
cs6463 1

Dataflow analysis

Theory and Applications

cs6463 2

Control-flow graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

……
 i = 0
 while (i < 50) {
 t1 = b * 2;
 a = a + t1;
 i = i + 1;
 }
….

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs6463 3

Building control-flow graphs
Identifying basic blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block, including
 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0 (leader of the basic block)
 All statements following S0 up to but not including the next starting

statement (or the end of input)

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs6463 4

Building control-flow graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block B2,
create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge from
B1 to the basic block that immediately follows B1 in the original
evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs6463 5

Example Dataflow
Live variable analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers

 Useless-store elimination
 Dead variable don’t need to be stored back to memory

 Uninitialized variable detection
 No variable should be alive at program entry point

cs6463 6

Computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

S1: m := y * z
S2: y := y -z
S3: o := y * z

M

for each basic block n:S1;S2;S3;…;Sk

VarKill := ∅
UEVar(n) := ∅
for i = 1 to k
 suppose Si is “x := y op z”
 if y ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {y}
 if z ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {z}
 VarKill = VarKill ∪ {x}

cs6463 7

Computing live variables
 Domain

 All variables inside a function
 For each basic block n, let

 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Goal: evaluate vars alive on
entry to and exit from n
LiveOut(n)=∪m∈succ(n)LiveIn(m)
LiveIn(m)=UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

 ==>
 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G

cs6463 8

Algorithm: computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs6463 9

Solution
Computing live variables

 Domain
 a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,wm:=a+b

n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G ∅

∅

∅

∅

∅

∅

∅

Live
Out

∅∅m,na,b,
c,d

G

a,b,c,d,
f

a,b,c,dv,wa,b,
c,d

F

a,b,c,d,
f

a,b,c,de,t,ua,c,
d,f

E

a,b,c,d,
f

a,b,c,de,s,
u

a,b,
f

D

a,b,c,d,
f

a,b,c,d
,f

q,ra,b,
c,d

C

a,b,c,da,b,c,dp,rc,dB

a,b,c,d,
f

a,b,c,d
,f

m,na,bA

LiveOutLiveOu
t

Vark
ill

UE
var

cs6463 10

Another Example
Available Expressions Analysis
 The aim of the Available Expressions Analysis is to

determine
 For each program point, which expressions must have already

been computed, and not later modified, on all paths to the
program point.

 Example

[x:= a+b]1;
[y:=a*b]2;
while [y> a+b]3 {
 [a:=a+1]4;
 [x:= a+b]5
}

[x:= a+b]1;
[y:=a*b]2;
while [y> x]3 {
 [a:=a+1]4;
 [x:= a+b]5
}

Optimized code:

cs6463 11

Available Expression Analysis
 Domain of analysis

 All expressions within a
function

 For each basic block n, let
 DEexp(n)
 Exps evaluated without any

operand redefined
 ExpKill(n)
 Exps whose operands are

redefined (exps killed by n)
 Goal: evaluate exps available

on all paths entering n
AvailIn(n)=∩m∈pred(n)AvailOut(m)
AvailOut(m) = DEexp(m)∪
 (AvailIn(m)-ExpKill(m))
==>

 AvailIn(n)= ∩ m∈pred(n)
 (DEexp(m) ∪
 (AvailIn(m)-ExpKill(m))

m:=a+b
b:=c+d

p:=a+b
e:=c+d

q:=a+b
e:=c+d

e:=b+18
s:=a+b
a:=e+f

e:=a+17
t:=c+d
b:=e+f

w:=a+b
X:=e+f

y:=a+b
c:=c+d

A

B
C

D E

F

G

cs6463 12

Algorithm: computing available
expressions
 For each basic block n, let

 DEexp(n)=expressions evaluated without any operand redefined
 ExpKill(n)=expressions whose operands are redefined in n

