POET Reference Manual

Qing Yi
University of Texas At San Antonio
(qyi@uccs.edu)

January 7, 2018

Front Matter

POET is an interpreted program transformation language designed to apply source-to-source
transformations to programs written in arbitrary languages such as C, C++, Java or any domain-
specific ad-hoc languages. The POET language has been extensively used for the purpose of apply-
ing parameterized compiler optimizations to improve the performance (i.e., the runtime efficiency)
of C programs, so that differently optimized code can be automatically generated and empirically
tuned. The use of POET, however, is not limited to compiler optimizations. You can use POET
to easily process any structured input code, extract information from or apply transformations to
the input, and then output the result.

The POET language was designed and implemented by the research group lead by Dr. Qing Yi
at the University of Texas at San Antonio during 2007-2012. The project has been moved to the
University of Colorado, Colorado Springs since 2012. Please directed all questions and feedbacks
to her at qyiQ@uccs.edu.

Qing Yi
9/1/2011

Copyright (c) 2008, Qing Yi. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of UTSA nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

Table Of Content o
Building and Using POET

1.1 Building POET From Distribution
1.2 Building POET From SVN repository
1.3 Directory Structure of POET Source Distribution
1.4 Using POET e
Building Translators: Getting Started

2.1 Hello World e
2.2 The Identity Translator e
2.3 The String Translator L
2.4 Language Translators o
2.5 Program Optimizations e

Language Overview

3.1 Overview of Concepts 0 i e
3.2 Categorization of POET Names
3.3 Components of POET Programs
3.4 Notations e e e

Atomic and Compound Data Types

4.1 Atomic Values
4.1.1 Inbegers e e e e
4.1.2 SEringso e

4.2 Compound Data Structures
4.2.1 Lists . . . o o e
4.2.2 Tuples e
4.2.3 Associative Maps

4.3 Code Templates. e

4.4 Xform Handles

Code Templates

5.1 Defining Code Templates L e
5.2 Template Parameters
5.3 Template Body« e
5.4 Template Attributes

5.4.1 The parse attribute Lo

10
11
12

13
13
14
14
15

17
17
17
17
18
18
18
18
19
20

CONTENTS

5.4.2 The lookahead attribute 23
5.4.3 The match attribute 23
5.4.4 The output attribute L 24
5.4.5 The INHERIT attribute, 24
5.5 Parsing Specifications oL 24
5.6 Parsing Annotations 25
Xform Routines 27
6.1 Xform Routine Declarations 27
6.2 Invoking Xform Routines L 28
Categorization Of Variables 29
7.1 Local Variables e 29
7.2 Static Variables 30
7.3 Dynamic Variables 30
7.4 Global Variables e 30
7.4.1 Command-Line Parameters, 31
742 Macroso e 31
7.4.3 'Tracing Handles o 32
7.5 Reconfiguring POET via Macros 32
7.5.1 The TOKEN Macro i it it i e e 32
7.5.2 The KEYWORD Macro ittt e 32
7.5.3 The PREP Macro 33
7.5.4 The BACKTRACK Macro 33
7.5.5 The PARSE Macro e 33
7.5.6 The UNPARSE macro it 34
7.5.7 The Expression Macros e 34
Top-Level Commands 36
8.1 The Input Command 36
8.2 The Condition Command 37
8.3 The Evaluation Command 37
8.4 The Output Command 38
Expressions 39
9.1 Debugging Operations e 39
9.1.1 The PRINT (print) operator, 39
9.1.2 The DEBUG operator e 40
9.1.3 The ERROR Operator ittt 40
9.2 Generic comparison of values L 40
9.2.1 The == and !=operators 40
9.2.2 Integer and String comparison L Lo 41
9.3 Integer arithmetics L e 41
9.4 Boolean operations 41
9.5 String operations L 41
9.5.1 The concatenation A operatoro oo 41

9.5.2 The SPLIT operator vttt 41

CONTENTS 5

9.6 List operations L e e 41
9.6.1 List construction L Lo 41
9.6.2 The Cons Operator (:1) 42
9.6.3 List Access (The car/HEAD, cdr/TAIL, and LEN operators) 42

9.7 Tuple operations e e 42
9.7.1 Tuple Construction (the “” operator) 42
9.7.2 Tuple Access (The [| and LEN operators) 43

9.8 Associative Map Operations e 43
9.8.1 Map Construction (the MAP Operator) 43
9.8.2 Map Access (the [| and LEN operators) 43

9.9 Code Template Operations i 44
9.9.1 Object Construction (the # operator) 44
9.9.2 Code Template Access (the [] operator) 44

9.10 Variable Operations e 44
9.10.1 Variable Assignment (the “=” operator) 44
9.10.2 Un-initializing Variables (The CLEAR operator) 45

9.11 Type Expressions e 45

9.12 The Pattern Matching Operator (the “:” operator) 46

9.13 Type Conversion (The => and ==> Operators) 48

9.14 The DELAY and APPLY Operators 49

9.15 Operations On Tracing Handles 49
90.15.1 TRACE (X, €XD) « « -« o o oo e 49
9.15.2 INSERT (X, €XD) « « « v v v v e e e e e e e e e 49
0.15.3 ERASE(X, €XD) .« + « « o v e e e e 50
0.15.4 COPY(EXD) -« o o oo oo 50
9.15.5 SAVE (VI,v2,...,vIN) 50
0.15.6 RESTORE (v1, V2, oy VIN) « « v o oo oot e e e e 50

9.16 Transformation Operations 50
0.16.1 DUPLICATE(cLe2,input) . « « v v voooo oo e e 50
9.16.2 PERMUTE(config,input) 51
0.16.3 REBUILD(EXD) .« - « « « v v v oo e e e e e e 51
0.16.4 REPLACE(CL,C2NPUL) © « « o v oo e e et e e e e 51
9.16.5 REPLACE(config, input) 51

9.17 The Conditional Expression (The “7:” operator) 51

10 Statements 52

10.1 Single Statements oL e e e 52
10.1.1 The Expression statement L. 52
10.1.2 The RETURN (return) statement 52
10.1.3 Statement Block 53

10.2 Conditionals 53
10.2.1 The If-else Statement 53
10.2.2 The Switch Statement oo 53

10.3 Loops . . . o o e 54
10.3.1 The for Loop o e 54
10.3.2 The foreach Loop e 54

10.3.3 The BREAK (break) and CONTINUE (continue) statements 56

CONTENTS

Append A. Context-free grammar of the POET language 57

Chapter 1

Building and Using POET

1.1 Building POET From Distribution

After downloading a POET distribution, say poet-1.02.06.tar.gz, you can build POET using the
following commands.

tar -zxf poet-1.02.07.01.tar.gz

cd poet-1.02.07.01

./configure --prefix=<your install directory>

make (make and then run the POET interpreter on a few tests)

make check (test whether the POET interpreter works correctly)

make install (install POET interpreter and libraries on your local machine)

V V V V V V

1.2 Building POET From SVN repository

If you have access to the POET internal git repository, you can build POET using the following
commands.

> git clone git.machine://git.directory/POET/trunk

> cd POET

> aclocal

> automake -a

> autoconf

> ./configure

> make (make and then run the POET interpreter on a few tests)
> make check (test whether the POET interpreter works correctly)

1.3 Directory Structure of POET Source Distribution

The POET interpreter is implemented in C++. The distribution of POET includes the following
sub-directories.

e The src directory, which contains the C/C++/YACC/LEX code used to implement POET.

e The lib directory, which contains libraries implemented using POET.

7

8 CHAPTER 1. BUILDING AND USING POET

e The test directory, which contains POET scripts used to test POET releases.
e The examples directory, which contains examples used in various POET tutorials.

e The doc directory which contains the manual and tutorials for POET.

1.4 Using POET

Each POET release includes the language interpreter, named pcg, and various POET library
files. After running make install, the binary interpreter pcg is copied to directory <your install
directory> /bin, and the POET libraries are copied to <your install directory> /lib. The command
line options for running pcg are as follows.

Usage: pcg [-bhv] {-L<dir>} {-p<name>=<val>} <poet_filel> ... <poet_filen>
options:
-h: print out help info
-V print out version info
-c<i>: verify the first i conditions only (exit without evaluating the program)

-L<dir>: search for POET libraries in the specified directory
-p<name>=<val>: set POET parameter <name> to have value <val>

-dp: print out debugging info for parsing operations

-dl: print out debugging info for lexical analysis

-dx: print out debugging info for xform routines

—-dm: print out debugging info for pattern matching

-md: allow global names to be multiply-defined (overwritte)

-dt: print out timing information for various components of the POET interpreter

—-dy: print out debugging info from yacc parsing

Chapter 2

Building Translators: (Getting Started

This chapter goes over some example POET translators in the POET /examples directory.

2.1 Hello World

The following simple POET program (POET /exampls/helloworld.pt) prints out the string “hello
world” to standard output.

<kkokokkokkkkkkkk Hello World Script skoksksksksksksksk>
<output from="hello world"/>

NOTE1: All POET comments are either enclosed inside a pair of <* and *>, or from <<* until
the end of the current line. Specifically, all strings enclosed within < % and * > will be ignored by
the POET interpreter, and all strings following << * until the end of line will be ignored.

2.2 The Identity Translator

First and foremost, POET is designed to build translators. The easiest kind of translator is an iden-
tity translator, which reads the input code from an arbitrary file, does nothing, and then writes the
input code to a different file. The following POET code (POET /examples/IdentityTranslator.pt)
does exactly this.

<kkxkokkkkk The Tdentity Translator sokkskkokskskskkokskokkkk>
<parameter inputFile default="" message="input file name" />
<parameter outputFile default="" message="output file name" />

<input from=inputFile annot=0 to=inputCode/>
<output to=outputFile from=inputCode/>
<kxkxkxkxkx The Identity Translator skkkskskkskkskkskkskkk>

NOTE2: Each parameter declaration declares a global variable whose value can be modified via
command-line options. For example, the identity translator can be invoked using the following
command.

> pcg -pinputFile=myFilel -poutputFile=myFile2 IdentityTranslator.pt

9

10 CHAPTER 2. BUILDING TRANSLATORS: GETTING STARTED

The command-line options are optional as long as a default value (declared using the default
keyward) is given for each parameter.

NOTES3: Each input command opens a list of input files and saves the content of the files as the
content of a global variable (here the inputCode variable). The annot = 0 specification ensures
that the input files will be read as a sequence of integer/string tokens and all annotations in the
file will be ignored. to use when parsing/unparsing the input/output code.

NOTEA4: Each output command opens an external file and then outputs the content of an expres-
sion into the external file.

NOTES5S: When the input file name is an empty string, the input command will read from the
standard input (the user will be prompted to type in the input); when the output file name is an
empty string, the output command will write to the standard output (the screen).

2.3 The String Translator

In general, after reading some input files, we would like to apply some transformation and then out-
put the transformed code. The following POET program (POET //examples/StringTranslator.pt)
serves to substitute a pre-defined set of strings with other strings.

<kxkxkxkxkx The String Translator skkskkskkskkskkskkskkk>

<parameter inputFile default="" message="input file name" />

<parameter outputFile default="" message="output file name" />

<parameter inputString type=(STRING...) default="" message="string to replace" />
<parameter outputString type=(STRING...) default="" message="string to replace with" />

<input from=inputFile annot=0 to=inputCode/>

<eval
return = inputCode;
for ((p_input = inputString,p_output=outputString); p_input != NULL;
(p_input = TAIL(p_input); p_output=TAIL(p_output)))
{ return = REPLACE(HEAD(p_input), HEAD(p_output), return);}
/>

<output to=outputFile from=return/>

NOTESG6: The type attribute within a parameter declaration ensures that only a value of proper
type can be assigned to the parameter. In particular, the type (STRING...) specifies a list of
strings.

NOTET: The eval command is used to evaluate expressions and statements at the global scope.
All POET expressions must be embedded within an eval command to be evaluated at the global
scope.

NOTES: POET supports assignment statements and for loops in a similar fashion as the C
language. Because POET is dynamically typed, variables in POET do not need to be declared.

NOTE9: The HEAD and TAIL keywords are operators that extract values from a list (see sec-
tion 9.6). Specifically, H EAD returns the first element in the list, TAI L returns the tail of elements

2.4. LANGUAGE TRANSLATORS 11

in the list (excluding the first one). If the operand list is actually a single value, then HEAD(list)
returns the single value, and TAIL(list) returns NULL.

NOTE10: The REPLACE keyword is a built-in operator for systematically applying transforma-
tions (replacements) to an input expression.

Transformation Logic: The example loop first initializes two variables, p_input and p_output,
with the values of global variables inputString and outputString respectively (each variable has
a list of strings as content). It then examines whether p_input is an empty string. As long as
p_input is not empty, the body of the for loop is evaluated, which modifies the value of the return
variable by invoking the built-in REPLACE operator. Each time the REPLACE operator is
invoked, it replaces all the occurrences of HEAD(p_input) with HEAD (p-output) in the input
code contained in the return variable, where HEAD(_input) and HEAD(p-output) returns the
first string contained p_input and p_output respectively. At the end of each iteration, both p_input
and p_output are modified with the T'AIL of their original values.

2.4 Language Translators

Instead of reading an input file as a sequence of strings, we frequently need to discover the syn-
tactical structure of the input file. This is called parsing. For example, the following translators
(POET /examples/C2C.pt and C2F.pt) reads and parses the syntax of a C program, and then
unparses the code to an external file in either C syntax or Fortran syntax.

Sskkokkkkskkokckkkkk C to C Translator skokkskskskokskksksksksk>
<parameter inputFile type=STRING default="" message="input file name" />
<parameter outputFile type=STRING default="" message="output file name" />

<input from=inputFile syntax="Cfront.code" to=inputCode/>
<* You can add transformations to the inputCode here *>
<output to=outputFile syntax="Cfront.code" from=inputCode/>

kskkkkskkxkkkkxkkkk C to Fortran Translator skkskskkskskskkkskkk>
<parameter inputFile type=STRING default="" message="input file name" />
<parameter outputFile type=STRING default="" message="output file name" />

<input from=inputFile syntax="Cfront.code" to=inputCode/>
<output to=outputFile syntax="C2F.code" from=inputCode/>

NOTE11: The syntax attribute in the input and output commands specifies what language syntax
to use when parsing/unparsing the input/output code.

