42

FAST SIMULATION OF LIGHTNING FOR 3D GAMES
by

Jeremy L. Bryan
B.S, University of Colorado at Colorado Springs, 1997
A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2005
This thesis for the Master of Science degree by

Jeremy L. Bryan
has been approved for the

Department of Computer Science

by

Sudhanshu K. Semwal, Chair

C. H. Edward Chow

Tim Chamillard

Date

Bryan, Jeremy L. (M.S., Computer Science)

Fast Simulation of Lightning for 3D Games
Thesis directed by Professor Sudhanshu K. Semwal

Simulating a lightning stroke in computer graphics involves developing a model for the main stroke, and then recursively generating similar models for any branches that may occur. A number of methods have been developed in this field, but most of the research has concentrated on rendering algorithms. This thesis generates volumetric data for a three dimensional lightning stroke through the usage of cellular automata. The goal was to develop a method where realistic lightning strokes could be generated and displayed in real-time. An algorithm, the complex lightning generation model has been designed and implemented in C++. The algorithm uses an automaton with simple rules based on random numbers and probability. Results are presented that compare our results to those created by other researchers in this area.

CONTENTS

CHAPTER

I. 1INTRODUCTION

II. 5PREVIOUS WORK

5MODELING

7RENDERING

9CELLULAR AUTOMATA

10APPLICATIONS

10CURRENT RESEARCH

III. 13DESIGN

14CELLULAR AUTOMATA CHARACTERISTICS

14COMPLEX LIGHTNING ALGORITHM

17PSEUDOCODE

19BENEFITS

19DISADVANTAGES

20COMPLEX BRANCH GENERATION

21PSEUDOCODE

IV. 22IMPLEMENTATION

22INTRODUCTION

22TECHNOLOGIES INVESTIGATED

24SUPPORTING PACKAGES

25INITIAL PROTOTYPE

25CLASS STRUCTURES

V. 33RESULTS

VI. 36FUTURE WORK

VII. 39CONCLUSION

VIII. 41BIBLIOGRAPHY

CHAPTER I

INTRODUCTION

Computer Graphics has experienced a phenomenal growth trend in recent years. It has been used extensively in the advertising, gaming, and motion picture industries, to name just a few. The quality of computer generated images has progressed to the point where synthetic actors and/or objects are practically indistinguishable from their real-world counterparts. With the introduction of dedicated hardware for graphics processing on personal computers, the push to expand the rendered universe has accelerated at an astonishing pace. This thesis focuses on helping to expand our digital world.

Creating realistic models of physical phenomenon has been the topic of many research papers in recent years. Computer scientists have developed algorithms to display plants, mountains, fluids, clouds, and many other naturally occurring subjects. Lightning, nature’s most spectacular display, has proved to be somewhat elusive to capture realistically. Relative to other natural phenomenon, the research in this particular area is fairly sparse.

Generating a lightning model in three-dimensional space could affect a number of applications. Real-time lightning generation could be expanded into the computer gaming industry to enhance future games and effects. In addition, the ability to direct the lightning stroke to any given point could prove beneficial to the visual arts industry. Motion picture film directors could designate some target in a frame of film and our method could be used to create a realistic stroke that would always hit the given target.

The generation of lightning in the real world is a complicated, multi-step process. A lightning stoke cannot happen without the presence of a strong electrical field. This electrical field begins to accelerate free ions in the atmosphere to a very high velocity. These ions create a “stepped leader” which propagates from the cloud towards ground-zero in discrete steps. As the stepped leader approaches the ground, it attracts an “upward positive leader.” As these two electrical occurrences draw closer to one another, the “attachment process” begins. The meeting of the upward and downward leaders triggers the “return stroke” which initiates the lightning flash we see and the thunder we hear. The entire flash lasts about .5 seconds and carries approximately 10,000 amps of current. Once the initial return stroke has been established, there can be as many as four or five subsequent strokes along the main channel. This is where lightning gets its flickering effect. [Reed1994]

Much of the research done in lightning graphics has concentrated on ray-tracing a three-dimensional model in order to produce a two dimensional image. The benefit to creating our three-dimensional model in real-time is being able to move the camera around interactively. This allows the user to view the stroke from any angle and/or direction. The ability to change the view in real-time provides a much clearer understanding of the actual shape and direction of the model. Our final product may not look as polished as some of the previous researcher’s results because they rendered a 2D image using ray-tracing while we will just be displaying the raw model. Until algorithms and/or hardware reach a point where ray-tracing can be done in real-time, our results will not be as aesthetically pleasing due to the difference in rendering.

