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Figure 1: Imprint−s et (S1,S2,S3) for 
point S. S1, S2, an d S3 are 2D points 
on the respective c amera−images.

Active space creati on
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Procedure DataColle ction

 1. Mark a 12x12 gr id pattern on a whi teboard.  
    Physical grid−c ells are 5cm by 5cm
 2. Set up three ca meras so that the g rid 
    pattern is visi ble in all the thre e cameras
 3. Capture the thr ee camera−images an d store them
 4. Repeat step 3 s even more times, af ter moving
    the white−board  with the grid patt ern seven
    more times 

end DataCollection

Figure 2: Preproces sing: Data Collecti on Algorithm for
scanning a 55cm by 55cm by 70cm active −space.



Procedure FindingA2 DIndex(S)
 // returns the 2D Index (p,q) given a  point S on 
 //  the slice

 // Let x = Sx, y =  Sy
 If (x,y) is within  the Slice

    1. Find two con secutive vertical g rid lines p and 
       p+1 so that x is between p and p+1
    2. Find two con secutive horizontal  grid−lines q
       and q+1 so t hat y is between q and q+1
    3. return(p,q)   
  endif
  // otherwise S is  not within the Sli ce
  return (not insid e the Slice)
end FindingA2DIndex

Figure 4: Returns t he 2DIndex or cell which contains 
the given point S

Procedure CreateAct iveSpaceIndexing

 1. For a set of le ft, center, and rig ht camera
    images collecte d in step 3 of the DataCollection
    Algorithm

    do
     2. Identify al l the 12x12 grid−in tersection 
        points 
     3. Store the p ixel−location of th e grid−points 
        along with their 3D−points on the white−board   
    end do

 4. Repeat step 1−3 , for all the eight  sets of three
    camera−images.
end CreateActiveSpa ceIndexing

Figure 3: (Preproce ssing) Creation of the Active Space 
Indexing data struc ture.
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Procedure Find_S(S1 , S2, S3)

// Given the imprin t Set (S1,S2, S3)
// find the 3D loca tion S

1. Use S1 for the l eft image, S2 for
   the center camer a−image, and S3 for
   the right−camera  image
   
   do

2.   Find indices I 1, I2, and I3 for a ll
     the eight slic es.  I1, I2, and I3
     are the grid−c ells containing S1,  S2, and S3.
     Note that I1, I2, and I3 refer to  the projected
     cell locations  for the white boar d locations.
     Therefore, the re are eight such p ossibilities. 
     For some white  board placements, I1=I2=I3
     and the area w ould be zero.  Basi cally we
     are looking fo r two consecutive w hiteboard
     slices between  which we expect th e point S 
     to lie. If the re are several whit e−board locations 
     with zero area , then we select th e first with 
     zero area. If such a situation do es not exist
     then conclude that (S1,S2,S3) do not correspond,
     otherwise perf orm steps 3−4 below .

3.   Using the two consecutive slices in the active 
     space, find th e 3D location of po int S1 on these
     two slices.  T his will define a l ine L1.  Similarly
     obtain lines L 2 and L3 using S2 a nd S3, 
     respectively.

4.   Find the minim um distances betwee n the three pairs
     of lines (L1, L2), (L2, L3), (L1,  L3).  Take the
     average of the  three distances.  If this average
     is greater tha n the "closeness" c riteria, conclude
     that (S1,S2,S3 ) do not correspod,  else calculate the
     nearest points  on these lines.  T hat would define 
     the location o f point S in 3D. Re turn point S.

end Find_S

Figure 5: Algorithm : Find S provides e stimation of point S.  
If S1, S2, S3 are c orresponding closel y then precise 
estimates are obtai ned.
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Procedure SpatialMa rking

1. For every pixel in all the camera i mages
   do
2    Identify Signi ficant points by co nsidering the 
     (r,g,b) of the  8 neigboring pixel s, and
     using threshol ding. Some cases wh en the center 
     pixel is ident ified as significan t point are given
     below: 

Note: Mirror cases will also classify the pixel
      as significan t

3. If a pixel is id entified as signifi cant then
   
    For all the 8 s lices 
     do

4.     Find the 2D Index, and add this  pixel as
       candidate fo r being a significa nt pair for
       that 2D−cell  indicated by the 2 Dindex on a
       slice. Note that the 2D Index a nd
       the slice, i n fact define a gri d−voxel.  And
       we have a 12 x12x8 3D−grid of vo xels in our
       implementati on.
     end for
   end if
  end for

Figure 6: Identifyi ng significant poin ts and Marking them
in the 3D grid Voxe ls.



