distributivity Example

Constant CalculatorFlat Lattice on Integers

- Actual lattice records a single value for each variable
 - Example element: $[a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]$

Lack of Distributivity Anomaly

How to Make Analysis Distributive

Keep combinations of values on different paths

 $\{[a \rightarrow 2, b \rightarrow 3, c \rightarrow 5], [a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\}$

Issues

Basically simulating all combinations of values in all executions

- Exponential blowup
- Non-termination because of infinite ascending chains
- Non-termination solution
 - Use widening operator to eliminate blowup (can make it work at granularity of variables)
 - Lose precision in many cases

Termination Argument

- Why does algorithm terminate?
- For each basic block n,
 - Sequence of values taken on by In_n or Out_n is a chain.
 - If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to Bottom (likely to be useful for loops)

General Sources of Imprecision

Abstraction Imprecision

- Concrete values (integers) abstracted as lattice values (e.g., use >0, =0, <0 to approximate values of a variable)
- Lattice values less precise than execution values
- Abstraction function throws away information
- Control Flow Imprecision
 - One lattice value for all possible control flow paths
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join/meet operation moves up in lattice to combine values from different execution paths
 - Typically if $x \le y$, then x is more precise than y

More about dataflow analysis

Other data-flow problems

- Reaching definition analysis
 - A definition point d of variable v reaches CFG point p iff there is a path from d to p along which v is not redefined
 - At any CFG point p, what definition points can reach p?
- Very busy expression analysis
 - An expression e is very busy at a CFG point p if it is evaluated on every path leaving p, and evaluating e at p yields the same result.
 - At any CFG point p, what expressions are very busy?
- Constant propagation analysis
 - A variable-value pair (v,c) is valid at a CFG point p if on every path from procedure entry to p, variable v has value c
 - At any CFG point p, what variables have constants?
- Sign analysis
 - A variable-sign (>0,0,<0) pair (v,s) is valud at a CFG point p is on every path from procedure entry to p, variable v has sign s.

Theory and Application

- Dataflow analysis works (always terminates) on monotone frameworks
- Correctness
 - the iterative dataflow analysis algorithm always terminates and it computes the least (or Minimal Fixed Point) solution to the instance of monotone framework given as input
- Complexity
 - Suppose that the input control-flow graph contains
 - □ at most $b \ge 1$ distinct basic blocks (nodes)
 - at most e ≥ b edges
 - Suppose the complete lattice L has a finite height at most $h \ge 1$
 - Suppose each transfer function takes a single op (constant time)
 - Then there will be at most $O(e \cdot h)$ basic operations.
- Example: build instances of monotone frameworks for various dataflow analysis