Our approach uses the concept of cellular automata in order to propagate the lightning strokes through the atmosphere. Cellular automata are dynamic systems where volumes are created using cells that contain values that change based on pre-determined rules and the values of neighboring cells. Using this simple concept, complex global patterns can emerge and amazingly accurate representations are possible. We implement the cellular automata concept by creating a three dimensional lattice to represent the atmospheric space that we want the lightning to propagate through. New algorithms were developed in order to determine the path that the lightning will take. The rules that have to be written for each cell in the automata to perform this path selection are relatively simple and hence easy to update or replace. [Kaushal2004] No control points are needed to generate the stroke and branches.
The algorithm that was developed was implemented in C++ using the OpenGL library as the graphics engine. We wanted the project to have the feel of a 3D game, so we spent time during development on enhancing game-play. The results of our worked turned out very well and are presented in later chapters.

Chapter II goes into more detail on this field and reviews some of the current research. Chapter III describes the design of the propagation algorithm. Chapter IV explains design choices, implementation strategies, and software used. Chapter V presents the results of running the implemented software. Chapter VI suggests some ideas for future work that could enhance the realism of generated lightning models. Chapter VII is the summary of the thesis and conclusion.
CHAPTER II

PREVIOUS WORK

Physical phenomenons have become a popular research subject in recent years. Computer graphics programmers are striving to accurately depict naturally occurring phenomenon such as fluid dynamics, atmospheric conditions, organic life, and terrain. The results have been adapted for use in industries such as television, movies, video games, and print media to name just a few. Several approaches to the visual representation of lightning using computer graphics are discussed in the following sections.
MODELING
Reed et al [Reed1994] discussed a method for rendering lightning using conventional ray-tracing. “Lightning is represented as a collection of connected, finite length rays in 3D space.” [Reed1994] In order for the researchers to perform conventional ray-tracing on a scene, they needed to create a 3D model. However, because the focus of their research was to create a “Visual Simulation of Lightning,” they did not focus on creating truly realistic models. “The mathematical complexity and the numerous parameters required to describe the complete lightning environment make these models impractical for the computer artist.” [Reed1994]
They [Reed1994] used a simple method for creating their 3D lightning model. Starting with a seed segment in the clouds, new segments were spawned and randomly rotated about the seed segment. The segments were then concatenated to form a complete channel from the cloud to the ground. While segments were being generated, branches were created recursively. Branches are allocated a number of segments, chosen from a uniform distribution, and grow until its segments are depleted or ground zero is encountered. [Reed1994]
One particular website [UCCS] has done a fabulous job of describing a lightning strike by using a computer simulation. Unfortunately, this method is only presented for 2D representations. We have used the information about lightning presented in this website as a basis for our research and have expanded it into three dimensions. The website model starts off by breaking the space up into a grid. Each cell is assigned a random number between 0 and 1; this is supposed to represent the local variations of the properties of the air. The larger the random number, the easier the cell is for the lightning to break down the region. The website’s method involves finding the electric field in neighboring cells and choosing the one with the largest value. [UCCS]
[image: image1.png]

Figure 1
The website authors provide the following equation to calculate a breakdown number:
Breakdown number = (Electric Field)α(random #)

The electric field is raised to some power so that the effective weight of the field on the outcome of the equation can be adjusted.
RENDERING
Reed et al [Reed1994] spent a majority of their research time on rendering the model that they created. They could not employ typical shading methods associated with ray-tracing because lightning has no definable surface. By only accounting for the plane in which the camera was looking, they were able to reduce rendering time by a factor of 2-5. [Reed1994] Reed et al [Reed1994] also addressed the issues of making the lightning a light source, animation, and glowing objects. Figure 2 shows and example of the Reed group’s results.
[image: image2.jpg]

Figure 2
Dobashi et al [Dobashi2001] used the identical modeling method described above. However, during the ray-tracing process they attempted to take into account the scattering effects due to clouds and atmospheric particles. Therefore, the Dobashi group also had to model clouds and some limited atmospheric properties. The addition of these elements significantly enhances the overall scene. Their results are visually extremely impressive, as shown below in Figure 3.

[image: image3.jpg]

Figure 3
CELLULAR AUTOMATA

Cellular Automata (CA) were originally proposed by Von Neumann as formal models of self-reproducing organisms [Sarkar2000]. Cellular Automata are dynamic systems that occupy a uniform, regular lattice, work in discrete steps of time and are characterized by local interactions. [Kashual2004] Additionally, cellular automata can be one or two-dimensional, defined by adjacent cells, or three-dimensional, defined by boxes or voxels. Each cell has a defined neighborhood and internal values that may change depending on basic rules and the values of neighboring cells. Some of the characteristics of CAs are [Wolfram1984]:
a. They use a discrete lattice of sites

b. Discrete time steps drive the simulation.

c. Each site can only take a finite set of values

d. Each site evolves according to the same deterministic rules

e. The evolution of a site only depends on the neighborhood.