Procedure SpatialFi ltering

1. For all the 12x1 2x8 3D grid voxels
   do
// Let p1, p2, p3 b e pixels identified  as significant 
// (by the SpatialM arking process) fro m camera 1, 2, 3

2.  for i= 1 to p1

3.     S1 = ith pix el in this grid−vox el from camera 1
4.     for j = 1 to  p2

5.        S2 = jth pixel in this grid− voxel from camera 2
6.        for k = 1  to p3

7.        S3 = kth pixel in this grid− voxel from camera 3
8.        thisPoint 3D = Find_S(S1,S2,S 3) // See Figure 3
9.        display(t hisPoint3D)

          endfor k
       endfor j      
    endfor i
   endfor

Figure 7:  Generati ng Corresponding−pa irs and 3D points
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Figure 8: Whiteboar d used for Data col lection and three v iews

Figure 9: The proje ction points on all  the three cameras for all whiteboard
slice positions

Figure 10:  When th e same 3Dpoint is s pecified on all the  three camera 
images (a−c), its p recise location (d)  can be estimated

(a) (b)

(c)(d)



Figure 11: Correspo nding pairs are spe cified using all th e three
camera images (only  one of the three i mage is shown).  Th e Find_S algorithm
is used to obtain t he 3D location for every corresponding  pair, as shown in 
(b−c).

(a) (b) (c)

(a) (b)

(c) (d)

Figure 12: Correspo nding points are sp ecified in all the three camera
images (only one of  them is shown in F igure a).  The 3D p oints estimated
by the active space  indexing algorithm  are shown in Figur es b−d.
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Figure 13: Displayi ng significant poin ts on a slice using  small rectangles.
Thresholding is use d.

Figure 14: Generati ng corresponding pa irs using spatial f iltering

Figure 15: Generati ng corresponding pa irs using spatial f iltering
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Figure 16: All the corresponding pairs  from the eight sli ces are
shown.  Each rectan gle represents the 3D location of a
corresponding pair.



Spatial Filtering/Semwal and Ohya 2
AbstractTraditionally most camera based position estimation systems use only a few points to calibrate cam-eras. In this paper, we investigate a novel, and alternate approach for 3D position estimation by using alarger number of points arranged in a 3D grid. We present an implementation of the active space indexingmechanism which uses three cameras. Given the corresponding points in camera images, a precise estimationof the position can be obtained. The active space indexing method can be also used as a spatial �lter toeliminate the large number of possible corresponding pairs from consideration. This capability, unique onlyto the active space indexing method, provides a tractable algorithm to the otherwise intractable situation.Key Words: Geometric Algorithms, 3D Spatial Data structure, 3D Position Estimation, Camera Calibrationfor Multiple camera images, Virtual Environments, Computer Vision Techniques for 3D Model building.