NOTE12: The syntax files Cfront.code and C2F.code are stored in the POET/lib directory. The
Cfront.code file contains syntax definitions for parsing/unparsing C programs. The C2F.code file
contains corresponding Fortran syntax for translating C code to Fortran.

12 CHAPTER 2. BUILDING TRANSLATORS: GETTING STARTED

2.5 Program Optimizations

Translating between the syntax of different languages is only a small part of what POET can be
used for. The language was designed to the parameterization and empirical tuning of compiler
optimizations, and a large library of optimizations have been provided to support this purpose.
The interface of these library routines is declared in POET/lib/opt.pi, and their implementations
are in POET /lib/opt.pt. For more details on how to use POET to support compiler optimizations,
see additional POET documentations which are downloadable from the POET web page at www.
cs.uccs.edu/~qyi/poet/docs. php.

Optimizing And Tuning Scientific Codes Qing Yi. In SCALABLE COMPUTING AND
COMMUNICATIONS: THEORY AND PRACTICE. Samee U. Khan, Lizhe Wang, and Albert Y.
Zomaya. John Wiley&Sons. 2011.

POET: A Scripting Language For Applying Parameterized Source-to-source Program
Transformations. Qing Yi. Software Practice & Experience. Accepted For Publication. 2011.
(The article has already been published online since MAY 11, 2011 with DOI: 10.1002/spe.1089).

www.cs.uccs.edu/~qyi/poet/docs.php
www.cs.uccs.edu/~qyi/poet/docs.php

Chapter 3

Language Overview

3.1 Overview of Concepts

The following briefly outlines the main concepts that will be covered by this manual.

1.

Atomic and compound values (Chapter 4). POET supports two types of atomic values:
integers and strings; three types of compound data structures: tuples, lists, and maps; and
one user-defined data type, code templates. It uses a special type, zform handle, to support
function pointers.

. Code templates (Chapter 5). POET code templates are essentially pointer-based data struc-

tures that can be used to build arbitrarily shaped trees and DAGs (directed acyclic graphs).
They are used to build the AST (Abstract Syntax Tree) internal representations of differ-
ent input programs and to support the parsing/unparsing of the input codes. In particular,
code templates are used in the parsing phase to recognize the structure of the input code,
in the program evaluation phase to represent the internal structure of programs, and in the
unparsing phase to output results to external files.

. Xform routines (Chapter 6), which are functions that each takes a number of input parameters

and returns a result. POET xform routines can make recursive invocation of each other, use
loops and if-conditionals to iterate over a body of computation, and systematically apply
transformations and program analyses to the internal representations of various input codes.

Variables and Assignments (Chapter 7). POET uses variables to hold values of intermediate
evaluation and to adapt behaviors of the POET interpreter. Variable assignments can be used
to modify variables to contain different values. However, they cannot modify the internal
content of existing compound data structures. For example, variable assignment can modify
a variable z to contain a new value, but it cannot modify the content of an old data object
contained in z, as this object may be shared by other variables.

Global commands (Chapter 8), which are declarations and evaluations at the global scope
of POET programs. The collection of global commands are evaluated in the order of their
appearance, where each command can use the result of previous evaluations.

. Ezpressions and built-in operations (Chapter 9). POET provides a large collection of built-

in operators to support different types of expressions, which are building blocks of program

13

14 CHAPTER 3. LANGUAGE OVERVIEW

evaluation. POET expressions must be embedded within global commands to be evaluated
in POET programs.

7. Statements (Chapter 10), which are different from expressions in that they do not have values.
POET statements serve to provide support for debugging and control flow such as sequencing
of evaluation, conditional evaluation, loops, and early exit from a xform routines.

The POET/lib directory contains a library of routines for applying various compiler optimiza-
tions and a collection of code templates which specialize the xform routines for different pro-
gramming languages such as C. The transformation libraries are typically named using the “.pt”
extension, where their header files (which declare only the interfaces of the libraries) using the “.pi”
extension. The code template files are typically named using the “.code” extensions.

3.2 Categorization of POET Names

When the POET interpreter sees an identifier, it categorizes it into one of the following kinds.

e Code template names, which are names that have been declared as code templates in global
declarations. If a name, say MyCode, has not been declared, it must be written as CODE. MyCode
in order to be parsed by the POET interpreter as a code template name.

e Xform routine names, which are names that have been declared as xform routines in previous
global declarations. If a name, say MyRoutine, has not been declared, it must be written as
XFORM.MyRoutine to be treated by the POET interpreter as a xform routine name.

e Global variable names, which are names declared in the global scope. When a global variable,
say MyName, is used within a local scope (e.g., inside a code template or xform routine body),
it must be written as GLOBAL.MyName to avoid being treated as a local variable.

e Static or local variable names. In POET, variables don’t need to be declared before used.
Therefore, unless an identifier has been explicitly declared as a code template name, a xform
routine name, or a global variable name, it will be treated as a local variable variable if used
within a code template/xform routine and will be treated as a static variable if used in the
global scope.

Because a POET program can include multiple files, the ordering of processing different files may
impact how the names in POET file are interpreted. To avoid misinterpreting code template, xform
routine, and global variable names, these names need to be properly declared before used in each
POET file. Alternatively, a proper prefix, CODE, XFORM, or GLOBAL, can be used to qualify
the use of each name.

3.3 Components of POET Programs

A POET program is comprised of an arbitrary number of different files, where each file contains a
sequence of global declarations the following kinds.

e Include directives, each specifies the name of an external file that should be evaluated before
reading the current file. For example, the following directives are used to start the POET-
/lib/Cfront.code file.

3.4. NOTATIONS 15

include ExpStmt.incl
include Loops.incl

All include directives must be placed at the start of a POET file, so that all the specified
external files are evaluated before reading the current file. If a file name with extension .pi is
included, a corresponding library file with the same name but with extension .pt will loaded
and evaluated after processing the current file.

e Xform routine declarations (see Section 6.1), which define global functions that can be invoked
to operate on arbitrary input code.

e Global variable declarations(See section 7.4), which define global names that can be accessed
across different POET files.

e Code template declarations (see Section 5.1), which define global code template types and
their syntax in various source languages.

e Global commands (see Chapter 8) which define what input computations to parse and process,
what expressions to evaluate, and what results to output to external files.

e Comments, which are either enclosed inside a pair of <* and *>, or from <<* until the end
of the current line. Specifically, all strings enclosed within <* and *> are ignored by the
POET interpreter, so are all strings following <<* until the end of line.

Except for the include directives, which must be placed at the beginning of a POET file,
the other POET global declarations and commands can appear in arbitrary order. The global
declarations serve to specify attributes of global names (e.g., global variables, code templates and
xform routines). In contrast, the global commands are actual instructions that are evaluated
according to the order of their appearance in the POET program.

As explained in Section 3.2, the ordering of processing global declarations may impact how
different names used in a POET file are interpreted, e.g., as a code template name or a local
variable name. It is important to note that each POET file is first parsed and saved in an internal
representation before being evaluated. Therefore, although the global input command can include
external POET files, the declarations contained in these files are not visible to the current POET
file being processed. The only way to make visible the global declarations of other files is to use the
include directives at the beginning of a POET file.

3.4 Notations

The following notations will be used throughout the rest of this manual when using BNF (Backus-
Naur Form) to specify the context-free grammar of POET.

e <concept>, which specifies a non-terminal in BNF. Each concept has its own syntax and
semantics explained elsewhere. Examples of concepts include <exp> (all POET expressions),
<type> (all POET type specifiers).

e [syntax], which specifies that the appearance of syntaz (could be any syntax definition) is
optional. For example, [default =<exp>| indicates that the definition of the default value
(using the de fault keyword) can be optionally skipped.

16 CHAPTER 3. LANGUAGE OVERVIEW

e {syntax}, which specifies that the appearance of syntax (could be any syntax definition) can
be repeated arbitrary times (include 0 times, which means syntax can be optionally skipped).
For example {, < id > [=<exp>]} indicates that additional variable initializations (separated
by “”) can appear arbitrary times.

e /% comments * /, which is not a part of the BNF but is a comment that explains the BNF
concept that immediately precedes it.

Because the above notations have given <, >,[,], {, } special meanings, these characters are quoted
with “” when they are part of the language syntax.

The following notations are used throughout the manual to specify various components of the
POET language.

e <id>: all variable names.

e <pos_int>: all positive integer values, e.g., 1,2,3,....

o <type>: all POET type specifications, defined in Section 9.11.

e <pattern>: all POET pattern specifications, defined in Section 9.12.
e <parse_spec>: all POET parsing specifications, defined in Section 5.5.

e <exp>: all POET expressions, defined in Chapter 9.

Chapter 4

Atomic and Compound Data Types

POET supports two types of atomic values: integers and strings; three types of built-in compound
data structures: tuples, lists, and associative maps; one user-defined data type: code templates;
and one global function type: xform handles. POET does not allow the modification of compound
data structures such as tuples, lists, and code templates, which can be used collectively to build
internal representations of the input computation. The only compound data structure that can
be modified is associative maps, which cannot be used inside other compound data structures and
therefore do not affect the traversal of program internal representations.

4.1 Atomic Values

POET supports two types of atomic values, integers and strings. It does not support floating
point values under the assumption that code transformation and analysis do not need floating
point evaluations. Like C, POET uses integers to represent boolean values: the integer value 0 is
equivalent to boolean value false, and all the other integers are treated as the boolean value true.
It provides two boolean value macros, TRUFE and FALSE, to denote the corresponding integer
values 1 and 0 respectively.

4.1.1 Integers

POET provides built-in support for integer arithmetics (+, —, *, /, %), integer comparison (<,
<=, >, >=, ==, | =), and boolean operations (!, && and ||). The semantics of these operations
are straightforward and follow those of the C language. Except for the == and ! = operators,
which apply to all types of values, the other arithmetic and comparison operations are defined for
integer values only. When evaluating boolean operations, all input values are converted to integers
1 and 0, where empty strings are converted to 0 and all other non-integer values to 1.

4.1.2 Strings

A string value is defined by enclosing the content within a pair of double quotes, e.g., “hello”,
“123”. The escaped strings “\n”, “\r” and “\t” have the same meanings as those in C. POET
additionally provides a special string, ENDL, to denote line-breaks in the underlying language.
POET treats strings as atomic values and does not allow modifications to the contents of
strings. It provides a binary operator A to support string concatenation, e.g., “abc” A 3 A “def”
returns “abe3def” (note that integer operands are automatically converted to strings before used

17

18 CHAPTER 4. ATOMIC AND COMPOUND DATA TYPES

in the concatenation). The operator SPLIT can be used to split a string into a list of substrings
based on a specified separator. For example, SPLIT(“,”, “abd, ade”) returns a list of three strings
(“abd” “,” “ade”). It can also be applied to strings contained in compound data structures. For
example, SPLIT(“+", Stmt#(“a+b+ ")) returns Stmit#(“a” “+7“b” “+ 7 “c”). If the separator
is an integer m, the input string is split immediately after the nth character of the string. For
example (SPLIT(1, “abc”) = (“a” “bc”).

4.2 Compound Data Structures

POET provides three built-in types of compound data structures: lists, tuples, and associative
maps.

4.2.1 Lists

A POEKT list is simply a singly linked list of elements and can be composed by simply listing
elements together. For example, (a “<=" b) produces a list with three elements, a, “<=", and b.
A special keyword, NULL, is used to denote an empty list, which is equivalent to an internally
null pointer. The operator :: is provided to dynamically extend an existing list. For example, if b
is a list, a :: b inserts a into b so that the value of a becomes the first element of the new list. If b
is NULL, then the result is a list that contains a single element, a.

Because lists can be dynamically extended, they can contain an arbitrary number of elements
at runtime. Two operations are provided to access elements in a list ¢: HEAD(?) (or car(f)),
which returns the first element of ¢ (if £ is not a list, it simply returns ¢); and TAIL(¢) (or cdr({)),
which returns the tail of the list (if £ is not a list, it returns NULL). For example, if £ = (a “<=d”
3), then HEAD(?) (or car(?)) returns a, HEAD(TAIL(?)) (or car(cdr(f))) returns “<=", and
HEAD(TAIL(TAIL(?))) (or car(cdr(cdr(f)))) returns 3; The number of elements in a list may
be obtained using the LEN operator. For example, LEN (123) = 3.

When being unparsed to external files, the elements within a list are output one after another
without any space, e.g, a list (“a” “+” 3) is unparsed as “a+3”.

4.2.2 Tuples

A POET tuple is a finite number of elements and is composed by connecting a predetermined
number of elements with commas. For example, (“i” , 0, “m” , 1) produces a tuple t with four
elements, “i”,0,“m”, and 1. Each element in a tuple ¢ is accessed via the syntax t[i], where i is
the index of the element being accessed (like C, the index starts from 0). For example, if ¢t =
(4,0, “m”, 1), then t[0] returns “i”, ¢[1] returns 0, ¢[2] returns “m”, and ¢[3] returns 1. Because all
elements within a tuple must be explicitly specified when constructing the tuple, tuples are used
to define a finite sequence of values, e.g, the parameters for a code template or a zform routines.
The LEN operator can be used obtain the size of a tuple. For example, LEN(1,3,4,5) = 4.
When being unparsed to an external file, elements within a tuple are output one after another

separated by commas.

4.2.3 Associative Maps

POET uses associative maps to associate pairs of arbitrary types of values. To create an map, use
the MAP operator followed by a tuple of entries enclosed within a pair of {}. For example, MAP{}

4.3. CODE TEMPLATES 19

creates an empty map, and MAP{1 => 5, 2 => 6} creates a map with two entries that map 1
to 5 and 2 to 6 respectively. The elements within a map can be accessed using the “[]” operator
and modified using assignments. For example, if e is an associative key inside the map amap, then
amaple] returns the mapping result; otherwise, the empty string “” is returned. The size of a map
amap can be obtained using LEN(amap). All the elements within the map can enumerated using
the built-in foreach statement. For more details about the foreach operation, see Section 10.3.2.

