
cs6463 1

Dataflow analysis

Theory and Applications

cs6463 2

Control-flow graph
 Graphical representation of runtime control-flow paths

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, register

allocation, instruction scheduling…
 Alternative CFG: Each node contains a single statement

……
 i = 0
 while (i < 50) {
 t1 = b * 2;
 a = a + t1;
 i = i + 1;
 }
….

if I < 50

……
 t1 := b * 2;
 a := a + t1;
 i = i + 1;

i =0;

cs6463 3

Building control-flow graphs
Identifying basic blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block, including
 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0 (leader of the basic block)
 All statements following S0 up to but not including the next starting

statement (or the end of input)

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs6463 4

Building control-flow graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block B2,
create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge from
B1 to the basic block that immediately follows B1 in the original
evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs6463 5

Example Dataflow
Live variable analysis
 A data-flow analysis problem

 A variable v is live at CFG point p iff there is a path from
p to a use of v along which v is not redefined

 At any CFG point p, what variables are alive?

 Live variable analysis can be used in
 Global register allocation

 Dead variables no longer need to be in registers

 Useless-store elimination
 Dead variable don’t need to be stored back to memory

 Uninitialized variable detection
 No variable should be alive at program entry point

cs6463 6

Computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

S1: m := y * z
S2: y := y -z
S3: o := y * z

M

for each basic block n:S1;S2;S3;…;Sk

VarKill := ∅
UEVar(n) := ∅
for i = 1 to k
 suppose Si is “x := y op z”
 if y ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {y}
 if z ∉ VarKill
 UEVar(n) = UEVar(n) ∪ {z}
 VarKill = VarKill ∪ {x}

cs6463 7

Computing live variables
 Domain

 All variables inside a function
 For each basic block n, let

 UEVar(n)
 vars used before defined
 VarKill(n)
 vars defined (killed by n)

 Goal: evaluate vars alive on
entry to and exit from n
LiveOut(n)=∪m∈succ(n)LiveIn(m)
LiveIn(m)=UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

 ==>
 LiveOut(n)= ∪ m∈succ(n)

 (UEVar(m) ∪
 (LiveOut(m)-VarKill(m))

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G

cs6463 8

Algorithm: computing live variables
 For each basic block n, let

 UEVar(n)=variables used before any definition in n
 VarKill(n)=variables defined (modified) in n (killed by n)

 Goal: evaluate names of variables alive on exit from n
 LiveOut(n)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

m∈succ(n)

for each basic block bi
 compute UEVar(bi) and VarKill(bi)
 LiveOut(bi) := ∅
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = LiveOut(bi)

 LiveOut(bi)= ∪ (UEVar(m) ∪ (LiveOut(m) - VarKill(m))

 if (LiveOut(bi) != old) changed := true

m∈succ(bi)

cs6463 9

Solution
Computing live variables

 Domain
 a,b,c,d,e,f,m,n,p,q,r,s,t,u,v,wm:=a+b

n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d

m:=a+b
n:=c+d

A

B
C

D E

F

G ∅

∅

∅

∅

∅

∅

∅

Live
Out

∅∅m,na,b,
c,d

G

a,b,c,d,
f

a,b,c,dv,wa,b,
c,d

F

a,b,c,d,
f

a,b,c,de,t,ua,c,
d,f

E

a,b,c,d,
f

a,b,c,de,s,
u

a,b,
f

D

a,b,c,d,
f

a,b,c,d
,f

q,ra,b,
c,d

C

a,b,c,da,b,c,dp,rc,dB

a,b,c,d,
f

a,b,c,d
,f

m,na,bA

LiveOutLiveOu
t

Vark
ill

UE
var

cs6463 10

Another Example
Available Expressions Analysis
 The aim of the Available Expressions Analysis is to

determine
 For each program point, which expressions must have already

been computed, and not later modified, on all paths to the
program point.