Spatial Filtering/Semwal and Ohya 31. INTRODUCTIONThere are many major bene�ts to camera-based techniques which make them desirable for virtual envi-ronments [1, 3]. One of the main bene�t is that participants do not wear any encumbering tracking devices.However, camera based virtual environments must resolve the correspondence problem across multiple cam-era images. This may involve: (a) Identifying corresponding-pairs across two or more camera images, andthen (b) estimating the 3D point for a corresponding-pair. There have been several compromises made toresolve the issue of correspondence over the last several decades. This has led to much interesting researchperformed in the areas of vision [5, 10], active-vision [6], object-recognition [7], and motion analysis [8, 11] ,to name just a few.Excellent surveys on methods for tracking human participants in virtual environments [25, 24] haveappeared recently. So, to avoid unnecessary duplication, we simply ask interested readers to refer them. Inthis paper, we briey mention the most recent e�orts in this area. Narayana and Kanade [23] use depth(range) images to create visible surface models (VSMs) but has problems with holes and inconsistencies.Moezzi, Katkere, Kuramura, and Jain [12] used color based marching cube algorithm with only limited suc-cess; Iwasawa et. al. [19] used silhouette and obtained only approximate results; Haritaoglu, Harwood, andDavis [20] developed an intensity based discrimination to provide simple (called cardboard) human �gures;Wren et. al. used blob models [13] in the P�nder, but their system tracks essentially the 2D-information.One di�culty which camera based systems face is the variation of color (intensity) values, as theymay di�er from one camera to another. So, it is very likely that even if we have identi�ed correspondingpoints in multiple camera images so that they point to the same point in 3D, they may not have the same(r,g,b) values. Thus color based information poses severe reliability problems when it is used for determiningthe correspondence across multiple cameras. Ambiguities abound due to variations of shadows, noisy andblurred images, placement of light sources, occlusion, and the camera covering di�erent areas of 3D-space.Thus, it is highly likely that the projection-pairs belonging to a 3D point may not have similar colors. Forexample, consider transparent objects, and their corresponding images may not have the color information asthe background scenes may be completely di�erent behind the transparent objects. Indeed, correspondenceand occlusion still remain grand challenges.Occlusion creates tremendous ambiguity and erroneous results in possibly every algorithm developeduntil today. Additional ambiguity also exists when multiple cameras are used as they almost always nevercover the identical visible areas. As a result a pixel in one image may not have a corresponding pixel existingin another camera-image. The current direction of research has been to �nd structures from images, forexample, identifying a few signi�cant points in [19, 23, 13, 20], and many others, and resolve correspondencesamong them, once these limited number of points are obtained. Using calibrated cameras, 3D positionscan be estimated, and in some cases mapped on to a synthetic human-like actor to represent an avatarof the participant. These approximations can add preciseness, and robustness problems, as estimation ofcorrespondences may not be reliable. Recently, a second research direction has been emerging as mentionedin [24, 25]. Basically, combinations of several tracking methods is suggested for resolving the correspondenceproblem. Some methods have already been implemented, for example the Constellation(TM) system in [21],and the multi-sensor fusion approach in [22].We are pursuing a third alternative towards resolving correspondences. It is hoped that the proposedalternative approach provides complimentary support to the other two approaches discussed above, andwould lead to the solution of correspondence problem. Our belief is that, for accurate correspondenceresolution, we must consider every pixel of related camera-images. As will be explained below, a largenumber of unique pixel combinations can be generated from just three camera images. Our approach isto simply check all the pixel combinations without extracting any structures. We believe that this methodprovides the best strategy for resolving correspondence. We also want to develop algorithms which are easilyparallelize in future, similar to algorithms in [14]. Since we are using three cameras at this time, we shouldlook at enormity of combinations which we wish to examine for correspondence. Since every possible pixel