Each associate map is internally implemented using C++ STL maps, and they are the only
compound data structure whose internal content can be dynamically modified. The following
illustrates how to create and operate on associative maps.

amap = MAP{};

amap["abc"] = 3;

amap[4] = "def";

bmap = MAP{1 => 5, 2 => 6};

print ("size of amap is " LEN(amap));

foreach cur=(from=_, to=_) \in (amap bmap) do
print ("MAPPING " from "=>" to);

enddo

print amap;

print bmap;

The output of the above code is

size of amap is 2 .
MAPPING 4 => "def"
MAPPING ‘"abc" => 3
MAP{4=>"def","abc"=>3}
MAP(1=>5,2=>6}

4.3 Code Templates

POET code templates are essentially pointer-based data structures and can be used to build recur-
sive data structures such as dynamically shaped trees and DAGs (directed acyclic graphs). To a
certain extent, POET code templates are just like C structs, where each code template name speci-
fies a different type, and each component of the data structure is given a specific field name. POET
uses code templates extensively to build the AST (Abstract Syntax Tree) internal representations
of programs for transformation or analysis. POET offers integrated support for associating pars-
ing/unparsing specifications with each code template (see Chapter 5), so that input programs can
be automatically parsed, converted to their internal code template representations, and unparsed
with proper syntax.
The syntax for building a code template is

<id> # (<exp> {, <exp>})

where <id> is a code template name, and each <exp> specifies a value for each parameter (i.e.,
each data field) of the code template. For example, Loop#(“i”,0,“N”,1) and Exp#(“abc/2”)
build objects of the code templates Loop and Exp respectively. Section 5.1 presents details on how
to define different code template types.

To get the values of data fields within a code template object, use syntax

20 CHAPTER 4. ATOMIC AND COMPOUND DATA TYPES

<exp>[<id1> . <id2>]

where <exp> is a code template object, <id1> is the name of the code template, and <id2> is the
name of a template parameter. For example, aLoop[Loop.i] returns the value of the ¢ data field in
aLoop, which is an object of the code template type Loop. Similarly, aLoop|Loop.step] returns the
value of the step field in aLoop. If aLoop is built via Loop#(“ivar”,5,100,1), then aLoop[Loop.i]
returns value “ivar”, and aLoop[Loop.step| returns value 1.

4.4 Xform Handles

Each POET xform handle is a global function pointer. It is similar to a C function pointer except
that it includes not only the global name of a routine but also a number of values for the optional
parameters of the routine. Similar to C functions, POET xform routines can be defined only at
the global scope. So each name uniquely identifies a xform routine. POET xform handles can be
used as values of variables, which can then later be invoked by following it with a tuple of actual
parameter values. Each xform handle can be defined using the following syntax.

<id> [||[Il<id>=<exp> { ;_<id>=<exp>} nno]

Here each <id>=<type> defines a new value for an optional parameter (name defined by <id>) of
the xform routine. Therefore, optional parameters of an xform routine can be given values before
the routine is actually invoked. For example, ParallelizeLoop|trace_include = z| is a function
pointer to the Parallelize Loop routine, where the optional parameter trace_include of the routine
is set to the value of x. Since a xform handle can be used in arbitrary places where an expression
is expected and can be invoked at an arbitrary time in the future, an xform handle can be used to
pre-configure behaviors of an xform routine before it is invoked. To take advantage of this support,
parameters that can be used to reconfigure the behavior of an zform routine should always be
defined as optional parameters. Only pure input parameters (parameters that define the input of
the routine) should be declared as required parameters.

Chapter 5

Code Templates

POET code templates are user-defined data types that can be used to implement arbitrary acyclic
data structures. In particular, they are typically used to implement the internal representation of
arbitrary input codes. Additionally, they can be associated with syntax specifications that specify
how to parse an input computation and how to unparse internal representations to external files.

5.1 Defining Code Templates

The syntax for declaring code templates is

"<" code <id> [pars = (<id> [: <parse_spec>] {, <id> [: <parse_specl}) 1]
[parse = <parse_spec>]
[lookahead = <pos_int>]
[rebuild = <exp>]
[match = <type>]
[output = <type>]
{<id> = <type> } "/>"

or

"<" code <id> [pars = (<id> [: <parse_spec>] {, <id> [: <parse_specl})]

[parse = <parse_spec>]
[lookahead = <pos_int>]
[rebuild = <exp>]
[match = <type>]
[output = <type>]
{<id> = <type> } ">"

<exp> /* body of code templatex/

"</"code">"

The first format declares the interface of a code template; i.e., the data type name and components
of each data object. The second format additionally defines the associated concrete syntax of the
code template; that is, how to build its internal representation from parsing an input file and how
to unparse the internal representation to external files.

Each code template name uniquely identifies a user-defined data type, where the template
parameters are data fields within the structure. A code template can be declared an arbitrary

21

22 CHAPTER 5. CODE TEMPLATES

number of times. However, its concrete syntax definition can be encountered only once during each
evaluation of the global parsing/unparsing command (i.e., the input and output), unless the POET
interpreter is invoked with the command-line option —md. Except the code template name, all the
other components of a code template are optional. The following explains the semantics of each
optional component.

5.2 Template Parameters

In the following example,

<code Loop pars=(i,start,stop,step)/>
<code If pars=(condition:EXP) >

if (@condition@)

</code>

the pars=... syntax specifies the required parameters of the code templates. Each template pa-
rameter is specified either using a single name or a <id> : <parse_spec> pair, which specifies
both the parameter name and how to obtain the parameter value via parsing. For example, as
declared above, the code template Loop has four required parameters: i, start, stop, and step; the
code template If has a single parameter, condition, which is an expression and can be obtained via
parsing by matching the input code against the EXP type specifier, explained in Section 9.11.

5.3 Template Body

In the following example,

<code Loop pars=(i:ID,start:EXP, stop:EXP, step:EXP) >
for (@i@=@start@; Q@i@<@stop@; Q@i@+=@step@)
</code>

The list of strings between the pair of <code...> and </code> defines the body of the Loop code
template. Each template body is typically a list of strings in a POET input/output language such
as C, C++4. POET expressions, e.g., the template parameters ¢, start, stop, and stop in the above
example, need to be wrapped inside pairs of @s within the body to be properly evaluated.

By default, POET uses the bodies of code templates as the basis both for constructing internal
representations of programs from parsing and for unparsing internal representations to external
files. When trying to parse the tokens of an input program against a specific code template, the
POET parser first substitutes each template parameter with its declared type in the code template
body (if no type is declared for the parameter, the ANY type specifier, which can be matched to an
arbitrary string, will be used). The substituted template body is then matched against the leading
strings of the input. Whenever a code template type within the template body is encountered, the
POET interpreter tries to match the program input against the new code template. This strategy
essentially builds a recursive-descent parser on-the-fly by interpreting the code template bodies.
Since POET uses recursive descent parsing, the code templates cannot be left-recursive; that is,
the starting symbol in the template body cannot recursively start with the same code template
type. If a left-recursive code template is encountered during parsing evaluation, segmentation fault
will occur as is the case for all recursive descent parsers.

5.4. TEMPLATE ATTRIBUTES 23

5.4 Template Attributes

Each code template can include a number of attributes, each defined using syntax <id>=<type>,
where <id> is the attribute name, and <type> specifies the default value of the particular attribute.
For example, the following code template declaration

<code Loop pars=(i,start,stop,step) maxiternum=""/>

specifies a template attribute named maziternum, which remembers the maximal number of iter-
ations that a loop may take.

While users can define arbitrary attribute names for a code template, several keywords, includ-
ing parse, lookahead, rebuild, match, output, unparse, rebuild, parse, and output, are reserved
and are used to specify how to parse, unparse, simplify, and operate on objects of the code template.

5.4.1 The parse attribute

When the parse attribute is defined, the template body is no longer used to parse a given input
and unparse a code template object. Instead, the value of the parse attribute is used.

A common use for the parse attribute is to specify an alternative xform routine to convert
input tokens to code template objects. Such xform routines are called parsing functions. Each
parsing function must take a single parameter, the input token stream to parse, and return a pair
of values (result,leftOver), where result is the result of parsing the leading strings in input, and
leftOver is the rest of the input token stream to continue parsing. A number of commonly used
parsing functions are defined in the POET/lib/utils.

5.4.2 The lookahead attribute

The POET interpreter uses a recursive descent parser to dynamically match input tokens against
the concrete syntax of code templates. Since multiple alternative code templates may be specified
to match the input, the POET interpreter uses the leading input tokens to determine which code
template to choose. Specifically, if the lookahead attribute is given value n for a code template,
the next n input tokens is used to determine whether to select the particular code template for
parsing. By default, the value of lookahead is 1 for all code templates.

5.4.3 The match attribute

This attribute specifies a set of parent code template types which can be viewed as a base type of the
current code template. During pattern matching operations (see Section 9.12), if the code template
fails to match against a given pattern, the POET interpreter uses the value of it’s match attribute
as an alternative target and tries again. For example, the following code template definition

<code Loop pars=(i:CODE.Name,start:EXP, stop:EXP, step:EXP) match=CODE.Ctrl />

specifies that the Loop code template can be considered a derived instance of the C'trl code template
and therefore can match the pattern CODE.C'trl.

The rebuild attribute This attribute specifies an alternative expression that should be used to
substitute the resulting code template object during parsing or when the REBUILD operator (see
Section 9.16) is invoked. For example, the following code template definition

24 CHAPTER 5. CODE TEMPLATES

<code StmtBlock pars=(stmts:StmtlList) rebuild=stmts>

{

Ostmts@
}
</code>

specifies that after parsing the input computation using the StmtBlock code template, the value
of the template parameter stmts should be returned as result of parsing. The rebuild expression
can use both the template parameters and other attributes and can invoke existing xform routines
to build the desired result. The result of evaluating the expression will be returned as the result of
parsing or the result of the REBUILD operator.

5.4.4 The output attribute

This attribute specifies an alternative expression that should be evaluated when a code template
object needs to be unparsed to an external file. By default, the template body is used both
for parsing and unparsing. However, for some code templates, this may not be the right choice.
For example, the following code template definition (taken from POET/lib/C front.code) invokes
the UnparseStmt routine to unparse all C statements, where a pair of { } is wrapped around a
statement block if more than one statements are unparsed.

<code Stmt pars=(content:GLOBAL.STMT_BASE) output=(XFORM.UnparseStmt(content)) >
Q@content@
</code>

5.4.5 The INHERIT attribute

This attribute is used to remember the previous code template object constructed by the POET
recursive descent parser immediately before the current code template is used to match the input to-
ken stream. It can be used within the parse attribute to flexibly satisfy type checking and AST con-
struction needs. For example, the following code template definition (from POET/1ib/C front.code)

<code Else pars=(ifNest) parse=("else" eval(return(CODE.Else#INHERIT))) >
else
</code>

specifies that when parsing an else statement, its ifNest member should be initialized with the
previous code template object, i.e., the true branch of an if statement before the else branch.

5.5 Parsing Specifications

POET provides a collection of parsing specifiers to guide how to parse a stream of input tokens into
a structured hierarchy of code template objects. These parsing specifiers are used inside code tem-
plate declarations to specify how to parse each template parameter (see Section 5.4), inside global
variable declarations to specify how to parse each command-line parameter (see Section 7.4.1),
inside expressions to dynamically convert different types of values from one to another (see Sec-
tion 9.13), and inside input code annotations to improve the parsing efficiency.

A parsing specifier specifies what targeting data structure should be used to parse and represent
a sequence of input tokens and can take any of the following forms.

5.6. PARSING ANNOTATIONS 25

A type specifier defined in Section 9.11, where the leading input token will be converted to
the specified value type as the parsing result. More details on type conversion can be found
in Section 9.13.

e The name of a code template. In this case, the leading tokens in the input are matched
against the syntax definition of the given code template; if the matching is successful, the
matched tokens are converted to an object of the given code template, and parsing continues
with the rest of input tokens; otherwise, the parsing fails.

e A xform handle which takes a single parameter (the input tokens to parse) and returns a pair of
two values: (result,left_over), where result contains the resulting structural representation
from parsing the leading tokens of input, and le ft_over contains the rest of input after parsing.
In this case, the xform routine is invoked with input tokens as argument, the result from
invoking the routine is saved, and the parsing continues with the le ft_over value returned by
the routine invocation.

e A list of parsing specifiers in the form (<parse_specl> <parse_spec2> <parse_specn>).
Here the parsing process tries to match each of the parsing specifiers in turn. If the parsing
succeeds, a list of the parsing results is constructed, and the parsing continues with the rest
of the input.

e A variable assignment in the form <id> = <parse_specl>. Here the input is parsed against
the given <parse_specl>, and the parsing result is saved in the given variable <id>.

e A tuple specification in the form TUPLE(<stringl> <parse_specI> <string_n> <parse_spec_n>
<string-n+1>). In this case, the targeting data structure is a tuple of n elements, where the
input tokens must start with <stringl>, end with the <string_n+1>, and for each i = 1,...,n,
the ith tuple element is parsed using <parse_spec_i>, and the ¢th and ¢ + 1th elements must
be separated by <string_i+1>. For example, TUPLE(“("INT“,”INT“,”INT“)") specifies
a tuple of three integers, where the tuple starts with “(” and end with “)”, and each pair of
elements is separated with a “,”. The parsing fails if any component does not match.

e A list specification in the form LIST(<parse_spec_1>, <string>). Here the targeting data
structure is a list of elements, with each element parsed using <parse_spec_1>, and each
pair of elements separated by <string> in the input tokens. For example, LIST(INT, “")
specifies a list of integers separated by “;”s; and LIST(INT,“ ”) specifies a list of integers
separated by spaces.

e The binary alternative (|) operation in the form <parse_spec_1> | <parse_spec_2>. Here the
input tokens are matched against each of the parsing specifiers in order (if the first one fails,
the second one will be tried). For example, INT' | ID specifies a single integer or an identifier.
Note that once the input is successfully matched against <parse_spec_1>, the parser will not
try <parse_spec_2>. So the operands of the | operator need be listed in the increasing order
of their restrictiveness.

