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Abstract 
 
We implemented the idea of haptic imprints  for  security applications  Using the tools available at our disposal, our first 
priority was to provide access to information in a highly distributed environment.  Global-Share project investigated the use 
of existing systems allowing access to information on the wearable visual displays available to us.   SGI systems and  a 
NOMAD display was available for our research.  We  used Vizserver software to display the output of an SGI system on the 
NoMAD display [5].  We then investigated ARToolKit® for our experiments.  Haptic-Imprints use haptic devices, such as 
PHANToM forcefeedback device, to create a unique simple patterns which can be used to verify the haptic-signatures on-
line.  The need for mobile haptic devices with high fidelity is identified. 
 
1. Introduction 
 
Wearable and mobile computing poses special challenges 
in security research where humans in the loop system 
create special interaction issues.   At the same time, 
wearable-environments allow us an opportunity to 
express, be creative, and quickly perform tasks which 
were otherwise impossible.  At the minimum these 
systems are expected to understand verbal commands, 
provide feedback through a variety of output displays 
such as sound or displays.  Wearable computing is the 
transformation of a user’s personal space into an active 
area in which electronic assisted activities may be 
performed.  This new area of research is rich with new 
ideas but it is far from being a mature field; yet 
acceptance of wearable devices in daily life has been slow 
at best, for example, watches [9] took several hundreds of 
years to be accepted as a device.    In this paper, we 
describe our research efforts towards creating haptic 
applications geared toward physical security applications.   
 
2. Global Share Project 
 
In the Global-Share project [8] (Figure 1), our vision was 
to provide a technological collaboration between several 
individuals allowing them to interact with each other from 
anywhere in the world, and share important information 
using latest in wearable-computing and visualization 
research [7,10].  The long-term goals of the Global-Share 
project were: 
 
(a) Information-Fusion:  Combine the information from a 
variety of heterogeneous sources: collecting voice, text, 
images, video, 3Dimensional terrain and building data, 

and other sources such as remote monitoring of sensors in 
secure installations. (b) Present this heterogeneous 
information using novel displays [6].   
  
The SGI™ Vizserver was used as it is a stable product for 
delivery of image and graphics information (Figure 2). 
The choice of Vizserver was guided by the following 
criteria which we had in mind:  (a) should be able to 
provide accurate, real-time knowledge (b) should not 
require massive amounts of processing to occur at the 
client, yet be able to provide reasonable amount of 
functionality. (c) should not overwhelm the used with 
data 
(d) should be able to provide delivery to disparate, 
portable devices. (e) The user should be able to 
manipulate the 3Dimensional data using the simple 
devices such as computer-mouse or touch-pad, and 
navigate that in real-time. 
 
In the Global-Share system, our design focuses on 
removing all processing on the client side, except for 
display which would thus allow augmented reality 
devices such as NOMADs to be used for display 
 



HAVE 2004 

---------------------------------------- 
‡ email semwal@cs.uccs.edu 
 

 
 
Figure 1:  The System Diagram of the Global-Share 
Project. 
 
 
 
 
 

 
 

Figure 2: Vizserver arrangement used for our 
experiments.  
 
 
 
We used the NOMAD™ Augmented Vision System as 
the client to be actually receiving data from the Vizserver 
(See Figure 2). Using these tools, we performed the 
following functions [4]: 
 
(i) The SGI system runs a graphics program. (ii) The 
OpenGL Vizserver captures the frame buffer and sends it 
across the network. (iii) The client computer runs a client 
that accepts this frame (iv) The NOMAD Augmented 
Vision System is connected to this client computer and 
displays the image on its screen. 
 
NOMAD Systems Study 
 
We studied the suitability of the NOMAD system for our 
experiments.  The NOMAD Vision system (Figure 2) is a 
hands free, heads up display unit. It provides the ability to 
superimpose digital information in front of one of the 
user’s eyes, providing a virtual-view of a 17” screen on 
the retina. This unit provides mobility to the user, 
unchaining him/her from the desk.  Using the 
combination of Vizserver installed1 on one of our SGI 
system and the NOMAD system available as part of our 
Wearable Computing Laboratory, we were able to 
successfully demonstrate programs running on the SGI 
system to be simultaneously presented on a PC using 
Windows XP environment.  Mouse-keys could be used 
on the PC to manipulate the OpenGL application running 
on the SGI system.  There was no visual degradation of 
the OpenGL programs being displayed on the SGI system 
and that on the Windows XP PC.  Next the output of the 
PC was connected to the NOMAD system and similar 
results were achieved.   
 