Cellular automata, while quite simple, provide to ability to create complex patterns and behaviors through the use of rules and local interactions.
APPLICATIONS

The nature of CA allows it to be used in varied applications such as:

· VLSI design [Sarkar2000]

· Ecological simulations[Bezzi2000]

· Medical simulations [Sloot2002]

· Crowd behavior and social interaction models [Hamagami2003]

· Physics modeling in games [Forsyth2002]

· Three dimensional morphing [Kaushal2004]

CURRENT RESEARCH
Kaushal used cellular automata in an algorithm for three dimensional morphing. He developed two different approaches to transforming one 3D object into another through the use of a CA with simple rules. The first method requires that the objects to be morphed intersect each other, while the second method is not subject to this limitation. Both methods he developed provide similar results. Given the difficulty of the problem, Kaushal’s approach and solution were very unique. His results turned out to be extremely attractive (Figure 4). [Kaushal2004]
	[image: image4.jpg]

	[image: image5.jpg]

	[image: image6.jpg]

	[image: image7.jpg]

	[image: image8.jpg]

	[image: image9.jpg]

	
[image: image10.png]

	[image: image11.jpg]

	[image: image12.jpg]

Figure 4

Claudia et al [Claudia2001] discuss the use of the CAs for simulating the effects of a landslide. The authors went as far as to extend the basic idea of CAs and develop a cellular automata network (CAN) model. With this model, a number of different components of a physical system can be modeled using a CA. The interactions between the different CAs form a network. This approach enables the different automata to evolve according to network interaction as well as local rules. In order to keep all the interactions straight, the authors developed a dependency graph to maintain the relationships between the individual CAs. The dependency graph is consulted upon each iteration in the automata.

Computer generated lightning models have been created through several approaches, but the available research does not suggest that anyone has used the approach of cellular automata. Most research in this area is more concerned with rendering issues rather than realism in models. However, many of the ideas and approaches were helpful in identifying potential pitfalls and successful solutions to problems we encountered.
CHAPTER III

DESIGN

This chapter discusses the design, implementation, and justification of the algorithms used in the thesis. The idea for this thesis subject was presented to me through a final exam question in one of my graduate classes. After conferring with my major advisor, Dr. Sudhanshu Semwal, we decided to move forward on this topic with the understanding that we would be targeting a cellular automaton implementation.

After reviewing the current research as described in Chapter II, we were unsatisfied with the current algorithms to generate lightning models. Other researchers would have the luxury of creating their 3D model and then rendering the scene before displaying it. Depending on the complexity of the scene, this could take as much as minutes to perform. The main goal of our algorithms was to produce realistic lightning in real-time. That is, display the results as soon as requested with a minimum lag time between request and fulfillment. Because of the real-time restriction, some considerations had to be made during the implementation process to ensure timely algorithm execution.

A computer generated lightning model doesn’t “think.” It cannot determine if it looks like a real lighting stroke or not. Therefore, attempting to control the model generation with global control mechanisms would prove to be unwieldy and cumbersome. By looking at the atmosphere as a collection of voxels and allowing the lightning leaders to propagate by inspecting the local neighborhood, we could avoid the use of global controls. Once we realized this important concept, the use of cellular automata became the only logical choice.

CELLULAR AUTOMATA CHARACTERISTICS

The cellular automaton which was used in our design has the following characteristics:

a. It is a three-dimensional lattice.

b. The dimension of the lattice is that of the volume.

c. Each cell can either be empty or contain a segment of lightning stroke.

d. The position of the cell in the lattice has no effect on its behavior. Hence, all cells are equal.
e. The cellular automaton is non-circular.

COMPLEX LIGHTNING ALGORITHM

One of the suggestions from Dr. Semwal was to be able to control the path of the lightning, or at least the point where the lightning strikes the ground. This would be an attractive feature in 3D games simulation of lightning. In order to accommodate this feature, the lighting model had to be generated from the ground up. This is different from what happens in real life, but ultimately has no effect on the final output. The model generation and rendering are located in two different functions, so the modeling can be done from the ground up, and then the rendering can read the data from the other direction and display the lightning starting from the sky.

We give users a targeting cursor which they are free to move about the environment using the arrow keys on the keyboard. The location of this cursor determines the starting point for our lightning structure. The cell that contains this point is added to a linked list data structure so that we may reference the data later.