Spatial Filtering/Semwal and Ohya 4combination is to be now examined, let us analyze the worst case approach for such an attempt. Let usassume that every image is 640x480, giving us a total of 307200 pixels in one image. Since there are threeimages, we have (307200)3, that is, 2.8x(10)16 possible combinations for a brute force method. This worstcase is intractable. We have implemented a tractable solution using the active space indexing method. Inthis paper, we show that the major bene�t of the active space indexing method is that it can be used as aspatial-�lter so that many combinations can be quickly avoided or not be even generated. The new algorithmterminates in a few (4 to 6) minutes on an Onyx-SGI machine, thus providing a tractable solution. Furtherimprovements are expected by implementing the proposed algorithms on specialized hardware.The active-space indexing method was originally developed for the Scan&Track system [16]. In thispaper, only a brief explanation of the active-space indexing method is in Section 2. For details of Scan&Trackand other related details please refer [15, 16, 17]. Our motivation to develop the active-space indexing methodwas to recover the 3D position of corresponding pairs to be as accurate as allowed by any camera basedsystem. We explain a highly accurate method for estimating the 3D position, called the active space indexingmethod in Section 3. We have obtained robust and accurate 3D position estimates for both the three cameraand two camera implementation of the active-space indexing method. In this paper, we will only presentthe details of our three camera implementations in Section 3. Interested readers should consult [18] paperfor the details of the two camera system. In Section 4, we discuss an important application of the active-space indexing method, that of providing a tractable solution for an intractable problem. In particular, weshow that the active space indexing method can be used as a spatial �lter as it eliminates a large number ofcorresponding pairs from consideration. Results in Section 5 show that our technique is capable of predictingthe 3D position precisely, as well as act as a spatial �lter.2. THE ACTIVE-SPACE INDEXING METHODIn the three camera implementation for the active-space indexing method, a camera is placed facing awhite board. Two other cameras are placed slightly to the left and right of the participant. There is a highcorrespondence between the three cameras, and the amount of overlap among the three cameras is large. Allthe white-board placements are in clear focus from all the three cameras. Thus, camera images are minimallynoisy and not blurred in our experiments. The camera placement is done before the preprocessing starts,and the active-space or work-volume covered by these camera can be decreased or increased, as necessary.The active space indexing method uses a large number of 3D-points arranged in grid-fashion, and coverthe whole 3D active-space. The method provides robustness against camera distortions as a large number of3D-points and their projections are available for precise 3D position estimation. The active-space indexingmethod calculates the precise location of a 3D point given the 3D-point's projections on the multiple images.The signi�cant point extraction algorithm is localized and is based upon the intensity of neighboring eightpixels, so a large number of signi�cant points are identi�ed as potential candidates for correspondence inevery cameras. We explain both these algorithm in detail later. Although correspondence resolution stillremains our goal, these results are certainly important and necessary steps toward realizing both visualrealism and 3D interaction.2.1. De�nitionsConsider Figure 1 where S1, S2, and S3 are the projections of a point on S on the three, left, centerand right cameras. We call (S1,S2,S3) a precise-tuple when S1, S2, and S3 are the actual projections of a 3Dpoint S on the three cameras planes. This de�nition is of course generalizable to an n-camera system, butwe only used three cameras. When a camera is digitized then approximations occur due to the digitizationprocess itself. The camera-plane is now represented by a set of pixels. Since the camera image containsa limited number of pixels, a variety of projection related distortions are possible. This means that it is