 Goal: evaluate expressions available from entry to n

AvailIn(n)= ∩ m∈pred(n)(DEexp(m) ∪ (AvailIn(m)-ExpKill(m))

for each basic block bi
 compute DEexp(bi) and ExpKill(bi)
 AvailIn(bi) := isEntry(bi)? ∅ : Domain(Exp);
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Avail(bi)
 AvailIn(bi)= ∩ m∈pred(bi)(DEexp(m) ∪ (AvailIn(m)-ExpKill(m))
 if (AvailIn(bi) != old) changed := true

cs6463 13

Solution
Available Expression Analysis

m:=a+b
b:=c+d

p:=a+b
e:=c+d

q:=a+b
e:=c+d

e:=b+18
s:=a+b
a:=e+f

e:=a+17
t:=c+d
b:=e+f

w:=a+b
X:=e+f

y:=a+b
c:=c+d

A

B
C

D E

F

G
1,21234521,2G

2,412345∅1,4F

1,2123451,3,42,4,5E

1,2123451,4,53,4D

21234541,2C

21234541,2B

∅∅1,32A

AvailAvailExpKilDEexp

Domain: a+b(1), c+d(2),
 b+18(3),e+f(4), a+17(5)

cs6463 14

Iterative dataflow algorithm
 Iterative evaluation of result

sets until a fixed point is
reached
 Does the algorithm always

terminate?
 If the result sets are

bounded and grow
monotonically, then yes;
Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer does the
algorithm compute?

 Unique fixed-point solution
 The meet-over-all-paths

solution
 How long does it take the

algorithm to terminate?
 Depends on traversing order

of basic blocks

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅ or Domain
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

cs6463 15

Traversing order of basic blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a nodes
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs6463 16

The Overall Pattern
 Each data-flow analysis takes the form
 Input(n) := ∅ if n is program entry/exit

 := Λ m∈Flow(n) Result(m) otherwise
Result(n) = ƒn (Input(n))

 where Λ is ∩ or ∪ (may vs. must analysis)
 May analysis: detect properties satisfied by at least one path (∪)
 Must analysis: detect properties satisfied by all paths(∩)

 Flow(n) is either pred(n) or succ(n) (forward vs. backward flow)
 Forward flow: data flow forward along control-flow edges.

 Input(n) is data entering n, Result is data exiting n
 Input(n) is ∅ if n is program entry

 Backward flow: data flow backward along control-flow edges.
 Input(n) is data exiting n, Result is data entering n
 Input(n) is ∅ if n is program exit

 Function ƒn is the transfer function associated with each block n

cs6463 17

The Mathematical Foundation of
Dataflow Analysis
 Mathematical formulation of dataflow analysis

 The property space L is used to represent the data flow domain
information

 The combination operator Λ: P(L) → L is used to combine
information from different paths

 A set P is an ordered set if a partial order ≤ can be
defined s.t. ∀x,y,z∈P
 x ≤ x (reflexive)

 If x ≤ y and y ≤ x, then x = y (asymmetric)
 If x ≤ y and y ≤ z implies x ≤ z (transitive)

 Example: Power(L) with ⊆ define the partial order

cs6463 18

Upper and lower bounds
 Given an ordered set (P, ≤), for each S ⊆ P

 Upper bound:
 x is an upper bound of S if x ∈ P and ∀y∈S: y ≤ x

 x is the least upper bound of S if
 x is an upper bound of S, and
 x ≤ y for all upper bounds y of S

 The join operation V
 V S is the least upper bound of S
 x V y is the least upper bound of {x,y}

 Lower bound:
 x is a lower bound of S if x ∈ P and ∀y∈S: x ≤ y

 x is the greatest lower bound of S if
 x is an lower bound of S, and
 y ≤ x for all lower bounds y of S

 The meet operation Λ
 Λ S is the least upper bound of S
 x Λ y is the least upper bound of {x,y}

cs6463 19

Lattices
 An ordered set (L, ≤, V, Λ) is a lattice

 If x Λ y and x V y exist for all x,y∈L
 An lattice (L,≤, Λ) is a complete lattice if

 Each subset Y ⊆ L has a least upper bound and a greatest lower bound
 LeastUpperBound(Y) = Vm∈Y m
 GreatestLowerBound(Y) = Λ m∈Y m

 All finite lattices are complete
 Example lattice that is not complete: the set of all integers I

 For any x, y∈I, x Λ y = min(x,y), x V y = max(x,y)
 But LeastUpperBound(I) does not exist
 I ∪ {+∞,−∞} is a complete lattice

 Each complete lattice has
 A top element: the least element
 A bottom element: the greatest element

cs6463 20

Chains
 A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y

 A set S has no infinite chains if every chain in S is finite
 A set S satisfies the finite ascending chain condition if