At this point, the algorithm must decide which cell to propagate the lightning into next. As discussed in the introduction, every cell in the cellular automaton has an associated r value that represents miscellaneous atmospheric conditions. Using this value, the electric field for each neighboring cell can be calculated using Maxwell’s Equations. Upon finding the neighbor with the largest electrical field, we add that cell’s coordinates into the linked list.

In real life, lightning progresses through the atmosphere in discrete steps. To model this behavior, the algorithm creates a random number to represent the length of a given segment. The segment continues to travel in its current direction through the given number of cells. The electrical field calculation does not have to take place until the current segment is terminated, allowing the lightning to have a wide range of deviations from it starting point. Otherwise, it would just appear to be a straight, wiggly line.

This process continues until a lightning segment reaches the ceiling, or the maximum altitude for our simulation. At this point, we have a linked list that contains objects we named CVoxels. A CVoxel represents a voxel in the cellular automata. It contains x, y, and z coordinates, an r value, and a null header for another linked list. The additional linked list is needed because any given cell can be the parent or root for a branch that is to be generated. This data represents our main stroke to be displayed.

Once the main stroke calculations have been completed, we need to generate branches. To accomplish this, we iterate through the main stroke data and use simple probability to decide whether or not the current cell we are looking at is going to be the parent of a new branch. In reality, the likelihood of a branch being spawned increases as the distance to the ground decreases. In other terms, the probability of a branch being generated is inversely proportional to the distance we currently are from the ground. This behavior was implemented and the results were not good. There were not enough branches at higher elevations, and the multitude of branches near the ground resembled the root network of a tree. Therefore, we reverted back to using a uniformly distributed probability function so that the chances of branching were equal at any point on the main stroke. There is more detail on the branching algorithm later in this paper.

During the implementation a design choice was made in the interest of speeding up the program. As we have said, every cell has a value r from which an electrical field can be calculated. If you recall, r is just a random number that represents atmospheric properties that we did not want to model. We made the choice to assign this value only to neighboring cells that were potential candidates to host a lightning segment. The vast majority of cells in the lattice are empty space. It seems to be a monumental waste of computational time to initialize every voxel in the cellular automata with a value when only a few will ever be needed. Therefore, we assign the r value and calculate the electrical field on the fly during the decision making process.
PSEUDOCODE

Proc GenerateComplexLightning
// Load the starting coordinates
list.add target.coords

while height <= MAX_ALTITUDE

Assign r to 26 neighbor cells if they do not have one

Calculate E for 26 neighbor cells if not done previously

Find maximum E

list.add maxE.coords

end while

for each voxel in list

temp = rand()

if temp < BRANCH_PROBABILITY then

GenerateComplexBranch()

end if

end for

end proc

The following figure takes us through the beginning stages of the lightning generation algorithm.
	[image: image13.jpg]

	This is the user’s target placed on a random spot on the terrain.

	[image: image14.jpg]

	When the spacebar is pressed, the lightning generation algorithm is initiated. Here, the initial direction has been chosen and the segment progressed through a random number N of voxels.

	[image: image15.jpg]

	The algorithm progresses by choosing a new direction and segment length and propagating the lighting further.

	[image: image16.jpg]

	Again…

	[image: image17.jpg]

	The algorithm applied iteratively until the initial main stroke is completed.

Figure 5
BENEFITS

a. Extremely simple algorithm, easy to implement.

b. There is no need to initialize the data space.

c. No costly pre-processing steps required.

d. Ideal as a quick method of real-time lightning generation.

DISADVANTAGES

a. It is difficult to get extremely dynamic lightning strokes.
b. Stroke look great when viewed from a distance, but loses realism as the camera zooms in.
c. There is no way to control the shape of the lightning stroke. However parameters such as probability of propagation direction can be tweaked.
COMPLEX BRANCH GENERATION

Branches can occur off the main stroke as well as off other branches. We implemented some arbitrary maximum branch depth in the interest of keep the algorithm running fast.

In order to generate branches, we must traverse the data structure that contains the data for the main stroke. During that traversal, we use simple random numbers and probability to determine if a stroke segment needs to spawn a branch. If it is determined that a branch needs to be created, then the appropriate function is called and branch generation begins.

The actual creation of the branch is done identically to that of the main stroke. However, there is a major addition to the branch method that needs to be noted. Branches do not necessarily need to reach ground-zero. They can terminate in the atmosphere. To achieve this feature, a random number is created at the beginning to represent this branch’s maximum length. Branch creation is terminated if it reaches its maximum length or when it encounters ground-zero.

