
HAVE 2004

1

 Global Share System and Haptic Imprints

SK Semwal K Chandrasheker D Carroll A Deshmukh N Bastian
Department of Computer Science, University of Colorado, Colorado Springs

semwal@cs.uccs.edu

Abstract

We implemented the idea of haptic imprints for security applications Using the tools available at our disposal, our first
priority was to provide access to information in a highly distributed environment. Global-Share project investigated the use
of existing systems allowing access to information on the wearable visual displays available to us. SGI systems and a
NOMAD display was available for our research. We used Vizserver software to display the output of an SGI system on the
NoMAD display [5]. We then investigated ARToolKit® for our experiments. Haptic-Imprints use haptic devices, such as
PHANToM forcefeedback device, to create a unique simple patterns which can be used to verify the haptic-signatures on-
line. The need for mobile haptic devices with high fidelity is identified.

1. Introduction

Wearable and mobile computing poses special challenges
in security research where humans in the loop system
create special interaction issues. At the same time,
wearable-environments allow us an opportunity to
express, be creative, and quickly perform tasks which
were otherwise impossible. At the minimum these
systems are expected to understand verbal commands,
provide feedback through a variety of output displays
such as sound or displays. Wearable computing is the
transformation of a user’s personal space into an active
area in which electronic assisted activities may be
performed. This new area of research is rich with new
ideas but it is far from being a mature field; yet
acceptance of wearable devices in daily life has been slow
at best, for example, watches [9] took several hundreds of
years to be accepted as a device. In this paper, we
describe our research efforts towards creating haptic
applications geared toward physical security applications.

2. Global Share Project

In the Global-Share project [8] (Figure 1), our vision was
to provide a technological collaboration between several
individuals allowing them to interact with each other from
anywhere in the world, and share important information
using latest in wearable-computing and visualization
research [7,10]. The long-term goals of the Global-Share
project were:

(a) Information-Fusion: Combine the information from a
variety of heterogeneous sources: collecting voice, text,
images, video, 3Dimensional terrain and building data,

and other sources such as remote monitoring of sensors in
secure installations. (b) Present this heterogeneous
information using novel displays [6].

The SGI™ Vizserver was used as it is a stable product for
delivery of image and graphics information (Figure 2).
The choice of Vizserver was guided by the following
criteria which we had in mind: (a) should be able to
provide accurate, real-time knowledge (b) should not
require massive amounts of processing to occur at the
client, yet be able to provide reasonable amount of
functionality. (c) should not overwhelm the used with
data
(d) should be able to provide delivery to disparate,
portable devices. (e) The user should be able to
manipulate the 3Dimensional data using the simple
devices such as computer-mouse or touch-pad, and
navigate that in real-time.

In the Global-Share system, our design focuses on
removing all processing on the client side, except for
display which would thus allow augmented reality
devices such as NOMADs to be used for display

HAVE 2004

--
‡ email semwal@cs.uccs.edu

Figure 1: The System Diagram of the Global-Share
Project.

Figure 2: Vizserver arrangement used for our
experiments.

We used the NOMAD™ Augmented Vision System as
the client to be actually receiving data from the Vizserver
(See Figure 2). Using these tools, we performed the
following functions [4]:

(i) The SGI system runs a graphics program. (ii) The
OpenGL Vizserver captures the frame buffer and sends it
across the network. (iii) The client computer runs a client
that accepts this frame (iv) The NOMAD Augmented
Vision System is connected to this client computer and
displays the image on its screen.

NOMAD Systems Study

We studied the suitability of the NOMAD system for our
experiments. The NOMAD Vision system (Figure 2) is a
hands free, heads up display unit. It provides the ability to
superimpose digital information in front of one of the
user’s eyes, providing a virtual-view of a 17” screen on
the retina. This unit provides mobility to the user,
unchaining him/her from the desk. Using the
combination of Vizserver installed1 on one of our SGI
system and the NOMAD system available as part of our
Wearable Computing Laboratory, we were able to
successfully demonstrate programs running on the SGI
system to be simultaneously presented on a PC using
Windows XP environment. Mouse-keys could be used
on the PC to manipulate the OpenGL application running
on the SGI system. There was no visual degradation of
the OpenGL programs being displayed on the SGI system
and that on the Windows XP PC. Next the output of the
PC was connected to the NOMAD system and similar
results were achieved.