5.6 Parsing Annotations

Based on a collection of code template definitions, POET can invoke its internal top-down recursive
descent parser to dynamically parse an arbitrary input language. The input code can be annotated

26 CHAPTER 5. CODE TEMPLATES

to speed up the parsing process. Annotations can also be used to partially parse fragments of an
input code, in which case only those fragments with annotations are parsed into the desired code
template representations, and the rest of the code is represented as a stream of tokens.

The following shows a fragment of input code with parsing annotations
(taken from POET /test/gemvATLAS/gemv-T.pt).

/*@; BEGIN(gemm=FunctionDecl)@x/

void ATL_USERMM(const int M, const int N, comnst int K,
const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta,
double *C, const int ldc)

{
int i,j,1; //@=>gemmDecl=Stmt
for (j = 0; j <N; j+=1) //@ BEGIN(gemmBody=Nest) BEGIN(nest3=Nest)
{
for (i = 0; 1 < M; i +=1) //@ BEGIN(nest2=Nest)
{
Cl[j*ldc+i] = beta * C[j*ldc+il;
for (1 = 0; 1 <K; 1 +=1) //@ BEGIN(nestl=Nest)
{
C[j*1dc+i] += alpha * A[i*1da+1]+B[j*1db+1];
}
}
}
}

Each POET parsing annotation either starts with “//@” and lasts until the line break, or starts
with “/*@” and ends with “@*/”. The special syntax allows programmers to naturally treat these
annotations as comments in C/C++ code, so that the source input is readily accessible for other
uses.

POET supports two kinds of parsing annotations.

e Single-line annotations. A single-line annotation applies to a single line of program source.
It has the format “=> T”, where T is a parsing specification as defined in Section 5.5. For
example, the annotation “ int i, j, I; //@=>gemmDecl=Stmt” indicates that “int i, j,1;” is
a statement that should be parsed using the Stmt code template, and the result should be
stored in the global variable gemmDecl.

e Multi-line annotations. Multi-line annotations are used to help parse compound language
constructs such as functions and loop nests, which may span multiple lines of the input
code. Each multi-line annotation has the format “BEGIN(T)” or “; BEGIN(T)” where T is
a parsing specification (see Section 5.5). If there is a “;” before the BEGIN annotation, the
parsing annotation refers to the source code immediately following the annotation; otherwise,
it starts from the left-most position of the current line. For example, the annotation “for (1
=0;1<K;1+=1) //@Q BEGIN(nest1=Nest)” includes a multi-line annotation which starts
from the for loop. However, the “/*@; BEGIN(gemm=FunctionDec) @*/” starts from the
following line; that is, it does not include source code at the same line as the annotation. In
both cases, the relevant source code in the underlying language is parsed based on the given
parsing specification (nestl = Nest or gemm = FunctionDecl), and the parsing results are
saved in the respective global variables.

Chapter 6

Xform Routines

POET xform routines are global functions that each takes a number of input parameters and
returns a result. They can make recursive function calls of each other, use loops and if-conditionals
to operate on the internal representation of input codes, and systematically apply transformations
based on pattern matching or different program analysis results. These xform routines are generic
in the sense that they can be invoked to operate on the internal code template representation of the
input code parsed from arbitrary programming languages and thus can be reused across different
input /output languages.

6.1 Xform Routine Declarations

The syntax for defining a zform routine is

"<" xform <id> pars = (<id>[:<type>]{,<id>[:<type>]1}) {<id> = <type>} "/>"
or
"<" xform <id> pars = (<id>[:<type>]{,<id>[:<type>]}) {<id> = <type>} ">"

<exp> /* body of xform routine */
ll</lleorm">ll

The first syntax declares the interface of a zform routine, while the second one additionally de-
fines the implementation, i.e., the body, of the routine. Here, the first <id> specifies the name
of the zform routine; pars=... specifies the required input parameters of the routine; and each
<id>=<type> specifies an additional optional parameter (name defined by <id>) and the default
value (defined by <type>) of the parameter. When a zform routine is invoked, a value must
be given for each required parameter (defined using “pars=...”). Additional arguments may be
supplied to replace the default values of the optional parameters, but they are not required.
The following shows two example xform routine declarations in POET/lib/utils.incl.

<xform Parselist pars=(input) stop="" continue="" output=(result, leftOver)/>
<xform SkipEmpty pars=(input) >
for (p_input=input;

p_input != NULL && ((car p_input) : " "["\n"|"\t");
p_input=cdr p_input) {""}
p_input
</xform>

27

28 CHAPTER 6. XFORM ROUTINES

Here the first declaration of ParseList specifies that the routine takes a single parameter named
input, two optional parameters named stop and continue (both with “” as their default values), and
produces a tuple of two values as result. The names in the output specification serve to document
the meaning of each value returned by the routine.

6.2 Invoking Xform Routines

The syntax for invoking a zform routine is
<expl> ["["<id1>=<exp2>{; <id2>=<exp3>}"]1"] (<exp4> {, <exp5>})

Here <expl> is an xform handle (e.g., the name of an xform routine) being invoked, <id1> and
<id2> are names of optional parameters of the xform routine, and <exp2>,...,<expb> are values
for the xform routine parameters. In particular, the list of expressions inside the pair of () are values
for the required parameters, while values for optional parameters are assigned to their respective
parameter names. For example, the following invocation

ParallelizeLoop[threads=par;private=nestl_private] (nestl)

invokes a xform routine Parallelize Loop with actual parameter nestl while assigning the optional
parameter threads with the value of nestl, and the optional parameter private with nestl_private.

Chapter 7

Categorization Of Variables

POET variables serve as place holders that can store arbitrary types of values at runtime. In
particular, they can be categorized into the following different kinds.

1. Local variables, whose lifetime span through the body of a single code template or a single
xform routine definition.

2. Static variables, whose lifetime span the entire program but can be accessed only within a
single POET file; i.e., their scope is restrained within a single file.

3. Dynamic variables, whose lifetime span the entire program, and they can be dynamically
created and operated on at any point in the program.

4. Global variables, whose lifetime span the entire POET program and can be accessed at any
point across different POET files.

Each category is maintained in a separate symbol table distinct from the other categories.

7.1 Local Variables

The lifetime and scope of each local variable is restricted within a single code template or xform
routine. Local variables are introduced by declaring them as parameters of a code template or
xform routine, or by simply using them in the body of a code template or xform routine. For
example, in the following,

<code Loop pars=(i:ID,start:EXP, stop:EXP, step:EXP) >
for (@i@=0@start@; Q@i@<@stop@; QiG+=0@step®@)
</code>

the variables i, start, stop, and step are local variables of the code template Loop. In the following,

<xform SkipEmpty pars=(input) >
for (p_input=input;

p_input != NULL && ((car p_input) : " "["\n"|"\t");
p_input=cdr p_input) {""}
p_input
</xform>

29

30 CHAPTER 7. CATEGORIZATION OF VARIABLES

the variables input and p_input are local variables of the xform routine SkipEmpty.

Code template or zform routine parameters are given values when the respective code template
is being used to build an object or when the respective xform routine is invoked to operate on some
input. Other local variables are entirely contained within code templates or xform routines and
are invisible to the outside. A storage is created for each local variable when a code template is
used in parsing/unparsing or when an zform routine is invoked, and the storage goes away when
the parsing/unparsing or the routine invocation finishes. None of the storages is visible outside the
respective code template or zform routine.

7.2 Static Variables

Each POET file can have its own collection of static variables, which are used by its commands
(see Chapter 8) to store temporary results and to propagate information across different evaluation
commands. While the lifetime of these static variables span the entire program, their scopes are
constrained only within a single POET file avoid naming conflict across different POET files. Static
variables do not need to be declared before used.

7.3 Dynamic Variables

These are variables dynamically created on the fly by converting an arbitrary string to a variable
name (for more details, see Section 9.13). Dynamic variables are provided mainly to support
dynamic pattern matching. For example, a list of dynamic variables can be created to replace
all the integers in an unknown expression. The substituted expression can then be used as a
pattern to match against other expressions that have a similar structure. Because all dynamic
variables are created in a single symbol table throughout a POET program, naming collision can
easily occur. Therefore it is strongly discouraged to use dynamic variables for purposes other than
dynamic pattern matching, e.g., using dynamic variables as a way for implicit parameter passing
is considered very dangerous.

7.4 Global Variables

These are variables whose lifetime span an entire POET program and can be accessed across
different POET files. However, each global variable must be explicitly declared in each POET file
before being used. There are three categories of global variables.

1. Command-line parameters, which are global variables whose values can be redefined via
command-line options.

2. Macros, which are global variables that can be used to reconfigure the behavior of the POET
interpreter or the POET program being interpreted.

3. Tracing handles, which are global variables that can be embedded inside the internal repre-
sentation of computations to keep track of selected fragments as they go through different
transformations.

7.4. GLOBAL VARIABLES 31

7.4.1 Command-Line Parameters

POET command-line parameters act as the configuration interface of a POET program and their
initial values can be specified via command-line options. POET command-line parameters must be
declared before used. Once defined, they can be directly accessed across different POET files. To
declare a command-line parameter, use the following syntax.

"<"parameter <id> type=<type> parse=<parse_spec> default=<exp> message=<string>"/>"

Here <id> specifies the name of the variable; <type> specifies the type of its value; <parse_spec>
specifies how to obtain the value of the variable from parsing command-line options of invoking
the POET interpreter; <exp> specifies the default value of the parameter when the command-line
option does not specify an alternative value; and <string> is a string literal that documents the
meaning of the parameter in the declaration. The following shows several example command-line
parameter declarations.

<parameter NB type=1.._ default=62 message="Blocking size of the matrices" />
<parameter pre type="s"|"d" default="d"
message="Whether to compute at single- or double- precision" />

The N B parameter is a single integer that must be greater than or equal to 1 (the special value _
is used to denote an unknown upper bound). Its default value is 62 if not reset by command-line
options. The pre parameter can have two alternative values. Here the type of the parameter uses
the | operator to enumerate all the possible values (“s” or “d”). The default value of the above pre
parameter is string “d”.

The command line option to assign a new value to a POET command-line parameter is
—p<id>=<val>, where <id> is the name of the variable, and <val> is a string that defines
the value of the parameter. If necessary, the given parameter value will be parsed, and the parsing
result checked against the given <parse_spec>, before the final result is assigned as value of the
parameter. For example, —p/N B=50 assigns 50 the new value of the N B parameter.

7.4.2 Macros

POET macros can be used to reconfigure the behavior of the POET interpreter or the POET
program being interpreted. The syntax for defining a macro is:

"<" define <id> <exp> "/>"

Here <id> is the name of the macro, and <exp> is a POET expression which defines the value of
the macro. The following shows some example macro declarations.

<define myVarl "abc"/>
<define x 5 />

The above macro variables are all user-defined names that do not have any special meaning to
POET. However, POET does provide some built-in macros that have special meanings and can be
used to modify the default behavior of the POET interpreter, as discussed in Section 7.5.

32 CHAPTER 7. CATEGORIZATION OF VARIABLES

7.4.3 Tracing Handles

POET tracing handles can be viewed both as global variables (i.e., they can be modified via variable
assignments) and as a special data type as they can be embedded inside other data structures to
trace transformations to various components of the data structure. In particular, as various trans-
formations are applied to a compound data structure, the tracing handles embedded within can be
automatically modified to always contain the most up-to-date values of the respective components,
so that different transformations can be applied independently of each other irrespective of how
many other transformations have been applied.

Tracing handles need to be explicitly declared in each POET file before being used. The syntax
for declaring tracing handles is:

"<" trace <id>[=<exp>] {, <id>=<exp> } "/>"
For example, the following declares a long sequence of global trace handles.
<trace gemm,gemmDecl,gemmBody,nest3,nest2,nest1/>

NOTE that when a sequence of tracing handles are declared in a single declaration, as illustrated
above, these handles are assumed to be related, and their ordering in the declaration is assumed
to be the same ordering that they should appear in a pre-order traversal of the data structure that
they are embedded inside. Therefore only related tracing handles should be declared in a single
declaration, and unrelated handles should be declared separately to avoid confusion.

7.5 Reconfiguring POET via Macros

POET provides a number of built-in macros to modify the default behavior of the POET interpreter,
specifically the behavior of the internal lexer, parser, and unparser when used to parse input files
and to unparse results to external output files.

7.5.1 The TOKEN Macro

This macro reconfigures the POET internal lexer (tokenizer) when reading files using the global
input command (see Section 8.1). For example, the following declaration appears in the Cfront.code
(the C language syntax) file in the POET/lib directory.

<define TOKEN ((vv+|t ||+u) (n_u u_n) (u=nn=n) (n<nn=u) (n>||||=u) (n!uu=n)
(n+n||=||) (n_||||=n) (u&un&n) (ulnnlu) (n_n||>||) (n*uu/n)
CODE.FLOAT CODE.Char CODE.String)/>

This declaration configures the POET interpreter to replace every pair of “+ 7 “+” into a single
“ 4 47 token, every pair of “ —"“ —" into “ — —”, and so forth. Additionally, the tokenizer will
also recognize the syntax of code templates FLOAT, Char, and String as tokens.

7.5.2 The KEYWORD Macro

This macro reconfigures the POET internal recursive descent parser when reading files using the
global input command (see Section 8.1). For example, the following declaration appears in the
Cfront.code (the C language syntax) file in the POET/lib directory.