The use of the NOMAD system for obtaining mobile 
information access was important for our goals.  In our 
research, we intended to answer the following questions:  
First, would it be feasible to create a wearable system 
capable of mobile information access?  In the event that it 
would be, what physical and psychological issues would 
confront users of such a system, and what means might 
alleviate any problems encountered?  Finally, how 
broadly could such a technology be applied in 
contemporary society? 
 

                                                           
1 We would like to thank Dave Lohman for help with 
installing the VizServer software on the SGI. 

NOMAD Eye-Wear Display 

OpenGL VizServer  
on SGI Kamet  
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The first answer was relatively easy to obtain, with the 
construction of a basic wearable system using as its 
backbone a custom software package called InfoSys.  The 
system developed for the NOMAD Study can be driven 
by any 802.11-compatible PDA capable of executing 
Microsoft DirectX applications and utilizes the 
Microvision ND1000 (NOMAD) Head-Mounted Display.   
The system was field tested by 9 individuals, each 
without knowledge of the results obtained by others.  
Testing criteria covered a wide range of issues, from 
hardware issues to software comfort.  Most of the 
software results fell into expected patterns, with testers 
suggesting small changes and additional features.  
However, many difficulties were encountered with 
respect to the hardware.  First, the head-mounted display 
responded unpredictably when combined with diverse 
testing systems, possibly a side effect of operating the 
device in DirectX’s Retained Mode(640x480, 8 bit).  
Unlike most monitors, there was no effective means of 
adjusting the use of screen pixels in the display, and so 
the users often had to cope with unintended visual 
difficulties. 
 
Most surprising was the effect on the user’s mobility.  8 
out of 9 testers indicated that they had difficulty 
performing a basic equilibrium test, wherein they were 
asked to walk across a room on a line marked with tape.  
This result may be due to the nature of the display, which 
causes one eye to focus on the text generated by the 
software while the other focuses normally.  These results 
led the test group to conclude that the system made them 
feel clumsy, a problem which would lead to the 
significant social burden of self-consciousness.  
Interestingly, this equilibrium issue was only a problem 
when testers were in motion – when they were stationary 
most stated that they felt comfortable. 
 
A secondary impact that was entirely unanticipated was 
the effect of the display’s shading system, which displays 
a monochrome image in 32 shades of red.  7 of 9 testers 
indicated that the red coloring was hard on their eyes and 
noted difficulty in seeing edges when two adjacent 
regions only differed by a single shade.  Additionally, 6 
of 9 testers indicated a strong correlation between the 
light’s intensity and an inability to view the environment 
through the image, especially when the background 
lighting was dim.  However, reducing the image’s 
intensity also substantially reduces the visibility of 
shading.  The testing implies that a wearable system of 
this nature would be best served to utilize only a subset of 
available intensity levels, adjusting with the brightness of 
the environment. 
 
Finally, all of the testers expressed concern for the 
physical robustness of the system.  Most felt that the 

hardware is too delicate to be used in an environment 
with rough conditions such as physical secuirty.  The 
projection unit in particular was a matter of great concern 
to the users – they felt uncomfortable moving around with 
such an expensive and relatively heavy device only 
secured to the rest of the headset by just a small plastic 
clip.  A more robust construction would be necessary for 
such a system if it were in common use. 
 