Due to the fact that branches can spawn branches, the function that creates these things must be recursive. Essentially, the branch is created in its entirety and then, exactly like with the main stroke, the data is iterated through and the next level of branches is created. The probability function does not change successive iterations.
PSEUDOCODE

Proc GenerateComplexBranch

BranchLength = rand()

while (BranchHeight >= 0 And BranchLength >=0)

Assign r to neighbor cells if they do not have one

Calculate E for cells if not done previously

Find maximum E

BranchList.add maxE.coords

end while

for each coord in BranchList.coords

if (rand() >= BRANCH_PROBABILITY) then

GenerateComplexBranch()

end if

end for

CHAPTER IV

IMPLEMENTATION

INTRODUCTION

This section describes in detail the implementation aspect of the thesis. The implementation focused on run-time efficiency and aesthetic characteristics in that order, with the latter being sacrificed when necessary for the former. The attempt was made to create all the code using an object-oriented approach, hiding all the data and providing methods for access. The type of software development cycle used was the prototype methodology, where we built increasingly complex prototypes until the model reached the requirements of the project.

TECHNOLOGIES INVESTIGATED

At the beginning of the actual implementation, we evaluated a number of software libraries, technologies, and languages in order to find one that met our requirements in terms of capabilities, performance and skill sets.

PROGRAMMING LANGUAGES
C

The C programming language was attractive because we were familiar with it and there were a number of OpenGL libraries written in it. However, the nature of our project suggested that an object-oriented approach would be better suited.

Java

Java was potentially a good option for implementation of the project. It uses a graphics library called Java3D [Java3D2004] for rendering. Unfortunately, our unfamiliarity with Java3D and speed concerns of an interpreted language led us to continue our search.

Visual Basic

Upon initial examination, VB appeared to be a viable option. The ability to easily create GUIs and the simple syntax of the language made it attractive. Regrettably, getting the OpenGL and GLUT libraries to work as expected in this environment was extremely difficult. This fact, along with the limited built-in data objects, was enough to eliminate Visual Basic from contention.

C++

Our desire to use an object-oriented approach finally led us to C++. It is standardized, runs on all platforms and has widespread usage and documentation. [Kaushal2004]

The benefits of using C++ for our implementation include:
a. It is object oriented, which means we could encapsulate our data
b. It supports overloading of both methods and operators.

c. Virtual functions can be defined within a class, which allows the developer to force a set of standards on the classes that are derived from it.

d. There are an abundance of libraries written for this language to help us in our use of graphics, debugging, and data structures.
SUPPORTING PACKAGES
We assisted the guidance of a few different software packages to help get our implementation off the ground. The list of such packages is:

a. HeightMap Tutorial: This program reads in a raw format file with unsigned character data that it uses to graphically display a terrain using OpenGL. Additionally, this software package provided the ability to pan the camera’s view using the movement of the computer’s mouse. I used the code for this tutorial with permission of DigiBen from http://www.gametutorials.com.
Note: The raw files used for input were created using Adobe Photoshop.
b. SlinkedList: This library is a linked list implementation. It is used to store the coordinate data for each voxel and allows easy traversal of the data. This code was acquired from the “Data Structures for Game Programmers” book [Penton2002] and used in accordance with the stated terms of use.
c. Car Tutorial: This OpenGL program demonstrates how to use display lists to create a 3D model of a simple car. It was used as a guide in adding the car to the scene.
INITIAL PROTOTYPE

We wanted the implementation of the thesis to reflect real life as much as possible. With that feature in mind, it was imperative for the results to display a terrain map to represent ground-zero. OpenGL was to be used for the rendering pipeline. The first iteration of development involved finding an OpenGL tutorial to would help us develop this functionality. Unfortunately, the code we found as a guide did not make use of the GLUT library. Our first task was to port this sample code so that it did use the GLUT toolkit. This tutorial code served as the foundation of our implementation code. We progressively added layer after layer of functionality until the requirements for the project were satisfied.
CLASS STRUCTURES

Object-oriented design methodology was used heavily during the development of our program. The following sub-sections describe the major classes that were developed during our implementation.
a. CCamera2: This is our camera class. It tracks the camera’s position, view, up, and strafe vectors. Tracking this data allows us to move the camera around while maintaining the proper perspective.
b. SListNode: This class represents an object that holds data within our linked list data structure. It is a template class that contains a copy of data and a pointer to the next node in the list.

c. SLinkedList: The methods to manipulate the list structure are contained in this class definition.
d. SListIterator: This class provides support for iterating through every element in the list.

e. CVoxel: Here is where all the important data is maintained. The CVoxel class stores 3D coordinates, atmospheric data, and Boolean values to determine the contents of the given voxel. Additionally, this class contains an instantiation of the SLinkedList class so that it may host branches.
THE LIGHTNING

The most dynamic part of the program is the ability to create simulated lightning strikes at will. Initially, there was some concern about the time lag between pressing the space bar and displaying the stroke. Hence, the project was coded such that the data for a new lightning stroke was calculated as soon as the display for the current stroke was finished. Then, when the spacebar was pressed the next time, the program only needed to render the data that had already been calculated.