7.5. RECONFIGURING POET VIA MACROS 33

<define KEYWORDS ("float" "int" "unsigned" "long" "char" "struct" "union"
"extern" "static" "const" "register" "if" "else" "switch" "case" "default"
"continue" "break" "for" "while" "case")/>

s

This declaration configures the POET internal parser to treat strings “case”, “for”, “if”, “while”,
etc. as reserved words of the language, so that these strings are not treated as regular identifiers;
i.e., they cannot be matched against the ID or STRING token type during parsing.

7.5.3 The PREP Macro

This macro reconfigures the POET internal recursive descent parser when reading files using the
global input command (see Section 8.1). For example, the following declaration appears in the
Ffront.code (the Fortran language syntax) file in the POET/lib directory.

<define PREP Parseline[comment_col=7;text_len=70] />

This declaration configures the POET internal parser to invoke the ParseLine routine as a filter
of the token stream before starting the parsing process. In particular, the ParseLine routine
filters out meaningless characters based on their column locations. For example, only characters
appearing between column 7-79 are meaningful characters, and an entire line should be skipped if
the comment-column is not empty.

7.5.4 The BACKTRACK Macro

This macro can be used to disable backtracking in the POET’s internal parser when reading
files using the global input command (see Section 8.1). The following declaration from POET-
/lib/Cfront.code (the C language syntax) accomplishes exactly this task.

<define BACKTRACK TRUE/>

Note that when backtracking is enabled. By default, the POET internal parser uses the first token
of each code template body to determine which code template to use when multiple options exist
to parse an input code. When multiple code templates start with the same token, only the first
one will be tried. If the syntax of the chosen code template fails to match the input tokens, the
entire parsing process fails. As a result, by disabling backtracking, the parsing process becomes
faster (because only one code template will be tried when multiple choices are available) but also
more restrictive (the parsing fails immediately instead of trying out other options). Similarly, by
enabling backtracking, the parsing is slower, but more likely to succeed.

7.5.5 The PARSE Macro

This macro specifies the top-level start non-terminal used to match the entire input code by the
POET’s internal parser when reading files using the global input command (see Section 8.1). For
example, the following declaration appears in the Cfront.code (the C language syntax) file in the
POET/lib directory.

<define PARSE CODE.DeclStmtList/>

This declaration informs the POET interpreter that unless otherwise specified in the input com-
mand, the POET internal parser should use the code template DeclStmtList as the start non-
terminal when parsing program input.

34 CHAPTER 7. CATEGORIZATION OF VARIABLES

7.5.6 The UNPARSE macro

This macro specifies an additional post-processor of the POET internal unparser when evaluating
the output command (see Section 8.4). For example, the following declaration appears in the
Ffront.code (the Fortran language specialization) file in the POET/lib directory.

<define UNPARSE XFORM.UnparselLine/>

This declaration instructs the POET interpreter to invoke the UnparseLine routine (defined in
the POET/lib/utils.incl file) after the POET unparser has produced a token stream to output to
an external file. The UnparseLine routine takes two parameters: the tokens to output, and the
location (column number) of the current line in the external file. It will be invoked with the correct
parameters when each token needs to be output to the external file. The UnparseLine routine
will filter the token stream by inserting line breaks and empty spaces as required by the column
formatting requirements of the source language (e.g., Fortran or Cobol).

The UNPARSE macro can also be redefined to contain a code template as value. For example,
the following definition appears in POET/lib/Cfront.code (the C language syntax file).

<define UNPARSE CODE.DeclStmtList/>

Here the code to output will be treated as an object of the DeclStmtList code template (which
inserts line breaks between different statements) before being unparsed to external files.

7.5.7 The Expression Macros

POET provides built-in support for parsing expressions so that developers only need to use the
EXP parsing specifier to convert a sequence of tokens to an expression. Several macros are provided
to define the accepted terms and operations within an expression, including

1. EXP_BASE, which defines all the base terms accepted within an expression.

2. EXP_BOP, which defines all the binary operators (in decreasing order of precedence) accepted
within an expression.

3. EXP_UOP, which defines all the unary operators (in decreasing order of precedence) accepted
within an expression.

For example, the following declarations are used in POET/lib/Cfront.code (the C syntax file).

<define EXP_BASE INT|FLOAT|Stringl|Char|CODE.VarRef />

<define EXP_BOP ((||=|| Mgt =1 Ny n/=|| ||%=n) (u&n " | ||) (n&&n " I | n)
(u==n y=t gzt np=n nyn n<n) (u+n ||_u) (n*n u%n n/u) (n_n u_>n)) />
<define EXP_UOP (n++|| Myl Mgt~ g g n_n "new“)/>

The following additional macros are provided to specify how to construct internal representa-
tions of the parsed expressions.

1. EXP_CALL, which defines the code template to use to represent a function call within the
expression.

2. EXP_ARRAY, which defines the code template to use to represent an array access within the
expression.

7.5. RECONFIGURING POET VIA MACROS 35

3. EXP_MATCH, which defines all the code template types that can be considered instances of
expressions when performing pattern matching.

4. PARSE_BOP, which defines the code template to use to represent binary operations within
the expression.

5. PARSE_UOP, which defines the code template to use to represent unary operations within
the expression.

6. BUILD_BOP, which defines the xform routine to invoke to rebuild binary operations within
an expression.

7. BUILD_UOP, which defines the xform routine to invoke to rebuild unary operations within
an expression.

For example, the following declarations are contained in POET/lib/ExpStmt.incl, which is
included by the Cfront.code file.

<define PARSE_CALL FunctionCall/>
<define PARSE_ARRAY ArrayAccess/>
<define PARSE_BOP Bop/>

<define PARSE_UOP Uop/>

<define BUILD_BOP BuildBop/>
<define BUILD_UOP BuildUop/>

Note that if defined, these macros are also used by the POET interpreter when parsing expres-
sions contained in POET scripts. Specifically, if the PARSE_BOP is defined, the expression
Bop#(“abc”, 3) will be returned as the result of evaluating a POET expression “abc” + 3.

Chapter 8

Top-Level Commands

At the top level, a POET program can include four different kinds of executable commands, input,
condition, evaluation, and output commands. which serve to parse the input code, check the validity
of input parameters, compute the output results, and unparse the results to external files. Each
command is evaluated one after another according to their order of appearance in each POET file.

8.1 The Input Command

The syntax of the POET input command is

"<" input [cond=<exp>] [DEBUG=<int>] [syntax=<exp>] [from=<exp>] [to=<exp>]
[annot=<exp>] [parse=<parse_spec>] "/>"

or

"<" input [cond=<exp>] [DEBUG=<int>] [syntax=<exp>] [from=<exp>] [to=<exp>]
[annot=<exp>] [parse=<parse_spec>] ">"
<exp>
</input>

Each POET input command specifies a number of input code to be parsed and processed. The first
form specifies that the input code should be obtained by parsing external files, while the second
form includes the input computation (specified by <exp>) to be parsed inside the body of the input
command. The following describes the semantics of each attribute within the input command.

e cond =<exp> specifies a pre-condition that must be satisfied before reading the input code
(if the cond expression evaluates to false, no input will be read); In particular, it enforces
that the input command is evaluated only when exp is evaluated to true.

e DEBUG =<int> specifies that the parsing of input code needs to be debugged at a given level
(defined by the constant integer). In particular, the higher the level is, the more debugging
information is output.

o syntax =<exp> specifies a list of POET file names that contain syntax definitions for code
templates required to parse the input; A single file name instead of a list of names can also
be used.

36

8.2. THE CONDITION COMMAND 37

e from =<exp> specifies a list of external file names that collectively contain the input code.
A single file name instead of a list of names can also be used.

e to =<exp> specifies the name of a global variable that should be used to stored the parsed
input code. If a special keyword, “POFET”, is used in place of a variable name, the input
code will be stored as part of the current POET program.

e annot =<exp> specifies whether or not to recognize POET annotations in the input code.
By default, the annot has a true value, and the parsing process will recognize and interpret
POET annotations within the input code; if annot is explicitly defined to be false, then POET
annotations (if there is any) will be treated as part of the input code. For details of POET
parsing annotations, see Section 5.6.

e parse =<parse_spec> specifies what start non-terminal (i.e., the start code template) to use
to parse the input computation. When left unspecified, the value of the macro PARSFE is used
as the parsing target. If specified using a special keyword, “POFET”, the input code should
be parsed as a POET program. For more details on parsing specifications, see Section 5.5.

The following are two example input commands which read input codes file external files.

<input from=inputFile to=inputCode syntax=(inputLang)/>
<input from=xformFile cond=(xformFile!="") parse=POET />

In the first example, the file name that contains the input code is contained in a global vari-
able inputFile, the file name that contains syntax definitions of the input language is contained
in a global variable inputLang, and the parsing result will be saved as the value of global vari-
able inputCode. In the second example, the file named contained in xformFile is parsed iff
zformFile! = *7 and the parsing result will be parsed as a POET program.

8.2 The Condition Command

The syntax of the POET condition command is
ngn Cond <eXp> ll/>|l

This command evaluates the value of the boolean expression <exp>, which serves to declare con-
straints among values of global variables that must be true for the POET program to be correct.
The program continues as usual if <exp> evaluates to true and abort the whole evaluation with
an error message otherwise.

8.3 The Evaluation Command
The syntax of the POET evaluation command is
g avyal <exp> n/>||

This command triggers <exp>, which is a POET expression or a sequence of statements defined
in chapters 9 and 10, to be evaluated. All POET expressions and statements must be
embedded within an eval command to be evaluated at the global scope.

38 CHAPTER 8. TOP-LEVEL COMMANDS

8.4 The Output Command

The syntax for the POET output command is
"<" output [cond=<exp>] [syntax=<exp>] [from=<exp>] [to=<exp>] "/>"

Each POET output command unparses the internal representation of a computation to an external
file or standard output. Here each <exp> represents a POET expression. The following defines
the semantics of each attribute specification.

e cond =<exp> specifies a pre-condition that must be satisfied before performing the unparsing
task (if the cond expression evaluates to false, no result will be unparsed);

o syntax =<exp> specifies a list of POET file names that contain syntax definitions required
to unparse the result; A single file name instead of a list of names can also be used.

e from =<exp> specifies the resulting computation that should be unparsed to an external
file (or stdout).

e to =<exp> specifies the name of an external file to output the specified computation.
The following are two examples demonstrating the use of the output command.

<output cond=(inputLang=="") to=outputFile from=inputCode/>
<output cond=(inputLang!="") syntax=inputlang to=outputFile from=inputCode/>

Here the code contained in inputCode is unparsed to the file whose name is defined by output Flile.
The file names that contain the syntax definitions of the output language are contained in the
global variable inputLang. If an empty string is specified as the output name (or when no name is
specified), the resulting computation will be unparsed to standard output.

Chapter 9

Expressions

POET expressions are the building blocks of all evaluations and could take any of the following
forms.

e Atomic values, which include integers and strings. POET use integers to represent boolean
values.

Compound data structures, which include lists, tuples, associative maps, and code template
objects.

Xform handles, which are similar to global function pointers in C.

Variables, which are place holders for arbitrary types of values.

Invocation of POET zform routines, which are essentially calls to global functions.

Invocation of built-in POET operators, including both arithmetic operations and other oper-
ations provided to support efficient code transformation.

Except for variables and associative maps, none of the other POET compound data structures can
be modified. Transformations are performed by constructing new values to replace the old ones.
POET provides a large collection of built-in operators, each of which takes a number of input
values, performs some internal evaluation, and returns a new value as result. These operations can
be separated into the following categories.

9.1 Debugging Operations

POET provides the following operations to support debugging and error reporting. These opera-
tions produce side effects by printing out information and exiting the program if necessary.

9.1.1 The PRINT (print) operator

The syntax of invoking the PRINT operator is
PRINT <exp>

or

39

40 CHAPTER 9. EXPRESSIONS

print <exp>

The PRINT or print operator takes an arbitrary expression <exp>>, prints out the value of <exp>
to standard error, and returns an empty string “”’ as result. It can be used to print out the value of
an arbitrary expression for debugging purposes. The following shows some examples of using the
PRINT (print) operator.

print ("x=" x);
PRINT ("Warning: cannot resolve " cur_sub "-" cpstart
": permuteDim=" permuteDim "; left_offset = " left_offset);

9.1.2 The DEBUG operator

The syntax of invoking the DEBUG operator is
DEBUG [ll [ll(int>ll] n] ||{|| <eXp> n}n

The DEBUG operator takes an arbitrary expression <exp> and prints out debugging information
for evaluating <exp> to standard error and then returns the result of evaluating <exp>. The
<int> is used to control how many levels of zform routine invocations to debug. By default, <int>
is one, which means zform invocations will be treated as a built-in operators in debugging. If
<int> is 2, then the debugger will step into each zform invocation once. The following shows some
examples of using the DEBUG operator.

DEBUG {x = 56;}
DEBUG [3] {UnrollLoops(inputCode)}

9.1.3 The ERROR Operator

The syntax of invoking the ERROR operator is
ERROR <exp>

The ERROR operator takes an arbitrary expression <exp> and prints out the value of <exp>
as an error message to inform the user what has gone wrong before quitting the entire POET
evaluation. A line number and the file name that contains the ERROR invocation are also printed
out to inform the location that the error has occurred. The ERROR operator therefore should be
invoked only when an erroneous situation has occurred and the POET program needs to exit. The
following shows some examples of using ERROR operator.

ERROR("Expecting input to be a sequence: " input);
ERROR("Cannot fuse different loops: " curLoop " and " pivotLoop);

9.2 Generic comparison of values

9.2.1 The == and != operators

The syntax of invoking these binary operators are
<expl> == <exp2>
<expl> != <exp2>

Both operators take two expressions, <expl> and <exp2>, and return a boolean (integer) value
indicating whether the two operands are equal or not equal respectively.

9.3. INTEGER ARITHMETICS 41

9.2.2 Integer and String comparison

Four binary operators, including <, <=, >, and >=, are provided to support the partial ordering
of integer and string values.

9.3 Integer arithmetics

POET integer arithmetic operations include the following binary operators: +, -, *, /. %, +=, -=,
*= %=; and a single unary operator: -. These operators have the same meanings as those in C.