The use of the NOMAD system for obtaining mobile
information access was important for our goals. In our
research, we intended to answer the following questions:
First, would it be feasible to create a wearable system
capable of mobile information access? In the event that it
would be, what physical and psychological issues would
confront users of such a system, and what means might
alleviate any problems encountered? Finally, how
broadly could such a technology be applied in
contemporary society?

1 We would like to thank Dave Lohman for help with
installing the VizServer software on the SGI.

NOMAD Eye-Wear Display

OpenGL VizServer
on SGI Kamet

HAVE 2004

--
‡ email semwal@cs.uccs.edu

The first answer was relatively easy to obtain, with the
construction of a basic wearable system using as its
backbone a custom software package called InfoSys. The
system developed for the NOMAD Study can be driven
by any 802.11-compatible PDA capable of executing
Microsoft DirectX applications and utilizes the
Microvision ND1000 (NOMAD) Head-Mounted Display.
The system was field tested by 9 individuals, each
without knowledge of the results obtained by others.
Testing criteria covered a wide range of issues, from
hardware issues to software comfort. Most of the
software results fell into expected patterns, with testers
suggesting small changes and additional features.
However, many difficulties were encountered with
respect to the hardware. First, the head-mounted display
responded unpredictably when combined with diverse
testing systems, possibly a side effect of operating the
device in DirectX’s Retained Mode(640x480, 8 bit).
Unlike most monitors, there was no effective means of
adjusting the use of screen pixels in the display, and so
the users often had to cope with unintended visual
difficulties.

Most surprising was the effect on the user’s mobility. 8
out of 9 testers indicated that they had difficulty
performing a basic equilibrium test, wherein they were
asked to walk across a room on a line marked with tape.
This result may be due to the nature of the display, which
causes one eye to focus on the text generated by the
software while the other focuses normally. These results
led the test group to conclude that the system made them
feel clumsy, a problem which would lead to the
significant social burden of self-consciousness.
Interestingly, this equilibrium issue was only a problem
when testers were in motion – when they were stationary
most stated that they felt comfortable.

A secondary impact that was entirely unanticipated was
the effect of the display’s shading system, which displays
a monochrome image in 32 shades of red. 7 of 9 testers
indicated that the red coloring was hard on their eyes and
noted difficulty in seeing edges when two adjacent
regions only differed by a single shade. Additionally, 6
of 9 testers indicated a strong correlation between the
light’s intensity and an inability to view the environment
through the image, especially when the background
lighting was dim. However, reducing the image’s
intensity also substantially reduces the visibility of
shading. The testing implies that a wearable system of
this nature would be best served to utilize only a subset of
available intensity levels, adjusting with the brightness of
the environment.

Finally, all of the testers expressed concern for the
physical robustness of the system. Most felt that the

hardware is too delicate to be used in an environment
with rough conditions such as physical secuirty. The
projection unit in particular was a matter of great concern
to the users – they felt uncomfortable moving around with
such an expensive and relatively heavy device only
secured to the rest of the headset by just a small plastic
clip. A more robust construction would be necessary for
such a system if it were in common use.

The last question, that of application in the real world
once the kinks are worked out, is answered quite simply –
such a system might be used for nearly limitless purposes.
Industrial users could utilize it to speed the
accomplishment of certain tasks. Librarians and grocers
could use it to make restocking their shelves more
efficient. The military could use it to supply battlefield
information to soldiers, reducing infantry friendly fire
incidents substantially. And not least, private users could
utilize it for everything from reading books on the go to
accessing streaming advertisements on store servers. The
positive social impact which a strong wearable system for
mobile information access might generate is truly
inestimable. As limitations of head mounted display
system were identified, we started looking for camera
based augmented reality tools for security applications.
We found that ARToolKit is very stable software
packages (and several sites and mailing list already exist)
as it is available on multi-platform (PC/SGIs).
We implemented a OO-class called ARC control which
the user might find useful. The class and its functions are
defined in the Appendix with this paper.