The last question, that of application in the real world 
once the kinks are worked out, is answered quite simply – 
such a system might be used for nearly limitless purposes.  
Industrial users could utilize it to speed the 
accomplishment of certain tasks.  Librarians and grocers 
could use it to make restocking their shelves more 
efficient.  The military could use it to supply battlefield 
information to soldiers, reducing infantry friendly fire 
incidents substantially.  And not least, private users could 
utilize it for everything from reading books on the go to 
accessing streaming advertisements on store servers.  The 
positive social impact which a strong wearable system for 
mobile information access might generate is truly 
inestimable.  As limitations of head mounted display 
system were identified, we started looking for camera 
based augmented reality tools for security applications.  
We found that ARToolKit is very stable software 
packages (and several sites and mailing list already exist) 
as it is available on multi-platform (PC/SGIs). 
We implemented a OO-class called ARC control which 
the user might find useful.  The class and its functions are 
defined in the Appendix with this paper. 
 
3. Haptic-Imprints  
 
The goal of Haptic-Imprints is to develop a computer 
security application that uses the haptic device [2,3] for 
verifying the user that is trying to log on to the system.  
We want to: (a) create an application that allows one to 
write a signature using the haptic device, (b) break the 
signature into two parts and copy a part of it on to a 
memory device, and (c) then join the two parts again and 
compare it with the original image. We used C++ and 
OpenGL along with the Ghost API. With our experiments 
described above we have achieved to use the haptic 
device to display the signature on an SGI machine 
(Figures 3 and 4).  
 Haptic interaction adds the sense of touch to 
virtual environments.  We used the PHANToM 
forcefeedback device for our experiments.  Details of 
PHANToM can be found elsewhere.  Here we briefly 
describe it as it pertains to our experiments. The 
PHANTOM Premium 1.0 is a system capable of 6 
degrees of freedom input and 3 degrees of freedom 
output. This model provides a workspace of 5 x 7 x 10 



HAVE 2004 

---------------------------------------- 
‡ email semwal@cs.uccs.edu 
 

inches (12.7 x 17.8 x 25.4 cm) or the range of motion 
approximate to the lower arm pivoting at the user's wrist.  
 
 

 
Figure 3: Phantom Premium 1.0 
 
The PHANToM provides an added advantage over the 
mouse and it provides us with a three dimensional 
workspace and also acts as a force feedback device. The 
phantom is easy to maneuver due to its six degrees of 
freedom and hence provides a great deal of flexibility. 
When connected to a computer, the device works sort of 
like a tactile mouse, except in 3-D. Three small motors 
give force feedback to the user by exerting pressure on 
the grip or thimble. GHOST  API Library was used for 
our experiments and came with PHANToM device. The 
main idea of haptic-imprints was implemented as follows: 
(a)  First store the user's haptic signatures using the ghost 
library and the PHANToM. 
(b)  Split the haptic signatures into two. 
 
.We started with learning the use of the Ghost API and 
used a 2-D application using the mouse to build a ' paint 
like' application which was used to write signatures using 
the mouse. This program was ported to the SGI to make it 
run along with the PHANToM. 
 
We then integrated the application with the Ghost API 
and the PHANToM to use the two dimensional program 
in the three dimensional environment. The thimble 
(Figure 4) of the PHANToM was used to select draw 
modes. One chooses what to draw by clicking the thimble 
in the appropriate object box. One chooses where to draw 
the object chosen using the thimble in the drawing area. 
In all the cases the object is drawn only once. To draw a 
second object, you must select the object to draw again.  
Points are a bit different:  Once selected you may draw as 

many points as you like before changing drawing mode. 
To quit the program we use the ‘Esc’ button.   
 
More exploration would be required in the following 
areas: (i) Clipping the haptic scene in to two parts. 
(ii)Joining the clipped parts and comparing it with the 
original signatures. (iii) We also need to develop 
comparison algorithm to take into account the changes in 
the signature patterns even though they are by the same 
person. 
 
 

 
Figure 4: The haptics program using the PHANToM  
 
 
4. Haptic Imprint within ARToolKit 
Discussion 
 
User can store half-signature in a memory device and 
must supply the other half on-line to access the 
information. The system will have to merge the two 
signatures with the input supplied from the user.  Finally, 
the user will be asked to provide the original signature 
and then compare the two parts with the original 
signature. Then provide him with the access to the 
computer   The haptic device could be incorporated in 
ARToolKit experiments but we  have not yet 
implemented this.   ARToolKIt  provides a capability of 
using cameras to look into real world.  The real world can  
be annotated with simple planar-patterns which 
ARToolKit can recognize.  Our idea is to display haptic-
imprint is pattern form and use ARToolKit for 
recognizing the pattern.  The extra layer of verifying 
haptic imprints and their image-equivalent would provide 
extra layer of security for our applications.  The tactile 
sensors may be able to produce a unique output for each 
person, but transforming that into an image which an 
ARToolKit can recognize is a bit trickier.  The images 