Spatial Filtering/Semwal and Ohya 7possible that the points S1, S2, S3 are a close approximation of a precise-set. So if we start three rays fromthe left, center, and right camera view points and pass them through S1, S2, S3 respectively, then the raysmay not converge or intersect. If (S1,S2,S3) are a close approximation of the actual imprint-set, these rayscould be close, but may not still intersect. Now we can de�ne a criteria called the closeness. For the threecamera case, closeness is de�ned as the average value of the shortest perpendicular distance between thethree ray-pairs. These rays start from the respective view point, and pass through the three points S1, S2, S3respectively. The closeness of zero indicated that the imprint-tuple (S1,S2,S3) is the precise-set of point S.Larger values of closeness indicate that perhaps S1, S2, and S3 are not corresponding pairs. Imprint-tuples(S1,S2,S3) satisfying the closeness criteria are called corresponding pairs. It should be mentioned here thatin our active space indexing method, we do not use the camera view point to start the rays. Instead, we usethe projections of several grid-points to generate the rays. This will be explained in more detail in Section4. Given the imprint-tuple (S1,S2,S3), the active-space indexing method �nds the 3D-cell or voxel containingthe point S, as well as the precise 3D-location of point S (Section 3.3). These imprint-tuples can be providedmanually (Section 4), or can be automatically generated from the camera-images (Section 5).3. A NOVEL CALIBRATION TECHNIQUEThere have been many attempts to estimate the 3D motion of the participants with a minimal number ofpoints used for camera-calibration [2]. Several examples exist where �ve or more points are used for creatingstereo matching and novel views [10]. Most of the systems which use a minimal number of points are usuallyunder-constrained, in the sense that any error in camera-calibration or camera orientation estimates mayresult in severe registration and accuracy errors [4, 23].In implementing the active-space indexing method, we use 3D grid-points, during preprocessing, andcreate a spatial 3D-data structure using these points. Our motivation to use several 3D grid points is tosubdivide the active-space, and use only a few 3D grid-points in the immediate vicinity and surrounding thepoint S The 3D grid data structure is created during preprocessing, and populates the active-space. This isa clear departure from all other camera-based virtual-environments where a minimal number of calibrationpoints are used. The major advantage of using a large number of points is that the errors due to camera-calibration is minimized. In camera calibration techniques, slight error in calibration may result in erroneousresults, especially when the estimated point is farther from the camera-plane. In our active-space indexingmethod the projection of all the 3D-grid points, as well as their location (indices) in the grid is known, soaccurate measurements are available for nearer and farther 3D-voxles. Since these measurements and linearinterpolation is used to precisely estimate the 3D location of a point S, the active space indexing method isrobust and less erroneous.3.1. PreprocessingThe algorithm for collecting grid-points from a set of planer-slices for all the three camera images isshown in Figure 2. A grid pattern is used on a white board. Multiple planar white board positions (slices)are obtained as the white-board is physically moved parallel to it's previous position. These slices create a3D-grid of points covering the whole active-space.In our implementation, we have used 12 rows and 12 columns grid and a total of eight white-boardlocations or slices for partitioning the active-space, and creating a 3D grid data structure. The grid-patternoccupies a 55cm by 55cm space on a white-board. Each square of the grid is 5cm by 5cm. The white-boardis physically moved and recorded by three cameras at the same time. Eight such recordings result in eightslices for every camera. The inter-slice spacing is 10 cm. The white-board and the grid-pattern on it arevisible from all the three cameras. The active-space volume is a cube of 55cm by 55cm by 70cm. Theactive-space is large enough to track the face and upper body of the participants. A larger active-space can



Spatial Filtering/Semwal and Ohya 8be constructed by using a larger panel. Since 12 rows, 12 columns, and 8 slices are used for partitioning theactive-space into 11 by 11 by 7 voxels, the voxel index (i,j,k) is such that 0 � i; j � 11, and 0 � k � 7. Here i,j, k are called the grid indices. There is one-to-one mapping of the 3D active-space and the 3D-grid. The 55cm by 55 cm by 70 cm 3D-volume, representing the 3D active-space, is mapped to the 3D-grid, with indicesvarying from zero to eleven corresponding to 12 rows and columns on slices, and zero to seven correspondingto eight slices. Thus the mapping of active-space to the grid is well de�ned.Camera-images for every slice are processed one by one for all the three cameras, and projections of allthe 3D-grid points are collected. The algorithms are also provided in Figures 2 and 3. Since camera-imagesare assumed to be visibly clear and in focus (see Figure 8), errors due to noisy or blurred images are notconsidered in our experiments. If a grid-point of the slice is incorrectly identi�ed during preprocessing, itse�ect would be localized, limited to the 3D space corresponding to only those few voxels bordering theincorrectly identi�ed grid-point. All the grid-points for all the three cameras are shown in Figure 9. Moredetails of creating active-space indexing data structure are not explained here as they can be found in [17].3.2. Finding a 2D-indexFor every camera-image, we also collect a set of horizontal and vertical lines, during preprocessing.These lines correspond to the rows and columns of white board planer slices. Now, given the pixel coordinateof a 2D point on a camera-image, we can quickly �nd the grid-index using these horizontal and vertical lines.First, we check if the point is outside the area de�ned by the four corner points of the 2D extent speci�edduring preprocessing. If it is inside then we �nd the x and y grid-indices for the given pixel. Since thegrid-lines are speci�ed from left to right, we �nd two consecutive vertical lines p and p+1 such that thepoint's projection on an image, is on or to the right of line p and is on the left of line p+1. The x-indexis then p. A similar algorithm is used to determine the y-index, q, by �nding two consecutive horizontallines such that the point is on or above line q, and below line q+1. This algorithm is in Figure 4. Since weonly use twelve horizontal and vertical lines per slice, the valid grid index is between zero to eleven in boththe horizontal and vertical directions. As there are only a �xed number of lines in our implementation, thisoperation is a fast, constant time O(1) operation.3.3. 3D-Cell or Voxel Estimation given the Imprint-SetTo estimate the location of a 3D point given its imprint-set (S1,S2,S3), we have implemented the follow-ing algorithm. The active-space indexing mechanism �nds the 3D location given the imprint-set (S1,S2,S3)triplet. The triplet in our implementation is provided by the user by using mouse-picks on the respectivecamera-images. Thus to test the correctness of our algorithm, we specify the corresponding pairs.Given a imprint-set (S1,S2,S3) corresponding to a 3D-point S, we perform the following for the threecamera-images in every slice: For the left camera-image, let the 2D index be denoted by I1 with x and yindices to be I1x and I1y, respectively. Similarly the indices for the center and right camera-images wouldbe denoted by I2 and I3, respectively. For every geometric-imprint (S1,S2,S3), we collect I1, I2, and I3 pointsfor every slice. For discussion, we assume that point S is between slice k and k+1. The three grid indicesI1, I2, and I3 de�ne a triangle on every slice. Simple ray-optics suggests that the area would be decreasingas the rays converge at point S and then starts increasing as the rays diverge. We have implemented alinear search algorithm to determine the slice with the minimum area. Since we only have eight slices in ourexperiments, linear searching is a constant time operation1 to �nd the two slices k and k+1. Let k be theleft slice with the area AL, and k+1 the right slice, with area AR as the rays diverge. The 3D-cell index ofpoint S would be (i, j, k) where i=I1x and j=I1y in our implementation. Here i could also be an averageof x-indices of I1, I2, and I3 for slice k. Similarly j could also be an average of y-indices of I1, I2, and I3for slice k. So (i,j,k) identi�es the 3D-cell or voxel containing the point S. Since the 3D-cell index of a pointin active-space can be determined using this method, we call this method the active-space indexing method.This is step 2 of the algorithm presented in Figure 5. Results of this algorithm are also shown in Figure1A binary search on the slices would be more appropriate if a large number of slices were used to scan the active-space.