3. Haptic-Imprints

The goal of Haptic-Imprints is to develop a computer
security application that uses the haptic device [2,3] for
verifying the user that is trying to log on to the system.
We want to: (a) create an application that allows one to
write a signature using the haptic device, (b) break the
signature into two parts and copy a part of it on to a
memory device, and (c) then join the two parts again and
compare it with the original image. We used C++ and
OpenGL along with the Ghost API. With our experiments
described above we have achieved to use the haptic
device to display the signature on an SGI machine
(Figures 3 and 4).
 Haptic interaction adds the sense of touch to
virtual environments. We used the PHANToM
forcefeedback device for our experiments. Details of
PHANToM can be found elsewhere. Here we briefly
describe it as it pertains to our experiments. The
PHANTOM Premium 1.0 is a system capable of 6
degrees of freedom input and 3 degrees of freedom
output. This model provides a workspace of 5 x 7 x 10

HAVE 2004

--
‡ email semwal@cs.uccs.edu

inches (12.7 x 17.8 x 25.4 cm) or the range of motion
approximate to the lower arm pivoting at the user's wrist.

Figure 3: Phantom Premium 1.0

The PHANToM provides an added advantage over the
mouse and it provides us with a three dimensional
workspace and also acts as a force feedback device. The
phantom is easy to maneuver due to its six degrees of
freedom and hence provides a great deal of flexibility.
When connected to a computer, the device works sort of
like a tactile mouse, except in 3-D. Three small motors
give force feedback to the user by exerting pressure on
the grip or thimble. GHOST API Library was used for
our experiments and came with PHANToM device. The
main idea of haptic-imprints was implemented as follows:
(a) First store the user's haptic signatures using the ghost
library and the PHANToM.
(b) Split the haptic signatures into two.

.We started with learning the use of the Ghost API and
used a 2-D application using the mouse to build a ' paint
like' application which was used to write signatures using
the mouse. This program was ported to the SGI to make it
run along with the PHANToM.

We then integrated the application with the Ghost API
and the PHANToM to use the two dimensional program
in the three dimensional environment. The thimble
(Figure 4) of the PHANToM was used to select draw
modes. One chooses what to draw by clicking the thimble
in the appropriate object box. One chooses where to draw
the object chosen using the thimble in the drawing area.
In all the cases the object is drawn only once. To draw a
second object, you must select the object to draw again.
Points are a bit different: Once selected you may draw as

many points as you like before changing drawing mode.
To quit the program we use the ‘Esc’ button.

More exploration would be required in the following
areas: (i) Clipping the haptic scene in to two parts.
(ii)Joining the clipped parts and comparing it with the
original signatures. (iii) We also need to develop
comparison algorithm to take into account the changes in
the signature patterns even though they are by the same
person.

Figure 4: The haptics program using the PHANToM

4. Haptic Imprint within ARToolKit
Discussion

User can store half-signature in a memory device and
must supply the other half on-line to access the
information. The system will have to merge the two
signatures with the input supplied from the user. Finally,
the user will be asked to provide the original signature
and then compare the two parts with the original
signature. Then provide him with the access to the
computer The haptic device could be incorporated in
ARToolKit experiments but we have not yet
implemented this. ARToolKIt provides a capability of
using cameras to look into real world. The real world can
be annotated with simple planar-patterns which
ARToolKit can recognize. Our idea is to display haptic-
imprint is pattern form and use ARToolKit for
recognizing the pattern. The extra layer of verifying
haptic imprints and their image-equivalent would provide
extra layer of security for our applications. The tactile
sensors may be able to produce a unique output for each
person, but transforming that into an image which an
ARToolKit can recognize is a bit trickier. The images

HAVE 2004

--
‡ email semwal@cs.uccs.edu

can't be too complex, and ARTK won't be able to
distinguish between images and patterns that look nearly
identical. The haptic-data would need to be converted
into planar images so that ARToolkit can distinguish it
properly. In addition, we need to deal with mismatch of
information: PHANToM can create arbitrary signature
patterns whereas ARToolkit works off relatively simpler
patterns.
 ARToolkit may be useful for building security
applications. This may be relatively simple, but powerful
application for ARToolkit. Most people are familiar with
laser grids - break a laser, the alarm goes off. This can be
done in ARToolkit as well: break the detection of a
marker, the alarm goes off. Train ARToolkit to see a
marker, and start the alarm system. As long as it sees the
marker, it knows everything is okay. If it doesn't see the
marker, something must've disturbed it, and perhaps a
robbery is in progress. This depends on whether ARTK
can detect the same marker for long periods of time in
low light conditions, and it may require multiple cameras
positioned differently but it may be doable.