 Example

[x:= a+b]1;
[y:=a*b]2;
while [y> a+b]3 {
 [a:=a+1]4;
 [x:= a+b]5
}

[x:= a+b]1;
[y:=a*b]2;
while [y> x]3 {
 [a:=a+1]4;
 [x:= a+b]5
}

Optimized code:

cs6463 11

Available Expression Analysis
 Domain of analysis

 All expressions within a
function

 For each basic block n, let
 DEexp(n)
 Exps evaluated without any

operand redefined
 ExpKill(n)
 Exps whose operands are

redefined (exps killed by n)
 Goal: evaluate exps available

on all paths entering n
AvailIn(n)=∩m∈pred(n)AvailOut(m)
AvailOut(m) = DEexp(m)∪
 (AvailIn(m)-ExpKill(m))
==>

 AvailIn(n)= ∩ m∈pred(n)
 (DEexp(m) ∪
 (AvailIn(m)-ExpKill(m))

m:=a+b
b:=c+d

p:=a+b
e:=c+d

q:=a+b
e:=c+d

e:=b+18
s:=a+b
a:=e+f

e:=a+17
t:=c+d
b:=e+f

w:=a+b
X:=e+f

y:=a+b
c:=c+d

A

B
C

D E

F

G

cs6463 12

Algorithm: computing available
expressions
 For each basic block n, let

 DEexp(n)=expressions evaluated without any operand redefined
 ExpKill(n)=expressions whose operands are redefined in n

 Goal: evaluate expressions available from entry to n

AvailIn(n)= ∩ m∈pred(n)(DEexp(m) ∪ (AvailIn(m)-ExpKill(m))

for each basic block bi
 compute DEexp(bi) and ExpKill(bi)
 AvailIn(bi) := isEntry(bi)? ∅ : Domain(Exp);
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Avail(bi)
 AvailIn(bi)= ∩ m∈pred(bi)(DEexp(m) ∪ (AvailIn(m)-ExpKill(m))
 if (AvailIn(bi) != old) changed := true

cs6463 13

Solution
Available Expression Analysis

m:=a+b
b:=c+d

p:=a+b
e:=c+d

q:=a+b
e:=c+d

e:=b+18
s:=a+b
a:=e+f

e:=a+17
t:=c+d
b:=e+f

w:=a+b
X:=e+f

y:=a+b
c:=c+d

A

B
C

D E

F

G
1,21234521,2G

2,412345∅1,4F

1,2123451,3,42,4,5E

1,2123451,4,53,4D

21234541,2C

21234541,2B

∅∅1,32A

AvailAvailExpKilDEexp

Domain: a+b(1), c+d(2),
 b+18(3),e+f(4), a+17(5)

cs6463 14

Iterative dataflow algorithm
 Iterative evaluation of result

sets until a fixed point is
reached
 Does the algorithm always

terminate?
 If the result sets are

bounded and grow
monotonically, then yes;
Otherwise, no.

 Fixed-point solution is
independent of evaluation
order

 What answer does the
algorithm compute?

 Unique fixed-point solution
 The meet-over-all-paths

solution
 How long does it take the

algorithm to terminate?
 Depends on traversing order

of basic blocks

for each basic block bi
 compute Gen(bi) and Kill(bi)
 Result(bi) := ∅ or Domain
for (changed := true; changed;)
 changed = false
 for each basic block bi
 old = Result(bi)
 Result(bi)=
 ∩ or ∪
 [m∈pred(bi) or succ(bi)]
 (Gen(m) ∪ (Result(m)-Kill(m))
 if (Result(bi) != old)
 changed := true

cs6463 15

Traversing order of basic blocks
 Facilitate fast convergence to

the fixed point
 Postorder traversal

 Visits as many of a nodes
successors as possible before
visiting the node

 Used in backward data-flow
analysis

 Reverse postorder traversal
 Visits as many of a node’s

predecessors as possible
before visiting the node

 Used in forward data-flow
analysis

4

2 3

1

1

3 2

4

postorder

Reverse
postorder

cs6463 16

The Overall Pattern
 Each data-flow analysis takes the form
 Input(n) := ∅ if n is program entry/exit

 := Λ m∈Flow(n) Result(m) otherwise
Result(n) = ƒn (Input(n))

 where Λ is ∩ or ∪ (may vs. must analysis)
 May analysis: detect properties satisfied by at least one path (∪)
 Must analysis: detect properties satisfied by all paths(∩)

 Flow(n) is either pred(n) or succ(n) (forward vs. backward flow)
 Forward flow: data flow forward along control-flow edges.