9.4 Boolean operations

POET provides two binary operators, && and ||, to support the conjunction and disjunction of
boolean values respectively. It provides a single unary operator, !, to support the inversion of
boolean values.

9.5 String operations

9.5.1 The concatenation A operator

It applies to two operands, each of which is a string, an integer, or a list of strings and integers,
and compose the operands into a single string. For example, “abc” A 3 A “def” returns “abc3def”.
Note that integer operands are automatically converted to strings when used in the concatenation.
The A operator can also be applied to a list of strings, e.g. (“abc” “def”) A 3 returns “abcedef3”.

9.5.2 The SPLIT operator
The syntax of invoking the SPLIT operator is
SPLIT n ("<eXp1> n s n <exp2>") n

Here <exp2> is an arbitrary input expression that may contain strings, and <expl> is either a
string that specifies the separator that should be used to split the strings in <exp2>, or an integer
that specifies how many characters to count before splitting <exp2> into two substrings. If <expl>
is an empty string, the POET internal tokenizer (lexical analyzer) will be invoked to split the given
string. The operation returns a list of substrings obtained from splitting <exp2>. For example,

SPLIT(1,"abc") <<* result is "a" "bc"
SPLIT(",","bc,ade,1lkd") <<* result is "bc" "," "ade" "," "1lkd" NULL
SPLIT("", "3,7+5") <<* result is "3" "," 7 "+" 5 NULL

9.6 List operations

9.6.1 List construction

List is the most commonly used data structure in POET. Building a list simply requires that the
components be placed together one after another. For example, (1 2 &) builds a list that contains
three elements: 1, 2, and 3.

42 CHAPTER 9. EXPRESSIONS

9.6.2 The Cons Operator (::)

The syntax of invoking the :: operator is
<expl> :: <exp2>

Here the operator returns a new list that inserts <expl> before all elements in <exp2>. For
example, “ <=" :: b produces a list with “<=" and elements from b. If b is NULL (the empty
list), the result is a list that contains a single element; If b is a list, the result contains all elements
in b; otherwise, the resulting list contains two elements, “ <=7 and b.

9.6.3 List Access (The car/HEAD, cdr/TAIL, and LEN operators)

Elements in a list are accessed through two unary operators: car (also known as HEAD) and cdr
(also known as TAIL). The keywords car and HEAD can be used interchangeably, so can cdr and
TAIL. The syntax of invoking the car and cdr operators are

car <exp>
cdr <exp>

Here the car operator returns the first element of the list <exp>; if <exp> is not a list, it simply
returns <exp>. The cdr operator returns the tail of the list; if <exp> is not a list, it returns
NULL. The following are some examples illustrating the use of these operators.

al = (3 4 5) <<x returns 3 4 5 NULL

a2 = (1 2 al) <<* returns 1 2 (3 4 5 NULL) NULL
a3 = (1 2) :: al <<*x returns (1 2 NULL) 3 4 5 NULL
ad =1 :: 2 :: al <<x returns 1 2 3 4 5 NULL

HEAD (a2) <<* returns 1

TAIL(a2) <<* returns 2 (3 4 5 NULL) NULL
HEAD (a3) <<* returns 1 2 NULL

TAIL(a3) <<* returns 3 4 5 NULL

The syntax of invoking the LEN operator is

LEN <exp>

When given a list as operand, the LEN operator returns the number of elements within the list.
For example, LEN(2 3 7) returns 3, LEN(2 7 “abc” “”) returns 4.

9.7 Tuple operations

9.7.1 Tuple Construction (the “,” operator)

A tuples is composed by connecting a predetermined number of elements with commas. For ex-
ample, “i” , 0, “m” , 1 produces a tuple t with four elements, “i”, 0, “m”, and 1. All elements
within a tuple must be explicitly specified when constructing the tuple, so tuples cannot be built

dynamically (e.g., using a loop).

9.8. ASSOCIATIVE MAP OPERATIONS 43

9.7.2 Tuple Access (The || and LEN operators)

Tuples provide random indexed access to their elements. Each element in a tuple ¢ is accessed by
invoking t[i], where ¢ is the index of the element being accessed (like C, the index starts from 0).
For example, if t = (4,0, “m”, 1), then ¢[0] returns “i”, ¢[1] returns 0, ¢[2] returns “m”, and ¢[3]
returns 1.

When given a tuple as operand, the LEN operator returns the number of elements within the
tuple. For example, LEN(2,3,7) =3, LEN(2,(“ < "3),4) = 3.

9.8 Associative Map Operations

9.8.1 Map Construction (the MAP Operator)

POET uses associative maps to associate pairs of arbitrary types of values. The syntax of building
an associative map using the MAP operator is the following.

MAP " (" <typel> , <type2> ")"
or
MAP Il{ll I: <eXP1> n=yn <exp2> {ll’" <eXp3> n=>y <exp4>}] ||}||

Here <typel> and <type2> are two type specifiers as defined in Section 9.11, and <expl>,...,<exp4>
are expressions. The first form returns a new empty table that maps values of typel to values of
type2, while the second form returns a new table with a number of pre-specified entries mapping
<expl> to <exp2>, etc.

9.8.2 Map Access (the || and LEN operators)

The elements within an associative map can be accessed using the “[]” operator and modified using
the assignment operator (i.e., =). The following illustrates how to create and operate on maps.

amap=MAP(_,_);
bmap=MAP{"abc"=>3, "def"=>4};
cmap=MAP{};

amap["abc"] = 3;

amap[4] = "def";

abc = amap["abc"];

LEN (amap) ;

foreach cur=(from=_,to=_) \in amap do
(from) "=>" (to);

enddo

If a value e is stored as a key in a map amap, then amaple] returns the value associated with e
in amap; otherwise, an empty string is returned. The size of a map amap can be obtained using
LEN (amap). All the elements within a map can enumerated using the built-in foreach statement.
For more details about the foreach statement, see Section 10.3.2.

44 CHAPTER 9. EXPRESSIONS

9.9 Code Template Operations

9.9.1 Object Construction (the # operator)

POET treats each code template name as a unique user-defined type, where the template parame-
ters are treated as data fields within the structure. To build an object of a code template, use the
following syntax.

<id> "#" (<expl>, <exp2>, ..., <expn>)

where <id> is the code template name. For example, Loop#(“i”,0, “N” 1) and Exp#(“abc/2”)
build objects of two code templates named Loop and Exp respectively.

9.9.2 Code Template Access (the || operator)

To get the values of individual data fields stored in a code template object, use syntax

<exp>[<id1> . <id2>]

where <exp> is a code template object, <id1> is the name of the code template type, and <id2>
is the name of the data field (i.e., the name of the code template parameter) to be accessed. For
example, aLoop|Loop.i] returns the value of the i data field in aLoop, which is a variable that
contains a Loop code template object. Similarly, aLoop|[Loop.step| returns the value of the step
field in aLoop. If aLoop contains value Loop#(“ivar”,5,100,1), then aLoop[Loop.i] returns value
“ivar”, and aLoop|Loop.step] returns value 1.

9.10 Variable Operations

9.10.1 Variable Assignment (the “=" operator)
All POET variables can be modified via the assignment operator using the following syntax.

<lhs> = <exp>

Here <exp> is an arbitrary expression, and <lhs> has one of the following forms.
e A single variable name. In this case, the value of the <exp> is assigned to <lhs>.

e A compound data structure (e.g., a list, tuple, or code template) that contains variables as
components. In this case, the value of the <exp> is matched against the structure of the
<lhs>, and all the variables within <lhs> are assigned with the necessary values to make
the matching successful. If the value of <exp> fails to match the structure in <lhs>, the
evaluation exits with an error.

For example, after the following two assignments,

a = Stmt#input;
Stmt#a = a;

the variable a should have the same value as input.

9.11. TYPE EXPRESSIONS 45

9.10.2 Un-initializing Variables (The CLEAR operator)
The syntax of invoking the CLEAR operator is

CLEAR <id>

where <id> is the name of a variable. The operation clears the value contained in v so that v
becomes uninitialized after the operation. The CLEAR operator is provided to support pattern
matching, where un-initialized variables are treated as place holders that can be matched against
arbitrary components of a compound data structure (see Section 9.12).

9.11 Type Expressions

Since POET is a dynamically typed language, the types of variables often need to be dynamically
checked to determine what operations could be applied to them. POET provides a collection of
type specifiers, one for each type of atomic and compound values, to allow the types of expressions
to be dynamically tested using pattern matching. Each type specifier can take any of the following
forms.

e The ANY (_) Specifier, which uses a single underscore (_) character to denote the universal
type that includes all values supported by POET.

e A code template name, which includes all objects of the particular code template.
e The INT specifier, which specifies the atomic integer type and includes all integer values.
e The STRING specifier, which specifies the atomic string type and includes all string values.

e The ID specifier, which specifies the identifier type and includes all string values that start
with a letter (‘A’-‘Z’,‘a’-‘z’) or the underscore (‘_’) character and are composed of letters, the
underscore (‘_’) character, and integer digits.

e The TUPLFE Specifier, which specifies the tuple type and includes all POET tuple.

e The MAP Specifier, which denotes the associative map type and includes all POET maps.
It can optionally take two parameters to indicate the types of element pairs within the map.
Specifically, MAP(fromType,toType) includes all associative maps that associate values of
fromType to values of toType.

e The CODE Specifier, which specifies the code template type and includes all code template
objects.

e The XFORM Specifier, which specifies the xform type and includes all zform handles.
e The VAR specifier, which specifies the variable type and includes all tracing handles as values.
e The EXP Specifier, which specifies the expression type and includes all POET expressions.

e The range Specifier [b..ub, where [b and ub are integer values or the ANY (_) specifier, is a
range type and includes all integers >= [b and <= ub. If the ANY (_) specifier is used as the
lower or upper bound, it indicates an infinity bound.

46

CHAPTER 9. EXPRESSIONS

(<type_1>,<type_2>,...... ,<typen>), which specifies a tuple of n elements, where the type
of the ith element (i = 1,...,n) is specified by <type_i>.

(<type-1> <type2> <type-n>), which specifies a list of n elements, where the type of
the ith element (i = 1,...,n) is specified by <type_.i>.

<id> # <type>, which specifies a code template type with <id> as the code template name
and <type> as types of template parameters.

<type_1> :: <type_2>, which specifies a list type with the type of the first element specified
by <type-1> and the rest of the list specified by <type_2>.

<type_1>..., which specifies the list type with <type_1> as the type of all elements within
the list. As a special case, (_...) specifies lists that may contain arbitrary elements. Note that
an empty list is a value of the <type_1>... type.

<type_1>...., which is identical to <type_1>... except that it does not include the empty list.

<type_-1> + <type_2>, <type_1> - <type_2>, <type_1>* <type_2>, <type_1> / <type_2>,
and <type_1> % <type_2>, which specify expression types composed of the binary operators
+, —, *, /, and % respectively.

<type_1> | <type_2>, which specifies the union of two types, <type_1> and <type 2>. In
particular, it includes all values that belong to either <type_1> or <type_2>.

“<type-1>, which specifies the complement of <typel>; that is, it includes all values that do

not belong to <type_1>.

9.12 The Pattern Matching Operator (the “:” operator)

The syntax of invoking the pattern matching operator is

<exp> ":" <pattern>

which determines whether or not an arbitrary expression <exp> has a given type. POET uses
pattern matching to dynamically test the type and structure of arbitrary unknown values. Further,
uninitialized variables can be used to save the structural information (component values) of the
data of interest during the process. The operation returns TRUE (integer 1) if <exp> matches the
pattern specified and returns FALSE (integer 0) otherwise. The pattern specifier <pattern> may
be in any of the following forms.

A constant value (i.e., an integer or a string literal), where pattern matching succeeds if
<exp> has the given value.

A type specifier that could have any of the forms defined in Section 9.11. Here the pattern
matching succeeds only if <exp> has the specified type.

An uninitialized variable name or an operation in the following format,

CLEAR <id>

9.12. THE PATTERN MATCHING OPERATOR (THE “” OPERATOR) 47

where <id> is a variable name which is reset by the CLEAR operator to become uninitialized
(see Section 9.10.2). The pattern matching always succeeds by assigning the unitialized
variable with the value of <exp>. Note that the CLEAR operator typically needs to be
applied to all pattern variables if the pattern matching operation is inside a loop, because all
uninitialized variables become initialized after the first successful pattern matching.

e The name of an already initialized variable. The pattern matching succeeds if <exp> has the
same value as the value of the variable, and fails otherwise.

e A compound data structure, e.g., a list, a tuple, or a code template, that contains other
pattern expressions as components. The pattern matching succeeds if <exp> has the specified
data structure and its components can be successfully matched against the sub-patterns. For
example, <exp> can be successfully matched to (patl pat2 pat3) if it is a list with three
components, each of which can be matched to patl, pat2, and pat3 respectively.

e A xzform handle, in which case the handle is invoked with <exp> as argument, and the
matching succeeds if the invocation returns TRUE (a non-zero integer). This feature allows
a function to be written to perform complex pattern matching tasks, and the function can be
used as a pattern specifier in all pattern matching operations.

e An assignment operator in the format of <id> = <pattern>, where <id>> is a single variable
name, and <pattern> is a pattern specification. Here the pattern matching succeeds if
<exp> can be successfully matched against <pattern>; and if successful, the variable <id>
is assigned with the value of <exp>.

e Two pattern specifiers connected by the binary | operator, in the format of
<patternl> | <pattern2>.
Here the pattern matching succeeds if <exp> could be matched to either <patternl> or
<pattern2>.

The following illustrates the results of applying pattern matching to check the types of various
expressions.