Spatial Filtering/Semwal and Ohya 1310. Figure 10d shows the 3D voxel identi�ed when the points S1, S2, and S3 are speci�ed in three cameraimages as shown in Figure 10a-c.4. FINDING THE EXACT 3D-POSITIONOnce the voxel index (i,j,k) is identi�ed from the given imprint-set, we use linear-interpolation tocreate three lines, one for each camera-image. This is the step 3 of the algorithm in Figure 5. We �rstexplain how to �nd this line for the left camera. For �nding the line, we consider two consecutive slices kand k+1. We know the pixel-coordinate of point S1 (it is given to us), we also know the pixel coordinatesof grid indices (i, j), (i+1, j), (i, j+1), and (i+1, j+1) on slice k, as these pixel coordinates are collectedduring preprocessing. Note that the pixel coordinates of point S1 must be inside the polygon created byfour pixel-points representing the grid indices (i, j), (i+1, j), (i, j+1), and (i+1, j+1) on slice k. A linearinterpolation algorithm is now used to calculate the coordinates of point S1, in terms of grid indices on slicek. The four points surrounding the point S1, as well as their indices are collected during preprocessing.Linear interpolation provide the 3D coordinate of the projection on that slice. This 3D coordinate is of theform (iReal, jReal, k) where i � iReal � (i+1) and j � jReal � (j+1). Similarly we �nd another point onslice k+1 for the left camera. Joining these two points on slice k and k+1 provides a line for the left camera.Similar calculations are used for the center and right cameras to obtain a total of three lines, one each, forthe three cameras. The intersection of these three lines provides the precise location of the point S. Sincethe calculations are based upon the correctness of the imprint set (S1,S2,S3), we have tested this algorithmby specifying a large number of imprint sets. Results are very precise and close to the second decimalpoint when compared for the known 3D point. Figure 11a-c shows the result of our implementation using8 imprint-sets in all the three camera images. We have only shown the center camera image in Figure 11a.The 3D-points shown in Figure 11b-c correspond exactly to the shape in Figure 11a. Note that 3D-pointsin Figure 11b and 11c do not lie on one plane and correctly correspond to the speci�ed body points of theparticipant in Figure 11a. Figure 12a shows a planer slice and the associated grids. We speci�ed nine pointson all the three camera-images. The location and shape resulting from these points is shown in Figure 12ain the center camera-image. We have correctly obtained a planar 3D-shape as shown in Figure 12b-d. Notethe planar shape of the 3D form in Figure 12b-d. In the large number of experiments conducted we obtaineda precise (correct up to two decimal points) 3D-position of point S given its imprint-set (S1,S2,S3). Thisresults are also independently veri�ed in our two camera system [18].5. SPATIAL FILTERINGWe have implemented a closeness criteria (see Section 2.1) to identify imprint-sets. The value of thecloseness parameter can be set to any real number, e.g. .01 in the results presented in this paper. A valueof .01 means that unless the lines are within .01 distance apart S1, S2, and S3 are not the projection-pairsof some 3D point S. This allows �ltering of erroneous pairing of pixels S1, S2, and S3 which indeed are notthe projections of the same point S, yet are identi�ed by the �ltering algorithm as possible candidates forchecking correspondence.In brute force approach, we generated all possible corresponding pairs using every pixel of the threecamera-images as a possible candidate for correspondence. As explained earlier in Section 1, for a 640x480image, the number of possible combinations are virtually intractable. This number is more than 2.8x(10)16.To check if these many tuples satisfy the closeness criteria was intractable, in the sense that, for even themulti-processor Onyx machine, the process did not �nish even after several (�ve) hours of running. To makethis brute force approach tractable, we used the active-space indexing method as a spatial �lter. This isexplained in the following sections.