 Input(n) is data entering n, Result is data exiting n
 Input(n) is ∅ if n is program entry

 Backward flow: data flow backward along control-flow edges.
 Input(n) is data exiting n, Result is data entering n
 Input(n) is ∅ if n is program exit

 Function ƒn is the transfer function associated with each block n

cs6463 17

The Mathematical Foundation of
Dataflow Analysis
 Mathematical formulation of dataflow analysis

 The property space L is used to represent the data flow domain
information

 The combination operator Λ: P(L) → L is used to combine
information from different paths

 A set P is an ordered set if a partial order ≤ can be
defined s.t. ∀x,y,z∈P
 x ≤ x (reflexive)

 If x ≤ y and y ≤ x, then x = y (asymmetric)
 If x ≤ y and y ≤ z implies x ≤ z (transitive)

 Example: Power(L) with ⊆ define the partial order

cs6463 18

Upper and lower bounds
 Given an ordered set (P, ≤), for each S ⊆ P

 Upper bound:
 x is an upper bound of S if x ∈ P and ∀y∈S: y ≤ x

 x is the least upper bound of S if
 x is an upper bound of S, and
 x ≤ y for all upper bounds y of S

 The join operation V
 V S is the least upper bound of S
 x V y is the least upper bound of {x,y}

 Lower bound:
 x is a lower bound of S if x ∈ P and ∀y∈S: x ≤ y

 x is the greatest lower bound of S if
 x is an lower bound of S, and
 y ≤ x for all lower bounds y of S

 The meet operation Λ
 Λ S is the least upper bound of S
 x Λ y is the least upper bound of {x,y}

cs6463 19

Lattices
 An ordered set (L, ≤, V, Λ) is a lattice

 If x Λ y and x V y exist for all x,y∈L
 An lattice (L,≤, Λ) is a complete lattice if

 Each subset Y ⊆ L has a least upper bound and a greatest lower bound
 LeastUpperBound(Y) = Vm∈Y m
 GreatestLowerBound(Y) = Λ m∈Y m

 All finite lattices are complete
 Example lattice that is not complete: the set of all integers I

 For any x, y∈I, x Λ y = min(x,y), x V y = max(x,y)
 But LeastUpperBound(I) does not exist
 I ∪ {+∞,−∞} is a complete lattice

 Each complete lattice has
 A top element: the least element
 A bottom element: the greatest element

cs6463 20

Chains
 A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y

 A set S has no infinite chains if every chain in S is finite
 A set S satisfies the finite ascending chain condition if

 For all sequences x1 ≤ x2 ≤ …, there exists n such that

 xn = xn+1 = …
 That is, all chains in S have an finite upper bound

 A complete lattice L satisfies the finite ascending chain condition if
each ascending chain of L eventually stabilizes
 If l1≤ l2 ≤ l3 ≤ … , then there is an upper bound ln = ln+1=ln+2…
 This means starting from an arbitrary element e ∈ L, one can only

increase e by a finite number of times before reaching an upper bound

cs6463 21

Application to Dataflow Analysis
 Dataflow information will be lattice values

 Transfer functions operate on lattice values
 Solution algorithm will generate increasing

sequence of values at each program point
 Ascending chain condition will ensure

termination

 Can use V (join) or Λ (meet) to combine
values at control-flow join points

cs6463 22

Example Dataflow Analysis
 Reaching Definitions

 L = Power(Assignments)
 L is partially ordered by subset inclusion

 ≤ is subset relation; V is set union

 The least upper bound (join) operation is set union.
 The least (top) element is ∅