This proved to be an unnecessary concern. This logic would not work once we introduced the ability to generate lightning at a certain target. The users crosshairs can move about the terrain interactively and we do not know where the next lightning stroke is going to be until the space bar is pressed after repositioning the target. Therefore, we had to switch to the model of creating the data and rendering in consecutive steps. Fortunately, there is no noticeable lag time between the user input and the output on the screen.

THE CAMERA

In order to facilitate a game-like environment, we wanted the camera to behave like that of a first person shooter style game. Any movement of the mouse would cause the camera to pan in the same direction. Additionally, the camera should be able to move, roll, or strafe in any direction according to input from the user.

To get the camera to pan in coordination with any mouse movement, we created a function in the camera class and then called that method from the GLUT display routine. Every time GLUT/OpenGL would render a frame, it would first update the camera’s position and viewpoint. Also, we associated a procedure with the GLUT method glutPassiveMotionFunc(). This tells the graphics library to update the camera whenever mouse motion is detected without a mouse button being pressed at the same time.

To actually move the camera around the environment we again leveraged the GLUT function pointer features. Camera motion is communicated to the program by the user through the use of keys on the keyboard. For example, if ‘f’ is pressed that indicates that the user want the camera to move forward from its current position. If ‘Y’ is pressed then the camera should move in the positive y direction. This feature was implemented by simply created a keyDown procedure and associating it with the GLUT glutKeyboardFunc() method. Any time the user presses a key on the keyboard our method is called. We can then use a case statement to determine if the pressed key is of any interest to us and handle it accordingly.

Overall, the camera features turned out very well. The viewpoint scrolls seamlessly with mouse movement and makes it very easy to view the scene from a variety of angles. The ability to move, roll, and strafe the camera in any direction helped debug the program by providing the ability to interactively view the lightning stroke from any given point.

THE CAR

For any game to be interesting, you have to have some objective for the user to accomplish. Our simple objective is to blow up a car. We wanted the car to move about the terrain and react appropriately. If the car was headed uphill, we wanted the nose of the car to be higher than the trunk. Also, the car should always be pointed in the direction of travel.
[image: image18.jpg]Lightning Simulator 1.0 Current FPS: 186

Figure 6

To render the car the program made use of OpenGL’s display list capabilities. The car’s body, cab, wheels, and bolts are all rendered at the axis origin. The body and cab are just two rectangular boxes with the smaller one, representing the cab, laid atop the other. Four triangle fans are drawn and translated accordingly to appear as wheels. Five bolts are drawn on each wheel by creating a circle which only has five segments so that it looks like a hexagon.

In order for the car to look like it was actually driving along the terrain, it is important for it to rotate realistically. It must rotate about the y-axis to ensure the nose of the car is pointed in the direction of travel. This is accomplished by calculating simple geometry of the car’s current location on its circular path. The car must also be rotated about the x-axis to simulate the rise and fall of terrain. Again, we do this with the use of simple geometry to calculate the angle of rotation (Figure 7).

[image: image19.jpg]0 =tan(y/x)

Figure 7
Once the car has been drawn and undergone rotational transforms, it needs to be translated to its current position on the terrain. The car just follows a simple circular path so, based on its velocity, the next location on the circle is calculated and then the car is translated.
THE TARGET

In order for the user to be able to determine where they want the lightning to strike, they must have some mechanism available to them to designate the desired strike point. This is accomplished through the use of a crosshairs target that can be moved about the terrain with the use of the keyboard arrows.

[image: image20.jpg]

Figure 8

Maintaining the position of the crosshairs is simple. The program keeps track of the current x and z coordinates and updates them accordingly upon user input. The target varies in the y-direction based on the height of the terrain it is currently above. This allows the target to “hug” the terrain as it moves about.