HAVE 2004 

---------------------------------------- 
‡ email semwal@cs.uccs.edu 
 

can't be too complex, and ARTK won't be able to 
distinguish between images and patterns that look nearly 
identical.  The haptic-data would need to be converted  
into planar images so that ARToolkit can distinguish it 
properly.  In addition, we need to deal with mismatch of 
information: PHANToM can create arbitrary signature 
patterns whereas ARToolkit works off relatively simpler 
patterns. 
 ARToolkit may be useful for building security 
applications.  This may be relatively simple, but powerful 
application for ARToolkit.  Most people are familiar with 
laser grids - break a laser, the alarm goes off.  This can be 
done in ARToolkit as well: break the detection of a 
marker, the alarm goes off.  Train ARToolkit to see a 
marker, and start the alarm system.  As long as it sees the 
marker, it knows everything is okay.  If it doesn't see the 
marker, something must've disturbed it, and perhaps a 
robbery is in progress.  This depends on whether ARTK 
can detect the same marker for long periods of time in 
low light conditions, and it may require multiple cameras 
positioned differently but it may be doable. 
 
ARTK is a pretty useful tool, especially when one goes 
beyond its intended uses.  Keep in mind, though, that 
ARTK can still be inaccurate and slow at times, and is not 
good for everything.  Simple pattern recognition, though, 
seems to be good, and it can allow for overlays on the 
Nomad and other wearable screen devices without the 
hassle of learning image recognition.  Performance is 
decent on the right system, just be careful about putting 
too many patterns into ARTK.  Integrated with other 
systems, ARTK can be a real time-saver.    
 
5. Summary and Further Research 
 
Our research showed that systems that sharing  
information globally can be quickly assembled using  
existing products, and in our case this was done using 
SGI products.   NOMAD displays or eye wear systems 
displays can be cumbersome when high mobility is 
desired such as in our application.  New systems using 
nano devices could be an answer for resolving weight and 
other wearable issues.  ARToolkit worked well in our 
experiments.  We were able to use  PHANToM force 
feedback device for implementing a simple haptic-
imprint.  Several research directions have emerged  (a) 
Haptic devices for mobile/wearable applications, and (b) 
integration of haptics with existing AR tools such as 
ARToolKit.  We plan to pursue both of  them in future. 
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8. Appendix: ARToolKit Resource 
 
The details of how we used ARToolKit [1] in creating a 
new wrapper-class (ARControl) and a subset of  
important functions is described below.   This appendix 
may provide a starting point  to researchers who are want 
to use ARToolKit for their experiments.  Ofcourse large 
amount of information and other papers already exist for 
ARToolKit.   Here is the ARControl class which we 
developed: 
 
ARControl 
 
One of the things which we have done with ARTK is to 
condense the ARTK functions into a streamlined, simpler 
interface.  This interface is called ARControl.  Instantiate 
a derived class of ARControl, call init and start, and the 
program is ready to roll, without having to worry about 
the ARToolKit calls in every program. 
 
ARControl is an abstract class.  One can  inherit from this 
class in order to use its functions.  This was done because 
many of the functions which we want ARTK to do are 
there, except one:  How to draw the scene.  The scene 
drawing method, used in the call to argMainLoop, is 
application-specific, and is thus virtual.  So, inheriting 
and making this function is all that is necessary to use 
ARControl. 
 
