Exercise 7

Apr 17/22, 2008

- 1. Given the following definitions of C and A, define mappings $\alpha : C \to A$ and $\gamma : A \to C$ so that $C < \alpha, \gamma > A$ is a Galois connection.
 - (a) C: { c | c is a set of integers} A: { >= n | n is an integer}
 - (b) C: { c | c is memory store in the heap allocated by the program at runtime}

A: $\{a \mid a \text{ is malloc expression in the program }\}$

2. Given a Galois connection $C < \alpha, \gamma > A$ where $C = \{ c \mid c \text{ is a set of integers} \}$

A = { >= n | n is an integer } Define the binary relation $R : Int \to A$ that implies the given Galois connection. Define $A' = \gamma A$ so that $\alpha' : C \to A'$ becomes a closure map in C.

3. Given a Galois connection $C < \alpha, \gamma > A$ where $C = \{ c \mid c \text{ is a set of integers} \}$ $A = \{ >= n \mid n \text{ is an integer } \}$ Define a sound approximation for the integer multiplication operation on A.