CLOSED FORM AND GEOMETRIC ALGORITHMS FOR REAL TIME CONTROL OF AN AVATAR

SK Semwal* R Hightower S Stansfield

Sandia National Lab

*On sabbatical from the University of Colorado, Colorado Springs

Human form can be:

- a) specified by specifying the joint orientations, use the given limb dimensions
- b) satisfy the end-effectors by possibly stretching the limbs as necessary
- Given measurements of participant's limbs
 - style of the participant extracted (a and b)
 - Deformation algorithms needed to allow stretching (b)
 - Size of the avatar same all the time (a), or vary (b)

Remarks

- Skeleton is only an approximation of the human body
- trackers are placed on the skin, not at the joints
- tracking errors, and non-linearity when multiple transmitters are present

Results:

- limited number of sensors could be used
- several smaller kinematic chains are easier to handle
- variety of complex poses can be obtained
- relationship between frames of the joints could be utilized

Acknowledgments

- US Department of Energy under contract DE-AC)04-94AL85000
- special thanks to

Dan Shawver, Dave Rogers, Deepak Tolani, Xinmin Zhao, Meisha Collins, Denise Carlson, and James Singer

Animate Transform M $_{i}^{=}$ $\begin{bmatrix} S-frame * M_{1} \bullet \bullet & M_{i-2} & M_{i-1} \end{bmatrix}^{-1} * D-frame$

* => concatenate