"3" : STRING <<*x returns 1
3 : STRING <<k returns O
"3" : ID <<* returns O
"A3" : ID <<* returns 1
MyCodeTemplate#"123" : STRING <<* returns 0
MyCodeTemplate#123 : MyCodeTemplate <<* returns 1
3 : MyCodeTemplate <<* returns 0
MyCodeTemplate#123 : MyCodeTemplate#INT <<* returns 1
("abc" "." "ext") : STRING <<* returns O
("3" 4" 5"y : (INT) <<* returns 1
3 : (INT ...) <<* returns 0O
(345) : (INT ...) <<* returns 1
(345 "abc") : (INT ...) <<* returns O
(345 "abe") : (_ ...) <<* returns 1
3: (0 ..2 <<* returns 0
3: (0 ..5) <<* returns 1

48 CHAPTER 9. EXPRESSIONS

"a" : (0 .. 5) <<* returns 0O
"a" : CODE <<* returns O
MyCodeTemplate : CODE <<*x returns 1
MyCodeTemplate#123 : CODE <<* returns 1
("abc" "." "ext") : CODE <<* returns 0
MyCodeTemplate#123 : XFORM <<* returns 0
("abc" "." "ext") : XFORM <<* returns O
foo : XFORM <<* returns 1; here foo is a xform routine
"abc" : TUPLE <<x returns O
("abc",2) : TUPLE <<* returns 1
MyCodeTemplate#123 : TUPLE <<* returns 0

9.13 Type Conversion (The => and ==> Operators)

POET uses two operators (=> and ==> operators) to convert a value from one type to another.
The syntax of invoking the operators is

<exp> => <parse_spec>
<exp> ==> <parse_spec>

Both the => and ==> operators have similar semantics in that they both take the given input
<exp> , parse it against the structural definition contained in <parse_spec>, and store the parsing
result into the variables contained in <parse_spec>. The difference between the => and ==>
operators is that when parsing fails, the => operator reports a runtime error, while the ==
operator simply returns FALSE (the integer 0) as result of evaluation. Therefore the ==> operator
can be used to experiment with parsing an input expression using different type specifiers.

For example, exp => (var = INT) converts the value contained in exp to an integer and
saves the integer value to variable var. Note that here the type conversion succeeds only if exp
can be successfully converted to an integer; a runtime error is reported otherwise. In contrast,
erp ==> (var = INT) returns false if the conversion fails. Similarly, exp => (var = STRING)
can be used to convert an arbitrary expression to a single string. Note that all values can be
converted to a string or the name of a variable, so all expressions can be successfully converted to
the STRING or VAR type specifier. The following shows some examples of string conversion.

3 => STRING <<* returns "3"
MyCodeTemplate#123 => STRING <<* returns "MyCodeTemplate#123"

Similarly, when an input value is converted to VAR parsing specifier, it is first converted to a
string, and the string is then used as the name to create a dynamic variable on the fly. For
example, 5 => VAR returns a new dynamic variable that has an internal name created from the
number 5. The VAR parsing specifier therefore allows place-holder variables to be dynamically
created for convenient pattern matching. The lifetime and scope of these dynamic variables span
the entire program, and they can be dynamically created and operated on at any point in the
program. Section 7.3 further discusses the concept of dynamic variables.

9.14. THE DELAY AND APPLY OPERATORS 49

9.14 The DELAY and APPLY Operators

POET provides two operators, DELAY and APPLY, to support the delay of expression eval-
uation. Such delay is desired when incrementally constructing pattern expressions that contain
un-initialized variables (see Section 9.12).

The syntax of invoking the DELAY operator is

DELAY u{n <exp> n}n

This operation saves the input expression, which could potentially be a sequence of POET state-
ments and expressions, in its original form and saves it for later evaluation. The result is the
internal representation of the saved expression and can be stored into an arbitrary variable, e.g.,
passed as parameters to an xform routine invocation, to be evaluated later.

The syntax of invoking the APPLY operator is APPLY <exp>, which triggers all delayed
expressions contained in <exp> to be evaluated and returns the evaluation result.

9.15 Operations On Tracing Handles

POET supports a special kind of global variables called tracing handles, which can be embedded
within the internal representations of various computations to trace transformations to fragments
of code. Once embedded inside a compound data structure, tracing handles become integral com-
ponents of the data structure. Transformations to the data structure therefore can be implemented
by simply modifying the values of the embedded tracing handles. As various transformations are
applied to the data structure, these tracing handles can be automatically replaced with new values,
thus making the ordering of different transformations extremely flexible, and one can easily adjust
transformation orders as desired.
The following POET operations can be used to set up and maintain tracing handles.

9.15.1 TRACE (x, exp)

Here x is a single or a list of variables. These variables become tracing handles during the evaluation
of the exp expression, so that they may be used to trace transformations performed by exp. For
example, in the following evaluation in POET /test/gemmATLAS/gemmKernel.pt,

TRACE (Arepl, ScalarRepl[... trace_vars=Arepl;.... J(...))

the variable Arepl is treated as a tracing handle during the invocation of the zform routine
ScalarRepl, so that the routine can modify Arepl to contain the names of new variables created
by the routine.

9.15.2 INSERT (x, exp)

This operation inserts tracing handle x, together with all the other tracing handles that are declared
together with = and following x in the same declaration, to be embedded inside expression exp if
possible so that £ may be used to trace transformations within exp. A special case of invoking the
INSERT operation is INSERT(tophandle,tophandle), where tophandle is the first tracing handle
that was followed by a collection of other handles declared together. Note for the INSERT operation
to work, the tracing handles must have been declared in the same order as the order of encountering
them in a pre-order traversal of the input computation.

50 CHAPTER 9. EXPRESSIONS

9.15.3 ERASE(x, exp)

Here x is a single or a list of tracing handles, and exp is an arbitrary expression. This operation
returns a new computation that is equivalent to exp but no longer contains any trace handles in
x. For example, if input = Stmt#(x), where x is a tracing handle and contains value 3, then
ERASE(z,input) returns Stmt#3. As a special case, the invocation FRASE(z, x), returns the value
contained in the variable = (i.e., the resulting value is no longer a tracing handle). For example, if
x is a trace handle and = = “abc”, then ERASE(z) returns ”abc”.

9.15.4 COPY (exp)

Instead of explicitly specifying which tracing handles to erase from an input expression exp, the
operation COPY(exp) replicates exp with a copy that has no tracing handles at all (i.e., all tracing
handles are erased). For example, if input = Assign#(z,y), where both z and y are tracing handles
with values “var” and 4 respectively, then COPY (input) returns Assign#(“var”, 4).

9.15.5 SAVE (v1,v2,...,vm)

Here v1,v2, ..., vim is a tuple of tracing handle names. This operation saves the current value of
each tracing handle so that the values of v1,v2,...,vmn can be restored later.

9.15.6 RESTORE (v1, v2, ..., vin)

Here v1,v2, ..., vin is a tuple of tracing handle names. This operation restores the last value
saved for each tracing handle. The SAVE and RESTORE operations are usually used together
for saving and restoring information relevant to trace handles. Both the SAVE and RESTORFE
operations return the empty string as result.

9.16 Transformation Operations

POET provides several built-in operations, including replication, permutation, and replacement of
code fragments, to apply a wide variety of transformations to input computations. All built-in
operations support the update of tracing handles embedded within their input computations; that
is, each tracing handle embedded within the input will be modified to contain the transformation
result of its original value. Note that except for modifying tracing handles, all built-in operations
return their transformation results without any other direct modifications to the input code.

9.16.1 DUPLICATE(c1,c2,input)

Here c1 is a single expression, ¢2 is a list of expressions, and input is the input computation to
transform. This operation replicates input with multiple copies, each copy replacing the code
fragment cl in input by a different component in the list ¢2. It returns a list of the copies as result.
For example,

input = Stmt#"var";
print ("DUPLICATE(\"var\", (1 2 3), input) = " DUPLICATE("var", (1 2 3), input));

produces the following output.

DUPLICATE("var", (1 2 3), input) = Stmt#l Stmt#2 Stmt#3 NULL

9.17. THE CONDITIONAL EXPRESSION (THE “?:” OPERATOR) ol

9.16.2 PERMUTE(config,input)

Here input is a list of expressions, and config is a list of integers that specify the index of per-
mutation location for each component in input. This operation reorders elements in the input list
based on con fig, which defines a position for each element in input. For example,

PERMUTE((3 2 1), (llall llb" Ilcll)) returns (Ilcll llbll |Iall)

9.16.3 REBUILD(exp)

This operation takes a single POET expression exp and returns the result of rebuilding exp. Here
for each code template object contained in exp, the rebuilding process replaces the object in exp by
invoking the rebuild attribute defined for the corresponding code template type (see Section 5.4)
if appropriate. The operation therefore can be used to automatically eliminate redundancies (e.g.,
empty strings) in exp based on customizable definitions for each relevant code template type.

9.16.4 REPLACE(c1,c2,input)

Here input is the input computation to transform, ¢l is an expression embedded inside input, and
c2 is the new expression to replace cl, This operation replaces all occurrences of the code fragment
cl in input with c2. For example,

REPLACE("X" s |Iyll ,SPLIT nn , IIX*X_QII)) returns llyll II*II llyll n_n 2 NULL

9.16.5 REPLACE(config, input)

Here input is the input computation to transform, and config is a list of pairs in the format of
(orig,repl), where orig is an expression embedded inside input, and repl is the expression to replace
orig. This operation traverses the input to locate the orig component of each pair in config and
replaces each orig with repl in input. Each (orig, repl) pair in config is expected to be processed
exactly once, in the order of their appearances in con fig, during a pre-order traversal of the input.
If there is any pair never processed in con fig, the rest of the specifications in con fig will be ignored,
and a warning is issued. For example

REPLACE(((“a“,l) ("b",Q) ("C",S)), Bop#(“+“,"a",Bop#("—“,"b","c“)))
= Bop#("+",1,Bop#("-",2,3))

9.17 The Conditional Expression (The “7:” operator)

POET supports conditional evaluation of expressions using the following syntax (same as C).
<cond> 7 <expl> : <exp2>

Here the <cond> expression is first evaluated, which should return a boolean (integer value). If
the return value of <cond> is true, the result of evaluating <expl> is returned; otherwise, the
result of evaluating <exp2> is returned.

Chapter 10

Statements

In POET, statements are considered special expressions whose results may be ignored when com-
posed into a sequence. For example, when a collection of statements s1, s2, ..., ;, is composed into
a sequence, the evaluation results of the previous s1, s9, ..., S;p—1 statements are thrown away, and
only the result of the last statement is returned. In contrast, when a collection of expressions
e1, €2, ..., ey 18 composed into a sequence, the evaluation result is a list that contains the result of
all expressions eq, eg, ..., &, as components (in POET, when expressions are simply listed together,
they are considered operands in a list construction operation. See Section 4.2.1).

POET statements serve to provide control flow support such as sequencing of evaluation, con-
ditional evaluation, loops, and early returns from xform routines.

10.1 Single Statements

10.1.1 The Expression statement

The syntax for the expression statement is
<exp> ;

An expression statement is composed by following any POET expression with a semicolon (i.e.,

%]

“7). If an expression is followed by a “”, its evaluation result is always an empty string, and
the result is ignored when composed with other statements. Expression statements are used to
support sequencing of statements — that is, only the result of the last expression is returned, and
the results of all previous evaluations are ignored.

10.1.2 The RETURN (return) statement

The syntax for the RETURN statement is
RETURN <exp> ;

or

return <exp> ;

The RETURN or return statement must be inside the body of a z form routine (a runtime error
is raised otherwise). When evaluated, it exits the xform routine with the result of evaluating
<exp>. The RETURN (return) statement is provided to allow convenient early returns from
xform invocations.

02

10.2. CONDITIONALS 93

10.1.3 Statement Block

The syntax for a statement block is
{ stmtl stmt2 ... stmtm }

Here stmtl, stmt2, ..., stmtm are a sequence of statements. So a statement block merely combines
a sequence of statements into a single one. The value of the statement block is the value of the last
statement stmim.

10.2 Conditionals

10.2.1 The If-else Statement

The syntax for the if-else statement is
if (<cond>) <stmtl> [else <stmt2>]

Here <cond> is a POET boolean expression, and <stmtl> and <stmt2> are single statements
(including statement blocks). If <cond> evaluates to true (a non-zero integer), <stmtl> is evalu-
ated, and the value of the last expression in <stmt1> is returned; otherwise, <stmt2> is evaluated,
and the value of the last expression in <stmt2> is returned. If <cond> evaluates to false and the
else branch is missing, then an empty string is returned as result of evaluation.

10.2.2 The Switch Statement

The syntax for the switch statement is

switch (<cond>)

{

case <patternl> : <stmtsil>
case <pattern2> : <stmts2>
case <patternm> : <stmtsm>

[default : <default_stmts>]
}

Here <cond> is an arbitrary expression, <patternl> <pattern2>,..., <patternm> are pattern
specifiers as defined in Section 9.12, and <stmtsl>,<stmts2>,...,<stmtsm> and <default_stmts>
are sequences of statements or expressions. The switch statement first evaluates <cond> and then
matches the result of <cond> against each pattern specifier in order. Specifically, if <cond> :
<patternl> succeeds, then <stmtsl> is evaluated and the result of <stmtsl> becomes the result
of the switch statement; otherwise, the result of <cond> is matched against <pattern2>, and so
forth. If none of the patterns can successfully match the value of <cond>, the <default_stmts> is
evaluated and returned as result. If no pattern matching succeeds and no default statements are
specified (the default branch is optional), an error message is issued.

Note that when evaluating the switch statement, only one pattern will be successfully matched
with the given <cond> throughout the evaluation. Once a pattern matching succeeds, the corre-
sponding statements are evaluated and the result is returned immediately (no statements in the

54 CHAPTER 10. STATEMENTS

following patterns will be evaluated). If two patterns need to be combined, they should be combined
into a single pattern specification using the | operator, shown in Section 9.12.
The switch statement syntax is equivalent to the following syntax using if-else statements.

var = <cond>;

if (var : <patternl>) { <stmtsil> }
else if (var : <pattern2>) { <stmts2> }
else if (var : <patternm>) { stmtsm> }
[else { <default_stmts> }]

10.3 Loops

10.3.1 The for Loop

The syntax of the for loop is as the following.

for (<init> ; <cond> ; <incr>)
<body>

Here <init> and <incr> are arbitrary expressions, <cond> is a boolean expression, and <body>
is a single statement (could be a statement block) that comprises the loop body. First, the <init>
expression is evaluated to initialize the loop. Then, <cond> is evaluated. If <cond> returns
TRUE, <body> and <incr> are evaluated, and <cond> is evaluated again to determine whether
to repeat the evaluation of <body> and <incr>.