Spatial Filtering/Semwal and Ohya 145.1. Preprocessing for Spatial FilteringThe active-space indexing method partitions the active-space created by the 3D-slices into 3D voxelscreating a convenient 3D-spatial separation. During preprocessing, we create a list of 2D-indices for everypixel in the left, right, and center images. This list is conveniently created using the 2D-index algorithm ofSection 3.2. For every pixel, since we store the 2D-index for every slice, we actually have the list of 3D-voxelswhich projects to cover that pixel.5.2. Generating corresponding pairsTo avoid generating all the corresponding pairs possible, we implemented a simple algorithm whichlooks at every pixel of an image to determine if that pixel could be a tip or an end-point of cylindricalhuman limbs. This determination is based upon the color of all the eight pixels surrounding that pixel, andthresholding, to determine if this pixel can be an end point. See also step 2, Figure 6.This localized decision is less error-prone as errors due to color uctuation across the image are mini-mized in comparison to our earlier e�orts in [16]. The algorithm is better in comparison to our earlier e�ortsas now we do not have to extract the curve, and trace them as in [15]. The algorithm could also be easilyimplemented in hardware. Figure 13 shows the result of this algorithm of Figure 6 which is applied to slicenumber four. This process takes a small amount of time, typically, 3-4 seconds, on an Onyx machine.5.3. Spatial Filtering ResultsProcedure SpatialMarking (Figure 6) is used to collect the end-points from cameras 1,2, and 3 for everyvoxel as follows:(a) For every pixel identi�ed as a signi�cant point (Step2, Figure 6), use the 2D-index for every slice(these 2D indices are generated during preprocessing) to mark all the active-space 3D-voxels which coverthis pixel (steps 3 and 4, Figure 6) (b) Perform the above for all the signi�cant (pixel) points on all thethree camera-images, maintain a list in every 3D-voxel for marking by left, right, and center cameras (Step1, Figure 6).The algorithm for generating all combinations of corresponding pairs (S1,S2,S3) is given in Figure 7.Basically, if a 3D-voxel is marked by pixel S1, S2, and S3 in the left, center, and right cameras, respectively,then (S1,S2,S3) is used as an imprint set, and we calculate the 3D-point S given the imprint-set (S1,S2,S3)using the Find S (step 8, Figure 7) algorithm. Once Find S speci�es a 3D point corresponding to (S1,S2,S3),the 3D point is displayed. All the valid corresponding pairs corresponding to all the eight slices, are generated,and displayed, as shown in Figure 16. Figure 16 shows the list of all the valid points which satis�ed thecriteria of closeness of point .01.If a 3D-voxel is marked by p1 number of pixels from the left camera, p2 number of pixels from thecenter camera, and p3 number of pixels from the right camera, then the number of unique imprint-sets willbe p1�p2�p3. All of those imprint sets satisfying the closeness criteria, as explained in Section 2.1 and alsoin Find S, are collected as valid 3D-points. Figure 14 and 15 show the �ltering algorithm working for all thethree cameras in a variety of stages. Our results show that an extremely small percentage of correspondingpairs are being considered by using this �lter in comparison to the worst case approach. This is because theactive space has been divided into 11� 11� 7 very small compartments.Finally, we should point out that the �ltering technique is e�ective in reducing the number of corre-sponding pairs which are to be generated. These corresponding pairs are spatially related. Multiplicity stillexist, in the sense, that it is possible that many points on several slices satisfy the closeness criteria, andare displayed. Recovering the 3D surface from three cameras images, that is solving the correspondenceproblem, still remains a challenge.