ARTK is a pretty useful tool, especially when one goes
beyond its intended uses. Keep in mind, though, that
ARTK can still be inaccurate and slow at times, and is not
good for everything. Simple pattern recognition, though,
seems to be good, and it can allow for overlays on the
Nomad and other wearable screen devices without the
hassle of learning image recognition. Performance is
decent on the right system, just be careful about putting
too many patterns into ARTK. Integrated with other
systems, ARTK can be a real time-saver.

5. Summary and Further Research

Our research showed that systems that sharing
information globally can be quickly assembled using
existing products, and in our case this was done using
SGI products. NOMAD displays or eye wear systems
displays can be cumbersome when high mobility is
desired such as in our application. New systems using
nano devices could be an answer for resolving weight and
other wearable issues. ARToolkit worked well in our
experiments. We were able to use PHANToM force
feedback device for implementing a simple haptic-
imprint. Several research directions have emerged (a)
Haptic devices for mobile/wearable applications, and (b)
integration of haptics with existing AR tools such as
ARToolKit. We plan to pursue both of them in future.

6. Acknowledgements

We wanted to thank Dr. Bill Ayen and NISSC for
supporting the seed grant. Dave Lohman was critical

assistance in dealing with SGI issues of our project. This
research is partially funded from the research sponsored
by the Air Force Research Laboratory, under agreement
number F49620-03-1-0207. The US government is
authorized to reproduce and distribute reprints for
government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the author and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air
Force Research Laboratory of the U.S. Government

7. References

[1] I Poupyrev, DS Tan, M Billinghurst, H Kato, H
Regenbrecht, N Tetsutani, Developing a generic
Augmented Reality Interface. Pp 44-50, IEEE Computer
March 2002.
[2] M.A. Srinivasan. Haptic Interfaces. In N. Durlach and
A. Mavor, editors, Virtual reality: Scientific and
Technological Challenges, chapter 4. National Academy
Press. Report of the Committee on Virtual Reality
Research and Development, Research National Council,
1995.
[3] Gabriel Robles-De-La-Torre and Vincent Hayward.
Force can overcome object Geometry in the perception
of shape through active touch, Nature, 412(6845): 389-
91, July 26, 2001.
[4] The Importance of Trusted IRIX,
www.sgi.com/pdfs/3185.pdf SGI’s OpenGL VizServer,
www.sgi.com/software/vizserver
[5] NOMAD Augmented Vision System, Microvison,
www.mvis.com/products
[6]BP Center of Visualization, University of Colorado,
Boulder, www.bpviscenter.com
[7] T Kato, T Kurata, and K Sakue, VizWear Active:
Towards a Functinally Distributed Architecture for real-
time tracking and context-aware UI, pp. 162-161, IEEE
Computer Society, IEEE Conference on Wearable
Computers (2002) Seattle, WA.
[8] Haptic-Jackets and Wearable Visual Displays for the
Secure Global Share System by SK Semwal, a project
proposal funded by NISSC, Summer 2003.
[9] Thomas L Martin, Time and Again: Parallels in the
Development of the Watch and the Wearable Computer,
pp. 5-11, IEEE Computer Society, IEEE Conference on
Wearable Computers (2002) Seattle, WA.
[10] S Park, I Locher, A Savvides, MB Srivastave, A
Chen, R Muntz, S Yuen, Design of a Wearable Sensor
Badge for Smart Kindergarten, pp. 231-238, ISWC2002
proceedings, IEEE Conference on Wearable Computers
(2002) Seattle, WA.