As example, the following loop prints out each element contained within a list input.

for (p_input = input; p_input != NULL; p_input = TAIL(p_input)) {
print ("seeing element: " HEAD(p_input));
}

10.3.2 The foreach Loop

The syntax of the foreach loop is

foreach <pattern> \in <exp> s.t. <succ> do
<body>
enddo

or the older syntax

foreach (<exp> : <pattern> : <succ>)
<body>

Here <exp> is the an arbitrary expression, <pattern> is a pattern specifier as defined in Sec-
tion 9.12, <succ> is a boolean expression, and <body> is a single statement (or a statement block).
The foreach statement traverses the input computation <exp> and matches each component con-
tained in <exp> against the pattern specifier <pattern>. If any pattern matching succeeds for a
code fragment subexp in <exp> and if <succ> evaluates to true, it evaluates the <body> state-
ment. If <succ> is set to be the boolean constant value FALSE, the foreach loop will continue

10.3. LOOPS 95

traversing the subexp in order to find additional matches. The foreach statement therefore serves as
the built-in operation for collectively applying pattern matching analysis to an input computation.

Note that in order to process each fragment that matches a given pattern, the <pattern>
specifier needs to contain local variables that are assigned with the matched fragment when the
matching succeeds. The following example illustrates how to print out all the loop controls inside
an input computation.

foreach curLoop = Loop \in input do
print ("found a loop: " curLoop);
enddo

The above is equivalent to

foreach (input : (curLoop = Loop) : TRUE)
{
print ("found a loop: " curLoop);

}

The expression curLoop = Loop is enclosed inside a pair of parentheses in the first syntax
because the assignment operator has lower precedence than the : operator. The following loop
collects all the loop nests within an input computation.

loopNests = "";

foreach curNest = Nest \in s.t. FALSE do
loopNests = BuildList(curNest, loopNests);

enddo

Here because loop nests may be inside one another, the <succ> parameter of the foreach loop is
set to FALSFE so that the pattern matching can continue inside already located loop nests.

Since each foreach loop makes a traversal over the entire input, it is recommended to use the
foreach loop to collect information only. If the input computation needs to be transformed, it is
better to invoke a REPLACE operation (see Section 9.16) after a foreach loop has finished, as the
transformation operations may disrupt the traversal by the foreach loop.

To traverse an input in reverse order, use the following

foreach <pattern> \in reverse(<exp>) s.t. <succ> do
<body>
enddo

or the older syntax using like the following.

foreach_r (<exp> : <pattern> : <succ>)
<body>

The above essentially has the same syntax and semantics as the foreach loop, except that it tra-
verses the input <exp> in the reverse order of the traversal by the corresponding foreach loop.
The different traversal order allows the relevant information to be gathered and saved with more
flexibility. For example, the following code

loopNests = NULL;

foreach curNest = Nest \in reverse(input) s.t. FALSE do
loopNests = curNest :: loopNests;

enddo

56 CHAPTER 10. STATEMENTS

or in older syntax

loopNests = NULL;
foreach_r (input : (curNest = Nest) : FALSE)
loopNests = curNest :: loopNests;

collects all the loop nests inside input and saves the loop nests in a list in the same order of their
appearances in the original code. In contrast, the almost identical loop in Section 10.3.2 saves all
the loop nests in the reverse order of their appearances in input.

10.3.3 The BREAK (break) and CONTINUE (continue) statements

Just like the break and continue statements in the C language, POET provides break and continue
statements to jump to the continuation and exit of a loop. The syntax for both statements are

BREAK
CONTINUE

or

break
continue

These two statements have the same meaning as those in C, and can be used to break out of (or
back to the start) of for, foreach, and foreach_r loops.

10.3. LOOPS

Appendix A. Context-free grammar of the POET language

poet : commands ;
commands : commands command | ;
command : "<" "parameter" ID paramAttrs "/>"

| "<" "define" ID exp "/>"

| "<" "eval" exp "/>"

| "<" "cond" exp "/>"

| "<" "trace" traceVars "/>"

| "<" "input" inputAttrs inputRHS

| "<" "output" outputAttrs "/>"

| "<" "code" ID codeAttrs codeRHS

| "<" "xform" ID xformAttrs xformRHS

paramAttrs : paramAttrs paramAttr | ;

paramAttr : "type" "=" typeSpec | "default" "=" expUnit
| "parse" "=" parseSpec | I'"message" "=" STRING

traceVars : ID | traceVars "," traceVars

inputAttrs : inputAttr inputAttrs | ;

inputAttr : "debug" "=" expUnit | "annot" "=" expUnit | "cond" "=" expUnit
| "syntax" "=" expUnit | "parse" "=" "POET" | ‘"parse" "=" parseSpec
| "from" "=" expUnit | "to" "="ID | "to" "=" "POET"

inputRHS : ">" inputCodeList "</input>" | "/>"

inputCodelist : inputCode | inputCode inputCodeList

outputAttrs : outputAttr outputAttrs | ;

outputAttr : "cond" "=" expUnit | "syntax" "=" expUnit
| "from" "=" expUnit | "to" "=" expUnit
codeAttrs : codeAttrs codeAttr | ;
codeAttr : "pars" "=" "(" codePars ")" | ID "=" typeSpec
| "cond" "=" expUnit | "rebuild" "=" expUnit
| "parse" "=" parseSpec | "output" "=" typeSpec
| "lookahead" "=" INT | "match" "=" typeSpec
codeRHS : ">" exp "</code> | n/>n
xformAttrs : xformAttrs xformAttr | ;
xformAttr: "pars" "=" "(" xformPars ")" | "output" "=" "(" xformPars ")"
| ID "=" typeSpec
xformRHS : ">" exp "</xform>" | "/>"
codePars : ID | ID ":" parseSpec | codePars "," codePars
xformPars : ID | ID ":" typeSpec | xformPars "," xformPars
typeSpec : INT | STRING | "_" | 1ID
| "INT" | "STRING" | "ID" | "VAR" | "CODE" | "XFORM" | "TUPLE"
| "MAP" "(" typeSpec "," typeSpec ")" | "EXP"
| typeSpec "..." | typeSpec "...."

| typeSpec ".." typeSpec | ID "#" typeSpec

58 CHAPTER 10. STATEMENTS

| "(" typeList ")" | "(" typeTuple ")"
| typeSpec "|" typeSpec | "™" typeSpec
| typeSpec "+" typeSpec | typeSpec "-" typeSpec | typeSpec "*" typeSpec
| typeSpec "/" typeSpec | typeSpec "%" typeSpec | typeSpec "::" typeSpec
typelist : typeSpec | typeSpec typelist
typeTuple : typeSpec "," typeSpec | typeTuple "," typeSpec

patternSpec : typeSpec | "CLEAR" ID

| "(" patternSpecList ")" | "(" patternSpecTuple" ")" | patternSpec "|" patternSpec
| ID "[" xformConfig "]" | ID "#" patternSpec | ID "=" patternSpec

patternSpecList : patternSpec patternSpec | patternSpec patternSpecList

patternSpecTuple : patternSpec "," patternSpec | patternSpecTuple "," patternSpecTuple

parseSpec : typeSpec

stmt

| "TUPLE" "(" parseSpecList ")" | "LIST" "(" parseSpec "," singleType ")"
| "(" parseSpecList ")" | "(" parseSpecTuple" ")" | parseSpec "|" parseSpec
| ID "[" xformConfig "]1" | ID "#" parseSpec
| ID "=" parseSpec
parseSpecList : parseSpec parseSpec | parseSpec parseSpeclList
parseSpecTuple : parseSpec "," parseSpec | parseSpecTuple "," parseSpecTuple
xformConfig : ID "=" parseSpec | xformConfig ";" xformConfig
exp : expUnit | exp exp | exp "::" exp | exp "," exp
| "car" expUnit | "cdr" expUnit | "HEAD" expUnit | "TAIL" expUnit | "LEN" expUnit
| "ERROR" expUnit | "PRINT" expUnit | "print" expUnit
| DEBUG "[" INT "]" "{" exp "}" | DEBUG "{" exp "}"
| exp "=" exp | exp "+=" exp | exp "-=" exp
| exp "*=" exp | exp "/=" exp | exp "U=" exp
| exp "=>" parseSpec | exp "==>" parseSpec
| exp "?" exp ":" exp
| exp "&&" exp | exp "||" exp | "!" exp | exp "|" exp
| exp "<" exp | exp "<=" exp | exp "==" exp
| exp ">" exp | exp ">=" exp | exp "!=" exp
| exp ":" patternSpec | "-" exp
| exp "+" exp | exp "-" exp | exp "*" exp | exp "/" exp | exp "%" exp
| exp """ exp | "SPLIT" "(" exp "," exp ")"
| "REPLACE" "(" exp "," exp ")" | "REPLACE "(" exp "," exp "," exp ")"
| "PERMUTE" "(" exp "," exp ")" | "DUPLICATE" "(" exp "," exp "," exp ")"
| "COPY" expUnit | "REBUILD" expUnit
| "ERASE" "(" exp "," exp ")" | INSERT "(" exp "," exp ")"
| "DELAY" "{" exp "}" | "APPLY" expUnit | "CLEAR" expUnit
| "SAVE" expUnit | "RESTORE" expUnit | "TRACE" "(" exp "," exp ")"
| expUnit "..." | expUnit "...." | expUnit ".." expUnit
| "MAP" "(" typeSpec "," typeSpec ")"
| exp "[" exp "1" | exp "#" expUnit
|

10.3. LOOPS 99
stmt: exp ";" | "{" exp "}" | "RETURN" expUnit | "return" expUnit
| "if" "(" exp ")" stmt | "if" "(" exp ")" stmt "else" stmt
| "switch" "(" exp ")" "{" cases "}"
| "for" "(" exp ";" exp ";" exp ")" stmt
| "foreach" id = patternSpec \in exp "s.t." exp do stmt enddo
| "foreach" id = patternSpec \in reverse(exp) "s.t." exp do stmt enddo
| "foreach" "(" exp ":" patternSpec ":" exp ")" stmt
| "foreach_r" "(" exp ":" patternSpec ":" exp ")" stmt
| "CONTINUE" | "continue" | "BREAK" | "break"
expUnit: "(" exp ")" | ID | "XFORM" | "CODE" | "TUPLE" | "STRING" | "INT" | "VAR"
| INT | STRING | "_"
cases cases '"case" patternSpec ":" exp
| cases "default" ":" exp

"case" patternSpec ":" exp

	Table Of Content
	Building and Using POET
	Building POET From Distribution
	Building POET From SVN repository
	Directory Structure of POET Source Distribution
	Using POET

	Building Translators: Getting Started
	Hello World
	The Identity Translator
	The String Translator
	Language Translators
	Program Optimizations

	Language Overview
	Overview of Concepts
	Categorization of POET Names
	Components of POET Programs
	Notations

	Atomic and Compound Data Types
	Atomic Values
	Integers
	Strings

	Compound Data Structures
	Lists
	Tuples
	Associative Maps

	Code Templates
	Xform Handles

	Code Templates
	Defining Code Templates
	Template Parameters
	Template Body
	Template Attributes
	The parse attribute
	The lookahead attribute
	The match attribute
	The output attribute
	The INHERIT attribute

	Parsing Specifications
	Parsing Annotations

	Xform Routines
	Xform Routine Declarations
	Invoking Xform Routines

	Categorization Of Variables
	Local Variables
	Static Variables
	Dynamic Variables
	Global Variables
	Command-Line Parameters
	Macros
	Tracing Handles

	Reconfiguring POET via Macros
	The TOKEN Macro
	The KEYWORD Macro
	The PREP Macro
	The BACKTRACK Macro
	The PARSE Macro
	The UNPARSE macro
	The Expression Macros

	Top-Level Commands
	The Input Command
	The Condition Command
	The Evaluation Command
	The Output Command

	Expressions
	Debugging Operations
	The PRINT (print) operator
	The DEBUG operator
	The ERROR Operator

	Generic comparison of values
	The == and != operators
	Integer and String comparison

	Integer arithmetics
	Boolean operations
	String operations
	The concatenation operator
	The SPLIT operator

	List operations
	List construction
	The Cons Operator (::)
	List Access (The car/HEAD, cdr/TAIL, and LEN operators)

	Tuple operations
	Tuple Construction (the ``," operator)
	Tuple Access (The [] and LEN operators)

	Associative Map Operations
	Map Construction (the MAP Operator)
	Map Access (the [] and LEN operators)

	Code Template Operations
	Object Construction (the # operator)
	Code Template Access (the [] operator)

	Variable Operations
	Variable Assignment (the ``=" operator)
	Un-initializing Variables (The CLEAR operator)

	Type Expressions
	The Pattern Matching Operator (the ``:" operator)
	Type Conversion (The => and ==> Operators)
	The DELAY and APPLY Operators
	Operations On Tracing Handles
	TRACE (x, exp)
	INSERT (x, exp)
	ERASE(x, exp)
	COPY(exp)
	SAVE (v1,v2,...,vm)
	RESTORE (v1, v2, ..., vm)

	Transformation Operations
	DUPLICATE(c1,c2,input)
	PERMUTE(config,input)
	REBUILD(exp)
	REPLACE(c1,c2,input)
	REPLACE(config, input)

	The Conditional Expression (The ``?:" operator)

	Statements
	Single Statements
	The Expression statement
	The RETURN (return) statement
	Statement Block

	Conditionals
	The If-else Statement
	The Switch Statement

	Loops
	The for Loop
	The foreach Loop
	The BREAK (break) and CONTINUE (continue) statements

	Append A. Context-free grammar of the POET language