 L satisfies the finite ascending chain condition
because Assignments is finite

 What about live variable analysis and available
expression analysis?

cs6463 23

Transfer Functions
 Each basic block n in a data-flow analysis defines a transfer function
ƒn on the property space L (ƒn:L->L)

 Out(n) = ƒn (In(n))
 The set of transfer functions F over L must satisfy the following

conditions
 F contains the identity function;
 F is closed under composition of functions

 Composition of monotone functions are also monotone
 All transfer functions are monotone if

 For each e1, e2 ∈ L, if e1 ≤ e2, then ƒn(e1) ≤ ƒn(e2);
 Sometimes transfer functions are distributive over the join/meet op

f(x ^ y) = f(x) ^ f(y)
 Distributivity implies monotonicity

cs6463 24

Reaching Definitions
 P = power set of all definitions in program (all subsets of the set

of definitions in program)
 All transfer functions have the form

f(x) = GEN ∪ (x-KILL)

 Does it satisfy required lattice properties?
 Does it support the required operations?

 Three operations: ≤, V, Λ; bottom and top

 Does it satisfy finite ascending chain condition?

 Are transfer functions monotone (distributive)?
 Are they valid transfer functions?

 Df(x) = ∅ ∪ (x- ∅) is the identity function

 What about composition?
 Are they monotone?

 if x ⊆ y, then GEN ∪ (x-KILL) ⊆ GEN ∪ (y-KILL) ?

 Are they distributive?
(GEN ∪ (x-KILL)) ∪ (GEN ∪ (y-KILL)) = GEN ∪ ((x ∪ y) -KILL) ?

cs6463 25

Reaching Definitions
Composition and Distributivity
 Composition: given two transfer functions (f1 and f2)

 f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2), f1(f2(x)) can be
expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
 = a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
 = (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

 Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1, then f1(f2(x)) =
a ∪ (x – b)

 Distributivity: f(x ∪ y) = f(x) ∪ f(y)
 f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))

 = a ∪ (x – b) ∪ (y – b) = a ∪ ((x ∪ y) – b)
 = f(x ∪ y)

cs6463 26

Monotone Frameworks
 A monotone framework consists of

 A complete lattice (L,≤) that satisfies the Ascending Chain Condition
 A set F of monotone functions from L to L that

 contains the identity function and
 is closed under function composition

 A distributive framework is a monotone framework (L,≤, Λ,F) that
additionally satisfies
 All functions f in F are required to be distributive

 f (l1 Λ l2) = f (l1) Λ f (l2)
 A bit-vector framework is a monotone framework that

 L = Power(D), where D is a finite set
 Each transfer function in F has the format Gen ∪ (Res-Kill)
 All bit-vector frameworks are distributive

 Not all monotone frameworks are distributive
 Example non-distributive framework: constant propagation

cs6463 27

General Result
All GEN/KILL transfer function frameworks

satisfy
 Identity
 Composition
 Distributivity

Properties

cs6463 28

Worklist Algorithm for Solving
Dataflow Equations
For each basic block n do

Inn := ∅ or Domain; Outn := fn(Inn)

Inn0 := ∅; Outn := fn0(Inn0)

worklist := {all basic blocks}-{ entry/exit block n0}

while worklist ≠ ∅ do

remove a node n from worklist

Inn := ∩ or ∪ [m in pred(n) or succ(n)] Outm

Outn := fn(Inn)

if Outn changed then

worklist := worklist ∪ [succ(n) or pred(n)]

cs6463 29

Meet Over Paths Solution
 What is the ideal solution for dataflow analysis?
 Consider a path p = n0, n1, …, nkn

 for all i ni ∈ flow(ni+1)

 The solution must take this path into account:
fp(top)= (fnk(fnk-1(…fn1(fn0(top)) …)) ≤ Inn