HAVE 2004

--
‡ email semwal@cs.uccs.edu

8. Appendix: ARToolKit Resource

The details of how we used ARToolKit [1] in creating a
new wrapper-class (ARControl) and a subset of
important functions is described below. This appendix
may provide a starting point to researchers who are want
to use ARToolKit for their experiments. Ofcourse large
amount of information and other papers already exist for
ARToolKit. Here is the ARControl class which we
developed:

ARControl

One of the things which we have done with ARTK is to
condense the ARTK functions into a streamlined, simpler
interface. This interface is called ARControl. Instantiate
a derived class of ARControl, call init and start, and the
program is ready to roll, without having to worry about
the ARToolKit calls in every program.

ARControl is an abstract class. One can inherit from this
class in order to use its functions. This was done because
many of the functions which we want ARTK to do are
there, except one: How to draw the scene. The scene
drawing method, used in the call to argMainLoop, is
application-specific, and is thus virtual. So, inheriting
and making this function is all that is necessary to use
ARControl.

ARControl also handles patterns and pattern loading.
This can be done from the command line. ARControl
takes some parameters when the user calls the init
function. These are the same as what the main function
takes for convenience. These string values are passed
onto ARTK, for example, -width=352, etc. A special
command line parameter that has been implemented takes
in pattern names and widths and loads them from file.
Afterward, it puts them in a linked list for easy iteration.
The parameter looks something like this when running a
program:

Model -width=352 -height=288 -channel=0 -
LoadPattern=Data/A.pat,160+Data/B.pat,160+Data/C.pat,
160+Data/D.pat,160

Our interest is in everything after the -LoadPattern here.
Once ARControl notices the LoadPattern Parameter, it
knows that a list of pattern files and widths is coming.
After the = sign, a pattern file is read. After the next
comma, it reads a width. If the user wants to specify
more patterns, it separates each pattern by a + and
specifies the patterns as before. When referring to these
patterns from the internal linked list in ARControl,

pattern 0 is the first in the list, pattern 1 is the second in
this list, and so on.

To get a frame from the user-implemented draw function
inside ARControl, call the getFrame function. It will
return a boolean of false if it failed. If successful, it
stores a pointer to the frame in an internal class variable.

To get a pattern that ARControl loaded, call getPattern. It
returns a special struct (Pattern) containing the pattern
data. Or, if one is inside a function which was overriden,
just use PatternList.getNext() to get the Pattern pointer
from the list directly.

When you get the frame, it looks for markers and does
most of the common per-draw stuff already. It fills an
array of marker information like before. Iterate through
the list of patterns, comparing their id's to the id's from
the array of marker information. In this way you can
react to each marker ARTK detects. This makes things
better for the programmer.

When the ARControl derived class is destroyed, it makes
a call to its cleanup function so as to exit ARTK
gracefully. Also, if a program wants to exit abnormally,
like making a call to the exit() function, you can call
ARControl's cleanup() function to assure it does the
proper shut down procedure.

Using ARControl, this is what the main function would
look like:

int main(int argc, char **argv)
{
 ARCModel Model;
 Model.init(argc, argv);
 Model.start();

 return 0;
}

ARC Code is simple, convenient, and brief. All it
requires is to make a drawing function, and derive the
class as follows:

class ARCModel : public ARControl
{
 public:
 ARCModel();
 ~ARCModel();

 void swapMarkerLists();
 void makeMarker(Marker *marker, Pattern *pattern);

 private:

HAVE 2004

--
‡ email semwal@cs.uccs.edu

 unsigned int mode;
 LinkedList<Marker> *markerList, *prevMarkerList;
 LinkedList<Line> lines;
 LinkedList<Marker> masterList;

 void processPlanes();

 void arcMainFunc(void);
 void arcKeyFunc(unsigned char key, int x, int y);
};

The derived class doesn't have to be this complex. It can
contain only a simple draw function, for example:

class ARCStub : public ARControl
{
 private:
 void arcMainFunc(void);
};

Thus using ARControl can make one's life a bit easier.
There's more in ARControl, but the above is the basics
which one needs to know to use it.

ARToolKit Startup

Following are the details which we used for initializing
and using ARToolKit for our experiments. This is a brief
summary of the functions that startup ARTK, as well as
the overall ARTK startup process. This probably isn't a
complete list, so please check [1,7] as well.