ARControl also handles patterns and pattern loading.  
This can be done from the command line.  ARControl 
takes some parameters when the user calls the init 
function.  These are the same as what the main function 
takes for convenience.  These string values are passed 
onto ARTK, for example, -width=352, etc.  A special 
command line parameter that has been implemented takes 
in pattern names and widths and loads them from file.  
Afterward, it puts them in a linked list for easy iteration.  
The parameter looks something like this when running a 
program: 
 
Model -width=352 -height=288 -channel=0 -
LoadPattern=Data/A.pat,160+Data/B.pat,160+Data/C.pat,
160+Data/D.pat,160 
 
Our interest is in everything after the -LoadPattern here.  
Once ARControl notices the LoadPattern Parameter, it 
knows that a list of pattern files and widths is coming.  
After the = sign, a pattern file is read.  After the next 
comma, it  reads a width.  If the user wants to specify 
more patterns, it separates each pattern by a + and 
specifies the patterns as before.  When referring to these 
patterns from the internal linked list in ARControl, 

pattern 0 is the first in the list, pattern 1 is the second in 
this list, and so on. 
 
To get a frame from the user-implemented draw function 
inside ARControl, call the getFrame function.  It will 
return a boolean of false if it failed.  If successful, it 
stores a pointer to the frame in an internal class variable. 
 
To get a pattern that ARControl loaded, call getPattern.  It 
returns a special struct (Pattern) containing the pattern 
data.  Or, if one is inside a function which was overriden, 
just use PatternList.getNext() to get the Pattern pointer 
from the list directly. 
 
When you get the frame, it looks for markers and does 
most of the common per-draw stuff already.  It fills an 
array of marker information like before.  Iterate through 
the list of patterns, comparing their id's to the id's from 
the array of marker information.  In this way you can 
react to each marker ARTK detects.  This makes things 
better for the programmer. 
 
When the ARControl derived class is destroyed, it makes 
a call to its cleanup function so as to exit ARTK 
gracefully.  Also, if a program wants to exit abnormally, 
like making a call to the exit() function, you can call 
ARControl's cleanup() function to assure it does the 
proper shut down procedure. 
 
Using ARControl, this is what the main function would 
look like: 
 
int main(int argc, char **argv) 
{ 
 ARCModel Model; 
 Model.init(argc, argv); 
 Model.start(); 
 
 return 0; 
} 
 
ARC Code is simple, convenient, and brief.  All it 
requires is to make a drawing function, and derive the 
class as follows: 
 
class ARCModel : public ARControl 
{ 
 public: 
  ARCModel(); 
  ~ARCModel(); 
 
  void swapMarkerLists(); 
  void makeMarker(Marker *marker, Pattern *pattern); 
 
 private: 



HAVE 2004 

---------------------------------------- 
‡ email semwal@cs.uccs.edu 
 

  unsigned int mode; 
  LinkedList<Marker> *markerList, *prevMarkerList; 
  LinkedList<Line> lines; 
  LinkedList<Marker> masterList; 
 
  void processPlanes(); 
 
  void arcMainFunc(void); 
  void arcKeyFunc(unsigned char key, int x, int y); 
}; 
 
The derived class doesn't have to be this complex.  It can 
contain only a simple draw function, for example: 
 
class ARCStub : public ARControl 
{ 
 private: 
  void arcMainFunc(void); 
}; 
 
Thus using  ARControl can make one's life a bit easier.  
There's more in ARControl, but the above is the basics 
which one needs to know to use it. 
 
ARToolKit Startup 
 
Following are the details which we used for initializing 
and using ARToolKit for our experiments. This is a brief 
summary of the functions that startup ARTK, as well as 
the overall ARTK startup process.  This probably isn't a 
complete list, so please check [1,7] as well. 
 
 The first initialization call to ARTK is 
arVideoOpen: 
 
arVideoOpen(char params[]) - Starts the process to open 
the video device.  params is a string that can be used to 
send additional initialization options to ARTK is desired.  
If this string is empty, it'll default to a 640 by 480 camera 
on channel 1.  If one  wants to change these, construct a 
string similar to what one would do on a command line.  
For instance, using the string “-width=352 -height=288 -
channel=0” will tell ARTK to use a 352 by 288 camera 
on channel 0.  If these values do not work  and camera 
can not be opened, use the “-debug” option to get some 
information on your camera.  The return value indicates if 
the camera was opened correctly.  If it didn't open, it will 
return a value < 0, otherwise it opened okay. 
 