 So the solution must have the property that
^{fp (top) . p is a path to n} ≤ Inn

and ideally
^{fp (top) . p is a path to n} = Inn

cs6463 30

Distributivity
 Distributivity preserves control-flow

precision
 If framework is distributive, then worklist

algorithm produces the meet over paths
solution
 For each basic block n:

^{fp (top) . p is a path to n} = Inn

cs6463 31

Lack of Distributivity Example
 Constant Calculator
 Flat Lattice on Integers

 Actual lattice records a single value for each
variable
 Example element: [a→3, b→2, c→5]

-1 10

TOP

BOT

-2 2 ……

cs6463 32

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][b→3, a→2]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision:
[a→TOP, b→TOP, c→5] more precise

[a→TOP, b→TOP]

[a→TOP, b→TOP, c→TOP,]

cs6463 33

How to Make Analysis Distributive
 Keep combinations of values on different

paths
a = 2
b = 3

a = 3
b = 2

{[a→3, b→2]}{[a→2, b→3]}

{[a→2, b→3], [a→3, b→2]}
c = a+b

{[a→2, b→3,c→5], [a→3, b→2,c→5]}

cs6463 34

Issues
 Basically simulating all combinations of

values in all executions
 Exponential blowup
 Non-termination because of infinite ascending

chains

 Non-termination solution
 Use widening operator to eliminate blowup

(can make it work at granularity of variables)
 Lose precision in many cases

cs6463 35

Termination Argument
 Why does algorithm terminate?
 For each basic block n,

 Sequence of values taken on by Inn or Outn is a
chain.

 If values stop increasing, worklist empties and
algorithm terminates.

 If lattice has ascending chain property,
algorithm terminates
 Algorithm terminates for finite lattices
 For lattices without ascending chain property,

use widening operator

cs6463 36

Widening Operators
 Detect lattice values that may be part of an

infinitely ascending chain
 Artificially raise value to least upper bound of

chain
 Example:

 Lattice is set of all subsets of integers
 Could be used to collect possible values taken

on by variable during execution of program
 Widening operator might raise all sets of size n

or greater to Bottom (likely to be useful for
loops)

cs6463 37

General Sources of Imprecision
 Abstraction Imprecision

 Concrete values (integers) abstracted as lattice values (e.g.,
use >0, =0, <0 to approximate values of a variable)

 Lattice values less precise than execution values
 Abstraction function throws away information

 Control Flow Imprecision
 One lattice value for all possible control flow paths
 Analysis result has a single lattice value to summarize

results of multiple concrete executions
 Join/meet operation moves up in lattice to combine values

from different execution paths
 Typically if x ≤ y, then x is more precise than y

cs6463 38

More about dataflow analysis
 Other data-flow problems

 Reaching definition analysis
 A definition point d of variable v reaches CFG point p iff there is a

path from d to p along which v is not redefined
 At any CFG point p, what definition points can reach p?

 Very busy expression analysis
 An expression e is very busy at a CFG point p if it is evaluated on

every path leaving p, and evaluating e at p yields the same result.
 At any CFG point p, what expressions are very busy?

 Constant propagation analysis
 A variable-value pair (v,c) is valid at a CFG point p if on every

path from procedure entry to p, variable v has value c
 At any CFG point p, what variables have constants?

 Sign analysis
 A variable-sign (>0,0,<0) pair (v,s) is valud at a CFG point p is on

every path from procedure entry to p, variable v has sign s.

cs6463 39

Theory and Application
 Dataflow analysis works (always terminates) on monotone

frameworks
 Correctness

 the iterative dataflow analysis algorithm always terminates and it
computes the least (or Minimal Fixed Point) solution to the instance of
monotone framework given as input

 Complexity
 Suppose that the input control-flow graph contains

 at most b ≥ 1 distinct basic blocks (nodes)
 at most e ≥ b edges

 Suppose the complete lattice L has a finite height at most h ≥ 1
 Suppose each transfer function takes a single op (constant time)
 Then there will be at most O(e · h) basic operations.

 Example: build instances of monotone frameworks for various
dataflow analysis