 The first initialization call to ARTK is
arVideoOpen:

arVideoOpen(char params[]) - Starts the process to open
the video device. params is a string that can be used to
send additional initialization options to ARTK is desired.
If this string is empty, it'll default to a 640 by 480 camera
on channel 1. If one wants to change these, construct a
string similar to what one would do on a command line.
For instance, using the string “-width=352 -height=288 -
channel=0” will tell ARTK to use a 352 by 288 camera
on channel 0. If these values do not work and camera
can not be opened, use the “-debug” option to get some
information on your camera. The return value indicates if
the camera was opened correctly. If it didn't open, it will
return a value < 0, otherwise it opened okay.

 It's might be okay to not mess with the string
parameter and just leave it empty, as was the case for our
SGI machine in the wearable computing laboratory. On
other machine such as home PC, it may be required to use
them to open a camera. It's also good to get info on the

camera by using “-debug”, as it will print to standard
output camera and other details. This call has to succeed.
If not, you can't use ARTK with your current
configurations and may have to change some parameters
in your system a bit.

The next call is used to get the video resolution.

arVideoInqSize(int *width, int *height) - Returns the
video resolution in the variables pointed to by width and
height. Returns a value less than 0 if the call failed.

All this does is to provide the resolution of the video
camera. This is needed for another function later.

Next, we'll need to tell ARTK where to locate the main
camera file. This file holds some more details on the
camera, or how to handle the camera.

arParamLoad(char param[], int v, ARParam *wParam) -
Loads the camera parameter file from the location held in
param. Usually the string is just “Data/camera_para.dat”
The programs seem to work fine without setting other
parameters. Returns a value less than 0 if it fails.

The next calls take more ARParams and the sizes saved
earlier. They could initialize ARTK with more options,
allowing the programmer to change the window/camera
sizes.

arParamChangeSize(ARParam *wParam, int xSize, int
ySize, ARParam *cParam)
arInitCparam(ARParam *cParam)

 At this point, the patterns and markers are
usually loaded. Next, the cParam is initialized.

#ifndef __APPLE__
 argInit(&cParam, 1.0, 0, 0, 0, 0);
#else
 argInit(&cParam, 2.0, 0, 0, 0, 0);
#endif

Apparently, there's a big difference between Apple and
other machines here requiring a different setup. Up next,
things get started, finally.

arVideoCapStart() - Starts... video capture.
argMainLoop(Pointer to mouse, keyboard, and drawing
functions) - ARTK (really, GLUT) calls these functions
when a mouse event, key press, or redraw is issued,
respectively. The first two can be NULL, but the last
shouldn't, as it we would usually want to draw something.
Basically, it calls those GLUT functions which set up
how to handle these events.

HAVE 2004

--
‡ email semwal@cs.uccs.edu

After that, the window with the video's feed shows up,
unless you changed how ARTK draws to this window.
To draw the screen with new stuff, swap the buffers,
similar to GLUT.

argSwapBuffers() - Swaps buffers for GLUT, and
essentially draws the screen.

Patterns

Patterns that the ARTK can use have to have certain
properties:

1. Black and white only
2. Square
3. Thick black border

There are a few others that makers of ARTK and we
recommend:

4. Use only asymmetrical images
5. Don't use images that are too complex
6. Using simple letters (A, B, C, D...) doesn't work too
well, unless they have more detail.
7. If you're going to use some patterns in a specific
environment, make and calibrate these patterns for this
environment, even if you already have the pattern data
files.

To load the patterns, all you have to do is make a call to
ARTK with the name of the pattern.

arLoadPatt(char *name) - Loads a pattern into ARTK
and searches for it when told to. The string parameter is
the name of the file with the pattern in it, generated by the
mk_patt program. It is assumed to be in the Data
directory. The pattern also has to be specified in the
object_data file.