 For all sequences x1 ≤ x2 ≤ …, there exists n such that

 xn = xn+1 = …
 That is, all chains in S have an finite upper bound

 A complete lattice L satisfies the finite ascending chain condition if
each ascending chain of L eventually stabilizes
 If l1≤ l2 ≤ l3 ≤ … , then there is an upper bound ln = ln+1=ln+2…
 This means starting from an arbitrary element e ∈ L, one can only

increase e by a finite number of times before reaching an upper bound

cs6463 21

Application to Dataflow Analysis
 Dataflow information will be lattice values

 Transfer functions operate on lattice values
 Solution algorithm will generate increasing

sequence of values at each program point
 Ascending chain condition will ensure

termination

 Can use V (join) or Λ (meet) to combine
values at control-flow join points

cs6463 22

Example Dataflow Analysis
 Reaching Definitions

 L = Power(Assignments)
 L is partially ordered by subset inclusion

 ≤ is subset relation; V is set union

 The least upper bound (join) operation is set union.
 The least (top) element is ∅

 L satisfies the finite ascending chain condition
because Assignments is finite

 What about live variable analysis and available
expression analysis?

cs6463 23

Transfer Functions
 Each basic block n in a data-flow analysis defines a transfer function
ƒn on the property space L (ƒn:L->L)

 Out(n) = ƒn (In(n))
 The set of transfer functions F over L must satisfy the following

conditions
 F contains the identity function;
 F is closed under composition of functions

 Composition of monotone functions are also monotone
 All transfer functions are monotone if

 For each e1, e2 ∈ L, if e1 ≤ e2, then ƒn(e1) ≤ ƒn(e2);
 Sometimes transfer functions are distributive over the join/meet op

f(x ^ y) = f(x) ^ f(y)
 Distributivity implies monotonicity

cs6463 24

Reaching Definitions
 P = power set of all definitions in program (all subsets of the set

of definitions in program)
 All transfer functions have the form

f(x) = GEN ∪ (x-KILL)

 Does it satisfy required lattice properties?
 Does it support the required operations?

 Three operations: ≤, V, Λ; bottom and top

 Does it satisfy finite ascending chain condition?

 Are transfer functions monotone (distributive)?
 Are they valid transfer functions?

 Df(x) = ∅ ∪ (x- ∅) is the identity function

 What about composition?
 Are they monotone?

 if x ⊆ y, then GEN ∪ (x-KILL) ⊆ GEN ∪ (y-KILL) ?

 Are they distributive?
(GEN ∪ (x-KILL)) ∪ (GEN ∪ (y-KILL)) = GEN ∪ ((x ∪ y) -KILL) ?

cs6463 25

Reaching Definitions
Composition and Distributivity
 Composition: given two transfer functions (f1 and f2)

 f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2), f1(f2(x)) can be
expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
 = a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

 Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1, then f1(f2(x)) =
a ∪ (x – b)

 Distributivity: f(x ∪ y) = f(x) ∪ f(y)
 f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))

 = a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
 = f(x ∪ y)

cs6463 26

Monotone Frameworks
 A monotone framework consists of

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 A set F of monotone functions from L to L that

 contains the identity function and
 is closed under function composition

 A distributive framework is a monotone framework (L,≤, Λ,F) that
additionally satisfies
 All functions f in F are required to be distributive

 f (l1 Λ l2) = f (l1) Λ f (l2)
 A bit-vector framework is a monotone framework that

 L = Power(D), where D is a finite set
 Each transfer function in F has the format Gen ∪ (Res-Kill)
 All bit-vector frameworks are distributive

 Not all monotone frameworks are distributive
 Example non-distributive framework: constant propagation

cs6463 27

General Result
All GEN/KILL transfer function frameworks

satisfy
 Identity
 Composition
 Distributivity

Properties

cs6463 28

Worklist Algorithm for Solving
Dataflow Equations
For each basic block n do

Inn := ∅ or Domain; Outn := fn(Inn)

Inn0 := ∅; Outn := fn0(Inn0)

worklist := {all basic blocks}-{ entry/exit block n0}

while worklist ≠ ∅ do

remove a node n from worklist

Inn := ∩ or ∪ [m in pred(n) or succ(n)] Outm

Outn := fn(Inn)

if Outn changed then

worklist := worklist ∪ [succ(n) or pred(n)]

cs6463 29

Meet Over Paths Solution
 What is the ideal solution for dataflow analysis?
 Consider a path p = n0, n1, …, nkn

 for all i ni ∈ flow(ni+1)