THE EXPLOSION

Success must be rewarded. When the user successfully targets the car and a collision between the car and lightning is detected, some sort of stimulus must be provided to inform the gamer of that status. We spent a considerable amount of time experimenting with different explosion effects. Particle engines, light sources, and bitmaps were all looked at and discarded for various reasons.
[image: image21.jpg]Lightning Simulator 1.0 Current FPS: 212

Figure 9

In the interest of simplicity, the explosion is modeled with expanding rectangular planes that change color. Three rectangles, parallel to the coordinate axes, are used to create the effect. They start very small and a blue color. As the explosion expands the color lightens to a red, orange, and then yellow while simultaneously becoming increasingly transparent. This animation sequence gives the appearance of a jagged cloud-like shape from almost any viewing angle. The explosion is almost comic book like and provides some level of nostalgia.
CHAPTER V

RESULTS

From the standpoint of attempting to create an entertaining game environment, we believe our results turned out very favorably. When the actual lightning stroke is evaluated, we encounter mixed results. The main stroke tends to look good, although not extremely dynamic from one strike to the next. On the other hand, the branches seem to be a little less believable. The branches don’t veer away from the main stroke enough. They seem to split away from their parent and then propagate downwards almost parallel to the other branches and strokes.

The algorithms were run on a standard desktop PC with a single Pentium IV processor running at 3.39 GHz and 1.0 GB of RAM. Tests were also run on the standard PCs in the computing labs on campus. In both cases the generation algorithm and rendering engine performed very well.
SURVEY RESULTS

Acting on a suggestion from the thesis committee, we created a survey to compare our results to the results of others. It was difficult to find other people’s work to compare against. In order to make the survey fair, we felt like we should not compare our real-time results with those that had been ray-traced. Therefore, we had to scour the research to find the 3D models that they used prior to the rendering phase.

We created a simple survey that contained four black and white pictures of different lightning strokes created by different researchers (Figure 10).
[image: image22.jpg]Please rank the following images from 1 to 4 with 1 being the most realistic lighning shape, and 4 being the least

Figure 10

The first choice was a 3D model created by Andrew Glassner. [Glassner1999] The second image was from our work. The third picture was from the Reed publication. [Reed1994] Finally, the fourth choice was taken from Dobashi’s results. [Dobashi2001] The survey instructed the participants to rank the pictures from 1 to 4 based on the realism of the shape, with 1 being the best and 4 being the worst. The following table illustrates the survey results:
	
	Glassner
	Bryan
	Reed
	Dobashi

	
	
	
	
	

	Mean
	3.171875
	2.25
	2.28125
	2.296875

	Median
	4
	2
	2.5
	2

	Mode
	4
	1
	3
	2

	StdDev
	0.96863
	1.140871
	1.075982
	1.03402

Table 1

As you can see from the data in Table 1, the results were close. Our model had an average score of 2.25 while the Ross’ scored 2.28 and Dobashi’s came in at 2.29. These results are extremely similar. While this data does not suggest that our model is any better than the other two, it does suggest that ours is at least comparable. Our sample size was 64. In order to get a more accurate representation the sample size should probably be increased significantly.
OBSERVATIONS

a. In normal cases, the amount of time taken for each iteration as well as the total number of iterations depends on the number of branches generated and the maximum branch depth.

b. Large branch clusters tend to take more time than smaller ones. The do not seem to add anything to the final product and actually may detract from the realism of the stroke.

c. The algorithm is currently coded such that the number of voxels in any given dimension is equal to the map size in that same dimension. Making the voxels smaller would not enhance the results appreciably.
CHAPTER VII

FUTURE WORK

INTRODUCTION

We have shown that real-time generation of a realistic lightning strike is achievable using today’s computing environments. Also, these strokes can be created through the use of cellular automata and work well by creating acceptable stroke sequences during game play. There are several ways in which the lightning generation quality could be improved. The areas that could be extended are efficiency, handling of lighting, and improved branch modeling.

EFFICIENCY

Our current design requires that the algorithm loop through every voxel in the generated stroke to generate and render branches. An important improvement would be to somehow track voxels that are branch parents and be able to access them directly.
LIGHTING SUPPORT

One of the most dynamic sights is that of a bright lightning stroke lighting up a dark sky. Despite numerous attempts to have our model act as a light source in the scene, we could not come up with an acceptable solution. Adding some kind of light source to the lightning model would dramatically increase the effect. This proves to be somewhat difficult to do within our real-time requirements.
BRANCH MODELING

The major shortcoming of our implementation seems to be the relationship of the branches to the main stroke. The branches don’t seem to propagate away from their parent enough to emulate true lightning. Some geometry could be used to establish a direction of travel for any given branch away from its parent. This would increase the overall realism of the branches with respect to the main stroke.
CONTROL POINT SUPPORT

One of the major improvements that would enhance the overall usability would be the support for control points. Basically, this would allow users to select certain voxels in space that they want the lightning to pass through. Once these control points have been defined, the algorithm is guaranteed to propagate the lightning through these points. This feature would allow users to shape the lightning as they see fit.

Currently the only input from the user is where the lightning intersects ground-zero. Everything from the origination point to the target is randomly generated. Many of the lightning characteristics, such as the probability of branching, can be controlled within the program. However, the actual shape of the stroke and branches is determined in a random fashion.

