Exploring Parallelism At Different Levels

Balanced composition and customization of optimizations
Exploring Parallelism

Focus on Parallelism at different granularities

- On shared memory symmetric multiprocessors
 - The processors can run separate processes/threads
 - Starting processes and process synchronizations are expensive
 - Shared memory accesses can cause slowdowns
 - Processors have private caches and internal parallelism
Means Of Parallelism

- **Data/Loop parallelism**: single instruction stream
 - Threads operating concurrently on different data
 - E.g., OpenMP parallel for, CUDA/OpenCL kernels, vector operations...

- **Task parallelism**: explicit multi-tasking
 - Explicitly create/manage parallel threads or tasks, e.g., through pthreads, TBB, Cilk, ...
 - Different threads communicate with each other via common patterns of data sharing, e.g., task queues

- Here we focus on data parallelism over loops
 - **Loop parallelization**: parallel do; Recognition of reduction; Privatization of variables; pipelining
 - **Loop selection, skewing, and interchange**
 - **Loop fusion** (vs. loop fission/distribution)
Exploring parallelism at different levels
- Loop parallelization at different granularities
 - OpenMP parallel for
 - SIMD vectorization
 - Pipelined parallelism

composition of optimizations
- Balancing degree of parallelism, cost of synchronization, memory performance, and CPU efficiency
Loop Parallelization

- It is valid to convert a sequential loop to a parallel loop if the loop carries no dependence.

- It is safe to evaluate different iterations of I in parallel

  ```
  DO I=1,N
    X(I) = X(I) + C
  ENDDO
  ```

- However, the same is not true for the following loop

  ```
  DO I=1,N
    X(I+1) = X(I) + C
  ENDDO
  ```

 Here values computed in one iteration are used in the next
Recognition of Reductions

- Reducing an array of values into a single value
 - Sum, min/max, count reductions

    ```
    S = 0.0
    DO I = 1, N
        S = S + A(I)
    ENDDO
    ```

 - Not directly parallelizable

- Assuming commutativity and associativity

  ```
  S = 0.0
  DO k = 1, 4
      SUM(k) = 0.0
  ENDDO
  DO I = 1, N, 4
      SUM(1:3) = SUM(1:3) + A(I:I+3)
  ENDDO
  DO k = 1, 4
      S = S + SUM(k)
  ENDDO
  ```

 - Can use vector registers to operate in parallel
Recognition of Reductions

- Reduction recognized by
 - Presence of self true, output and anti dependences
 - Absence of other true dependences

```c
DO I = 1, N
    S = S + A(I)
ENDDO
```

```c
DO I = 1, N
    S = S + A(I)
    T(I) = S
ENDDO
```
Privatization of Variables

- A variable \(x \) in a loop \(L \) is privatizable if it is defined before used along every path from the loop entry.

\[
\begin{align*}
\text{DO } & I = 1,N \\
S1 & T = A(I) \\
S2 & A(I) = B(I) \\
S3 & B(I) = T \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
\text{PARALLEL DO } & I = 1,N \\
& \text{PRIVATE } t \\
S1 & t = A(I) \\
S2 & A(I) = B(I) \\
S3 & B(I) = t \\
\text{ENDDO}
\end{align*}
\]

- Private and reduction variables must be identified correctly for loop parallelization to be correct.
 - To ensure no dependences (synchronizations) among threads

```c
#pragma omp for private(j)
for (i=0; i < N; i++) {
    for (j = 0; j < N; j++) {
        X[i][j] = X[i][j] + C;
    }
}
```
Multi-level Loop Parallelism

- **Coarse-grained parallelism**
 - Create multiple threads on different CPU cores
    ```c
    #pragma omp parallel for
    for (i=0; i < N; i++) {
        X[i] = X[i] + C;
    }
    ```

- **Fine-grained parallelism**
 - Internal parallelism within each CPU core (e.g., SIMD vectorization)
    ```c
    vec_splat(C, r1)
    for (i=0; i<N; i = i + 4){
        vec_mov_mr(X+i, r2)
        vec_add_rr(r1, r2)
        vec_mov_rm(r2, X+i)
    }
    ```
Loop Strip Mining

- Converts available parallelism into a form more suitable for the hardware

```fortran
DO I = 1, N
   A(I) = A(I) + B(I)
ENDDO

k = CEIL (N / P)
PARALLEL DO I = 1, N, k
   DO i = I, MIN(I + k-1, N)
      A(i) = A(i) + B(i)
   ENDDO
END PARALLEL DO
```
Loop Selection

- **Consider:**

 DO I = 1, N
 DO J = 1, M
 S A(I+1,J+1) = A(I,J) + A(I+1,J)
 ENDDO
 ENDDO

 Direction matrix: \[
 \begin{pmatrix}
 < & < \\
 = & <
 \end{pmatrix}
 \]

- **Interchanging the loops can lead to:**

 DO J = 1, M
 A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
 ENDDO

- **Which loop to shift?**

 - Select a parallel loop at outermost for coarse-grained parallelism
 - Select a parallel loop (with continuous memory access) at the innermost level for fine-grained parallelism
Loop Interchange

- Move parallel loops to outermost level
 - In a perfect nest of loops, a particular loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contain only ‘=‘ entries

- Example

  ```
  DO I = 1, N
    DO J = 1, N
      A(I+1, J) = A(I, J) + B(I, J)
    ENDDO
  ENDDO
  ```

 - OK for vectorization
 - Problematic for coarse-grained parallelization
 - Should the J loop be moved outside?
Loop Selection

- Generate most parallelism with adequate granularity
 - Key is to select proper loops to run in parallel
 - Optimality is a NP-complete problem