The object_data file needs to have 3 lines added to it for
each pattern that wants to be recognized: Pattern name,
pattern location, and pattern width. Usually one just
leaves the pattern files in the Data directory. The pattern
name isn't used often. The width tells ARTK how wide
the pattern should be interpreted as. This can be any
width, but it may affect how ARTK places the marker in
the scene. It's good to be consistent. If a pattern is twice
as wide as another, it should have its width specified as
twice that of the other. It is less confusing to just use
patterns of the same width. Last, the first non-comment
token in the file is a number containing the number of
patterns in the file. ARTK docs state this is required.
This may not be entirely necessary as the location and

width of each pattern is specified at the time of creation in
the program.
Now we have a set of patterns that ARTK knows to look
for in its video. How do we respond when a pattern
emerges in a frame? First we need to grab a frame from
the video feed.

arVideoGetImage() - Returns an ARUint8 pointer to the
frame data. If null, wait a bit, then try to grab the frame
again.

Next, display the image from the video feed. If you don't
want the image to appear, don't call these two functions.

argDrawMode2D()
argDispImage(ARUint8 *frame, int a, int b) - Displays
the frame from the video feed pointed to by frame. The
other 2 variables probably represent some kind of offset,
but they have not been used or changed, since no real
need has arisen.

This next call is what actually looks for the markers in the
frame. It returns an array of patterns that it thinks
matched in the frame.

arDetectMarker(ARUint8 *frame, int threshold,
ARMarkerInfo *markerInfo, int * markerNum) - Find
markers in the frame, using threshold to know how
aggressively to look. Higher threshold may mean better
results, but longer computation time. Returns a list of
markers it thought matched the given patterns we made it
look for. The number of patterns is in markerNum.

Last, set up ARTK for the next frame.

arVideoCapNext() - Called after done looking for
patterns.

Now that a list of possible pattern matches has been
given, we can iterate through this list to see if they match.
Following is the code for matching these patterns in the
ARControl class. It searches for a single pattern. Any
other code that performs this search should look
something like it.

Pattern *pattern = PatternList.getNext();

 for(i = 0; i < markerNum; ++i)
 {
 if(pattern->id == markerInfo[i].id)
 {
 if(cf == -1)
 cf = i;
 else
 if(markerInfo[cf].cf < markerInfo[i].cf)

HAVE 2004

--
‡ email semwal@cs.uccs.edu

 cf = i;
 } }
Basically, you compare the id's of the patterns. If they
match, you know that that pattern was found in the frame.

It would be nice to know of a matrix that represented the
position and orientation of a marker which the ARTK has
found.

arGetTransMat(ARMarkerInfo *info, double center[2],
double width, double trans[3][4]) - Gets a transformation
matrix (double trans[3][4]) of the pattern recognized in
the frame. This represents its position and orientation.
Center is used as an offset to further transform the matrix.
Usually this is just 0,0 meaning the marker's center is
where this matrix will transform to. You may also
transform the width, altering the position and orientation
further. Again, usually just stick with the width used
when initializing the pattern.

Now, we'd like to convert the 3 by 4 matrix into
something OpenGL can use, which is just an array of 16
doubles.

argConvGlpara(double source[3][4], double dest[16]) -
Converts the ARTK transformation matrix (source) to an
OpenGL matrix (dest) for use in the OpenGL matrix
stack.

Now, we can overlay patterns in OpenGL simply by
multiplying the current matrix with this one.

That's pretty much it for patterns. There are a few other
things about patterns: One is that for each pattern
searched for, four patterns are created. Each pattern is
oriented in a different cardinal direction (right side up,
upside down, sideways left and right. So, when searching
for 4 patterns in a frame, ARTK is actually comparing 16
images to the frame. Keep this in mind for performance
issues.
ARTK may have a function to directly deactivate patterns
but that was not tested. Perhaps check arDeactivatePatt if
this is needed. It might be worth looking into, since
unloading patterns when they're over with could really
help performance.

There is another part of this library called arMulti which
deals with multiple patterns at once. We did not find any
good documentation on this. Apparently, this library
takes multiple patterns and puts them in a single
coordinate system, or something similar. It requires
another helper file, under the Data/Multi directory.

If more than one pattern with the same image is detected
in the scene, there will be no way to distinguish between

these patterns. Thus, the last pattern it detects for this
image will be the only one it uses.

Please note that the above Appendix describes some of
our experience with ARToolKit. A large community of
ARToolKit users and mailing list exists. Please contact
Dr. Mark Billinghurst for being on this mailing list.