 The solution must take this path into account:
fp(top)= (fnk(fnk-1(…fn1(fn0(top)) …)) ≤ Inn

 So the solution must have the property that
^{fp (top) . p is a path to n} ≤ Inn

and ideally
^{fp (top) . p is a path to n} = Inn

cs6463 30

Distributivity
 Distributivity preserves control-flow

precision
 If framework is distributive, then worklist

algorithm produces the meet over paths
solution
 For each basic block n:

^{fp (top) . p is a path to n} = Inn

cs6463 31

Lack of Distributivity Example
 Constant Calculator
 Flat Lattice on Integers

 Actual lattice records a single value for each
variable
 Example element: [a→3, b→2, c→5]

-1 10

TOP

BOT

-2 2 ……

cs6463 32

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][b→3, a→2]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision:
[a→TOP, b→TOP, c→5] more precise

[a→TOP, b→TOP]

[a→TOP, b→TOP, c→TOP,]

cs6463 33

How to Make Analysis Distributive
 Keep combinations of values on different

paths
a = 2
b = 3

a = 3
b = 2

{[a→3, b→2]}{[a→2, b→3]}

{[a→2, b→3], [a→3, b→2]}
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]}

cs6463 34

Issues
 Basically simulating all combinations of

values in all executions
 Exponential blowup
 Non-termination because of infinite ascending

chains

 Non-termination solution
 Use widening operator to eliminate blowup

(can make it work at granularity of variables)
 Lose precision in many cases

cs6463 35

Termination Argument
 Why does algorithm terminate?
 For each basic block n,

 Sequence of values taken on by Inn or Outn is a
chain.

 If values stop increasing, worklist empties and
algorithm terminates.

 If lattice has ascending chain property,
algorithm terminates
 Algorithm terminates for finite lattices
 For lattices without ascending chain property,

use widening operator

cs6463 36

Widening Operators
 Detect lattice values that may be part of an

infinitely ascending chain
 Artificially raise value to least upper bound of

chain
 Example:

 Lattice is set of all subsets of integers
 Could be used to collect possible values taken

on by variable during execution of program
 Widening operator might raise all sets of size n

or greater to Bottom (likely to be useful for
loops)

cs6463 37

General Sources of Imprecision
 Abstraction Imprecision

 Concrete values (integers) abstracted as lattice values (e.g.,
use >0, =0, <0 to approximate values of a variable)

 Lattice values less precise than execution values
 Abstraction function throws away information

 Control Flow Imprecision
 One lattice value for all possible control flow paths
 Analysis result has a single lattice value to summarize

results of multiple concrete executions
 Join/meet operation moves up in lattice to combine values

from different execution paths
 Typically if x ≤ y, then x is more precise than y

cs6463 38

More about dataflow analysis
 Other data-flow problems

 Reaching definition analysis
 A definition point d of variable v reaches CFG point p iff there is a

path from d to p along which v is not redefined
 At any CFG point p, what definition points can reach p?

 Very busy expression analysis
 An expression e is very busy at a CFG point p if it is evaluated on

every path leaving p, and evaluating e at p yields the same result.
 At any CFG point p, what expressions are very busy?

 Constant propagation analysis
 A variable-value pair (v,c) is valid at a CFG point p if on every

path from procedure entry to p, variable v has value c
 At any CFG point p, what variables have constants?

 Sign analysis
 A variable-sign (>0,0,<0) pair (v,s) is valud at a CFG point p is on

every path from procedure entry to p, variable v has sign s.

cs6463 39

Theory and Application
 Dataflow analysis works (always terminates) on monotone

frameworks
 Correctness

 the iterative dataflow analysis algorithm always terminates and it
computes the least (or Minimal Fixed Point) solution to the instance of
monotone framework given as input

 Complexity
 Suppose that the input control-flow graph contains

 at most b ≥ 1 distinct basic blocks (nodes)
 at most e ≥ b edges

 Suppose the complete lattice L has a finite height at most h ≥ 1
 Suppose each transfer function takes a single op (constant time)
 Then there will be at most O(e · h) basic operations.

 Example: build instances of monotone frameworks for various
dataflow analysis