Spatial Filtering/Semwal and Ohya 156. CONCLUSIONS AND FURTHER RESEARCHThe active space indexing mechanism uses only those grid-points for position estimation which arespatially close to the actual 3D location of the point. This provides localization and could provide robustnessagainst camera distortions. We are able to also provide an accurate and precise position estimation, oncethe corresponding pair is identi�ed.Our spatial �ltering algorithm terminates quickly within a few minutes. This is a huge computationalsaving in comparison to the intractable worst case algorithm of generating corresponding pairs. To the bestof our knowledge, there does not exist another camera-based system which employs such a spatial datastructure to reduce the possible number of corresponding pairs.Although we have drastically reduced the number of corresponding pairs by using spatial �ltering,much work remains for recovering the precise geometry of the projected surface, especially under noisy andblurred conditions. We need to resolve the correspondence problem. In particular, unique correspondingpairs must be determined to extract the 3D surface. This problem, as we discussed in Section 1, is still agrand challenge. However, the spatial �ltering provided by the active space method has drastically reducedthe number of corresponding pairs in comparison to the worst case. This, we feel, is the major contributionof techniques presented in this paper.ACKNOWLEDGMENTSThe �rst author would like to thank Dr. R. Nakatsu, President of ATR Media Integration & Commu-nications (MIC) Research Laboratories, for inviting him to ATR. Thanks are also due to Mr. Fujimoto, IFermin, and I Painuli, researchers in Department One for a variety of discussions and help.References[1] K Meyer, HL Applewhite, and FA Biocca. A Survey of Position Trackers. PRESENCE, 1(2), pp 173-200,MIT Press, Spring 1992.[2] RF Rashid. Towards a system for the Interpretation of Moving Light Displays. IEEE Transaction onPAMI, 2(6) pp 574-581, 1980.[3] MW Krueger. Arti�cial Reality II. Addison Wesley Publishing Company, Reading, MA, pp 1-277, 1991.[4] A State, G Hirota, DT Chen, WF Garrett, MA Livingston. Superior Augmented Reality Registration byIntegrating Landmark Tracking and Magnetic Tracking. Proceedings of SIGGRAPH 1996, pp 429-438,1996.[5] O Faugeras. Three-Dimensional Computer Vision: A geometric Viewpoint. MIT Press, Cambridge,Massachussets, 1996.[6] Blake A, Yuille A eds. Active Vision. The MIT Press Cambridge, MA, pp. 1-303, 1992.[7] W. Eric and L. Grimson. Object Recognition by Computer: The Role of Geometric Constraints. MITPress, Cambridge, MA, 1990.[8] S Maybank. Theory of Reconstruction from Image Motion. Springer-Verlag, 1993.[9] J Serra. Image Analysis and Mathematical Morphology. Academic Press, vols 1 and 2, 1988.
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