- Informal parallel code generation strategy
 - Select parallel loops and move them to the outermost position
 - Select a sequential loop to move outside and enable internal parallelism

```plaintext
DO I = 2, N+1
  DO J = 2, M+1
    parallel DO K = 1, L
    ENDDO
  ENDDO
ENDDO
ENDDO
ENDDO
```

7/9/2014 DragonStar 2014 - Qing Yi 13
Loop Skewing

DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I, J-1, K) + A(I-1, J, K)
 B(I, J, K+1) = B(I, J, K) + A(I, J, K)
 ENDDO
 ENDDO
ENDDO

Skewed using k=K+I+J:

DO I = 2, N+1
 DO J = 2, M+1
 DO k = I+J+1, I+J+L
 ENDDO
 ENDDO
ENDDO
ENDDO
Loop Skewing + Interchange

DO k = 5, N+M+1
 PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
 PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
 ENDDO
 ENDDO
ENDDO

Selection Heuristics

- Parallelize outermost loop if possible
- Make at most one outer loop sequential to enable inner parallelism
- If both fails, try skewing
- If skewing fails, try minimize the number of outside sequential loops
Pipelined Parallelism For Stencils

- Useful where complete parallelization is not available
 - Fortran command DOACROSS
    ```fortran
    DO I = 2, N-1
      DO J = 2, N-1
        A(I, J) = .25 * (A(I-1,J)+A(I,J-1) +A(I+1,J)+A(I,J+1))
      ENDDO
    ENDDO
    ```

- Pipelined Parallelism
  ```fortran
  DOACROSS I = 2, N-1
    POST (EV(1))
    DO J = 2, N-1
      WAIT(EV(J-1))
      A(I, J) = .25 * (A(I-1,J) + A(I,J-1)+ A(I+1,J) + A(I,J+1))
      POST (EV(J))
    ENDDO
  ENDDO
  ```
Reducing Synchronization Cost

\[
\text{DOACROSS } I = 2, \ N-1 \\
\text{POST } (E(1)) \\
K = 0 \\
\text{DO } J = 2, \ N-1, \ 2 \\
\quad K = K+1 \\
\quad \text{WAIT}(EV(K)) \\
\quad \text{DO } j = J, \ \text{MAX}(J+1, \ N-1) \\
\quad \quad A(I, \ J) = .25*(A(I-1,J) + A(I,J-1) + A(I+1,J) + A(I,J+1) \\
\quad \quad \text{ENDDO} \\
\quad \text{POST } (EV(K+1)) \\
\text{ENDDO} \\
\text{ENDDO}
\]
Loop Distribution and Fusion

- Loop distribution eliminates carried dependences by separating them across different loops
 - Good only for fine-grained parallelism
- Coarse-grained parallelism requires sufficiently large parallel loop bodies
 - Solution: fuse parallel loops together after distribution
 - Loop strip-mining can also be used to reduce communication
- Loop fusion is often applied after loop distribution
 - Regrouping of the loops by the compiler
Loop Fusion

- Transformation: opposite of loop distribution
 - Combine a sequence of loops into a single loop
 - Iterations of the original loops now intermixed with each other

- Safety: cannot have fusion-preventing dependences
 - Cannot bypass statements with dependences both from and to the fused loops
 - Loop-independent dependences cannot become backward carried after fusion

Fusing L1 with L3 violates the ordering constraint.

```
DO I = 1,N
S1    A(I) = B(I)+C
    ENDDO
DO I = 1,N
S2    D(I) = A(I+1)+E
    ENDDO
```
Loop Fusion Profitability

- Parallel loops should generally not be merged with sequential loops.
 - A dependence is parallelism-inhibiting if it is carried by the fused loop
 - The carried dependence may be realigned via Loop alignment
- What if the loops to be fused have different lower and upper bounds?
 - Loop alignment, peeling, and index-set splitting

DO I = 1,N
S1 A(I+1) = B(I) + C
ENDDO

DO I = 1,N
S2 D(I) = A(I) + E
ENDDO

DO I = 1,N
S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E
ENDDO
The Typed Fusion Algorithm

- **Input**: loop dependence graph \((V,E)\)
- **Output**: a new graph where loops to be fused are merged into single nodes

Algorithm
- Classify loops into two types: parallel and sequential
- Gather all dependences that inhibit fusion --- call them bad edges
- Merge nodes of \(V\) subject to the following constraints
 - **Bad Edge Constraint**: nodes joined by a bad edge cannot be fused.
 - **Ordering Constraint**: nodes joined by path containing non-parallel vertex should not be fused
Typed Fusion Example

Original loop graph

After fusing parallel loops

After fusing sequential loops
Loop Fusion/Fission For Locality

\[
\text{do } l = 1, n \\
\text{S1: } b(l) = a(l) \times 5 \\
\text{enddo} \\
\text{do } l = 1, n \\
\text{S2: } c(l) = b(l) - 2 \\
\text{enddo}
\]
Putting It All Together

- **Good Part**
 - Many transformations imply more choices to exploit parallelism

- **Bad Part**
 - Choosing the right transformation
 - How to automate transformation selection?
 - Interference between transformations

- **Effective optimization must**
 - Take a global view of transformed code
 - Know the architecture of the target machine

- **Example of Interference**

  ```plaintext
  DO I = 1, N
  DO J = 1, M
      S(I) = S(I) + A(I,J)
  ENDDO
  ENDDO
  
  *Sum Reduction gives..*
  Parallel DO I = 1, N
  S(I) = S(I) + SUM(A(I,1:M))
  ENDDO
  
  *Loop Interchange gives..*
  DO J = 1, N
  S(1:N) = S(1:N) + A(1:N,J)
  ENDDO
  ```