 It's might be okay to not mess with the string 
parameter and just leave it empty, as was the case for our  
SGI machine in the wearable computing laboratory.  On 
other machine such as home PC, it may be required to use 
them to open a camera.  It's also good to get info on the 

camera by using “-debug”, as it will print to standard 
output camera and other details.  This call has to succeed.  
If not, you can't use ARTK with your current 
configurations and may have to change some parameters 
in your system a bit. 
 
The next call is used to get the video resolution. 
 
arVideoInqSize(int *width, int *height) - Returns the 
video resolution in the variables pointed to by width and 
height.  Returns a value less than 0 if the call failed. 
 
All this does is to provide the resolution of the video 
camera.  This is needed for another function later. 
 
Next, we'll need to tell ARTK where to locate the main 
camera file.  This file holds some more details on the 
camera, or how to handle the camera. 
 
arParamLoad(char param[], int v, ARParam *wParam) - 
Loads the camera parameter file from the location held in 
param.  Usually the string is just “Data/camera_para.dat” 
The programs seem to work fine without setting other 
parameters.  Returns a value less than 0 if it fails. 
 
The next calls take more ARParams and the sizes saved 
earlier.  They could initialize ARTK with more options, 
allowing the programmer to change the window/camera 
sizes. 
 
arParamChangeSize(ARParam *wParam, int xSize, int 
ySize, ARParam *cParam) 
arInitCparam(ARParam *cParam) 
 
 At this point, the patterns and markers are 
usually loaded.  Next, the cParam is initialized. 
 
#ifndef __APPLE__ 
 argInit(&cParam, 1.0, 0, 0, 0, 0); 
#else 
 argInit(&cParam, 2.0, 0, 0, 0, 0); 
#endif 
 
Apparently, there's a big difference between Apple and 
other machines here requiring a different setup.  Up next, 
things get started, finally. 
 
arVideoCapStart() - Starts... video capture. 
argMainLoop(Pointer to mouse, keyboard, and drawing 
functions) - ARTK (really, GLUT) calls these functions 
when a mouse event, key press, or redraw is issued, 
respectively.  The first two can be NULL, but the last 
shouldn't, as it we would usually want to draw something.  
Basically, it calls those GLUT functions which set up 
how to handle these events. 
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After that, the window with the video's feed shows up, 
unless you changed how ARTK draws to this window.  
To draw the screen with new stuff, swap the buffers, 
similar to GLUT. 
 
argSwapBuffers() - Swaps buffers for GLUT, and 
essentially draws the screen. 
 
Patterns 
 
Patterns that the ARTK can use have to have certain 
properties: 
 
1.  Black and white only 
2.  Square 
3.  Thick black border 
 
There are a few others that makers of ARTK and we 
recommend: 
 
4.  Use only asymmetrical images 
5.  Don't use images that are too complex 
6.  Using simple letters (A, B, C, D...) doesn't work too 
well, unless they have more detail. 
7.  If you're going to use some patterns in a specific 
environment, make and calibrate these patterns for this 
environment, even if you already have the pattern data 
files. 
 
To load the patterns, all you have to do is make a call to 
ARTK with the name of the pattern. 
 
arLoadPatt(char *name) - Loads a pattern into ARTK 
and searches for it when told to.  The string parameter is 
the name of the file with the pattern in it, generated by the 
mk_patt program.  It is assumed to be in the Data 
directory.  The pattern also has to be specified in the 
object_data file. 
 
The object_data file needs to have 3 lines added to it for 
each pattern that wants to be recognized: Pattern name, 
pattern location, and pattern width.  Usually one just 
leaves the pattern files in the Data directory.  The pattern 
name isn't used often.  The width tells ARTK how wide 
the pattern should be interpreted as.  This can be any 
width, but it may affect how ARTK places the marker in 
the scene.  It's good to be consistent.  If a pattern is twice 
as wide as another, it should have its width specified as 
twice that of the other.  It is less confusing to just use 
patterns of the same width.  Last, the first non-comment 
token in the file is a number containing the number of 
patterns in the file.  ARTK docs state this is required.  
This may not be entirely necessary as the location and 

width of each pattern is specified at the time of creation in 
the program.   
Now we have a set of patterns that ARTK knows to look 
for in its video.  How do we respond when a pattern 
emerges in a frame?  First we need to grab a frame from 
the video feed. 
 
arVideoGetImage() - Returns an ARUint8 pointer to the 
frame data.  If null, wait a bit, then try to grab the frame 
again. 
 
Next, display the image from the video feed.  If you don't 
want the image to appear, don't call these two functions. 
 
argDrawMode2D() 
argDispImage(ARUint8 *frame, int a, int b) - Displays 
the frame from the video feed pointed to by frame.  The 
other 2 variables probably represent some kind of offset, 
but they have not been used or changed, since no real 
need has arisen. 
 
This next call is what actually looks for the markers in the 
frame.  It returns an array of patterns that it thinks 
matched in the frame. 
 
arDetectMarker(ARUint8 *frame, int threshold, 
ARMarkerInfo *markerInfo, int * markerNum) - Find 
markers in the frame, using threshold to know how 
aggressively to look.  Higher threshold may mean better 
results, but longer computation time.  Returns a list of 
markers it thought matched the given patterns we made it 
look for.  The number of patterns is in markerNum. 
 
Last, set up ARTK for the next frame. 
 
arVideoCapNext() - Called after done looking for 
patterns. 
 
Now that a list of possible pattern matches has been 
given, we can iterate through this list to see if they match.  
Following is the code for matching these patterns in the 
ARControl class.  It searches for a single pattern.  Any 
other code that performs this search should look 
something like it. 
 
Pattern *pattern = PatternList.getNext(); 
 
 for(i = 0; i < markerNum; ++i) 
 { 
  if(pattern->id == markerInfo[i].id) 
  { 
   if(cf == -1) 
    cf = i; 
   else 
    if(markerInfo[cf].cf < markerInfo[i].cf) 
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     cf = i; 
  } } 
Basically, you compare the id's of the patterns.  If they 
match, you know that that pattern was found in the frame. 
  
It would be nice to know of a matrix that represented the 
position and orientation of a marker which the ARTK has 
found. 
 
arGetTransMat(ARMarkerInfo *info, double center[2], 
double width, double trans[3][4]) - Gets a transformation 
matrix (double trans[3][4]) of the pattern recognized in 
the frame.  This represents its position and orientation.  
Center is used as an offset to further transform the matrix.  
Usually this is just 0,0 meaning the marker's center is 
where this matrix will transform to.  You may also 
transform the width, altering the position and orientation 
further.  Again, usually just stick with the width used 
when initializing the pattern. 
 
Now, we'd like to convert the 3 by 4 matrix into 
something OpenGL can use, which is just an array of 16 
doubles. 
 
argConvGlpara(double source[3][4], double dest[16]) - 
Converts the ARTK transformation matrix (source) to an 
OpenGL matrix (dest) for use in the OpenGL matrix 
stack. 
 
Now, we can overlay patterns in OpenGL simply by 
multiplying the current matrix with this one. 
 
That's pretty much it for patterns.  There are a few other 
things about patterns: One is that for each pattern 
searched for, four patterns are created.  Each pattern is 
oriented in a different cardinal direction (right side up, 
upside down, sideways left and right.  So, when searching 
for 4 patterns in a frame, ARTK is actually comparing 16 
images to the frame.  Keep this in mind for performance 
issues. 
ARTK may have a function to directly deactivate patterns 
but that was not tested.  Perhaps check arDeactivatePatt if 
this is needed.  It might be worth looking into, since 
unloading patterns when they're over with could really 
help performance.   
 
There is another part of this library called arMulti which 
deals with multiple patterns at once.  We did not find any 
good documentation on this.  Apparently, this library 
takes multiple patterns and puts them in a single 
coordinate system, or something similar.  It requires 
another helper file, under the Data/Multi directory.   
 
If more than one pattern with the same image is detected 
in the scene, there will be no way to distinguish between 

these patterns.  Thus, the last pattern it detects for this 
image will be the only one it uses.   
 
Please note that the above Appendix describes some of 
our experience with ARToolKit.  A large community of 
ARToolKit users and mailing list exists.  Please contact 
Dr. Mark Billinghurst for being on this mailing list. 