One of the issues with creating control point support would be the difficulty in acquiring that data from the user. One possible approach would be to read in three dimensional coordinate values from an input file. Another very attractive option would be to allow the user to interactively turn voxels on and off through mouse input. However, because the cellular automaton is three dimensional it is difficult to map any given mouse positions on a two dimensional screen into a specific voxel or coordinate value.

CHAPTER VI

CONCLUSION

This thesis presents the theory and design of cellular automata based lightning generation techniques. We studied current research in computer lightning models and rendering and concluded that a one major problem is the need for real-time model generation as opposed to ray-traced images. We discuss a new algorithm, making use of a simple cellular automaton, in detail.

The concept of the algorithm is relatively simple, but that does not preclude it from producing acceptable results. Comparing our results to those from other researchers is difficult. They had an unlimited amount of time to produce their model where we were attempting to display our results in real-time. Given this difference, we feel like our results are extremely satisfying. We have proven that the use of cellular automata is a viable approach to modeling lightning in three dimensions. The application of this research could empower 3D games and visual arts industries.

The project implementation was done in C++ and several different models were compared to ours. Analysis of the results shows that our algorithm produces competitive results. This thesis should provide a base for further research into such modeling techniques.

BIBLIOGRAPHY

	[Reed1994]
	Todd Reed and Brian Wyvill,

”Visual Simulation of Lightning”

International Conference on Computer Graphics and Interactive Techniques, Proceedings of the 21st annual conference on Computer Graphics and Interactive Techniques
Pages: 359 – 364,

Year of Publication:1994

	[Dobashi2001]
	Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita
”Efficient Rendering of Lightning Taking into Account Scattering Effects due to Cloud and Atmospheric Particles”

Proceedings of the 9th Pacific Conference on Computer Graphics and Applications

Pages: 390
Year of Publication: 2001

	[Lilly1995]
	H. Albert Lilly,

“The use of cellular automata in the classroom”

Conference on High Performance Networking and Computing

Proceedings of the 1995 ACM/IEEE conference on Supercomputing
Article 16, Volume 00 (CD-ROM)

Year of Publication:1995

	[Droun2003]
	Druon S, Crosnier A, Brigandat L

“Efficient Cellular Automata for 2D / 3D Free-Form Modeling”

Journal of WSCG (Winter School of Computer Graphics)

Volume: 11, Number 1, Pages: 102-108

Year of Publication: 2003

	[Sosič1995]
	R. Sosic and Robert R. Johnson.

“Computational properties of self-reproducing growing automata”

BioSystems, Volume: 36, Pages: 7-17

Year of Publication: 1995

	[Sloot2002]
	Peter Sloot, Fan Chen, and Charles Boucher

“Cellular Automata Model of Drug Therapy for HIV Infection”

Lecture Notes In Computer Science Proceedings of the 5th International Conference on Cellular Automata for Research and Industry Pages: 282 – 293

Year of Publication:2002

	[Bezzi2000]
	Bezzi M

“Modeling Evolution and Immune System by Cellular Automata”

http://citeseer.nj.nec.com/429312.html

	[Wolfram1984]
	Wolfram ,Stephen

“University and Complexity in Cellular Automata"

Physica D 10, Page=”1-35”

Year of Publication:: 1984

	[Calidonna2001]
	Claudia R Calionna ,Claudia Di Napoli,Maurizio Giordano,Mario Mango Furnari and Salvatore Di Gregorio

“A network of cellular automata for a landslide simulation”

International Conference on Supercomputing Proceedings of the 15th international conference on Supercomputing. Pages: 419 – 426

 Year of Publication: 2001

	[Sarkar2000]
	Palash Sarkar

“A brief history of cellular automata”

ACM Computing Surveys (CSUR)
Volume 32 , Issue 1 ,Pages: 80 – 107
Year of Publication:2000

	[Chittarao2001]
	Chittaro L

“Information Visualization and its Application to Medicine”

Artificial Intelligence in Medicine
Vol. 22, No. 2, Pages: 81-88

Year of Publication: 2001

	[Sussman2004]
	Alan Sussman, Michael Beynon,Mary Wheeler, Steven Bryant, Malgorzata Peszynska, Ryan Martino,Joel Saltz, Umit Catalyurek, Tahsin Kurc,Don Stredney, Dennis Sessanna

“Exploration and Visualization of Oil Reservoir Simulation Data”

	[Hamagami2003]
	Tomoki Hamagami and Hironori Hirata

“Method of crowd simulation by using multiagent on cellular automata ”

EEE/WIC International Conference on Intelligent Agent Technology

Pages: 46 – 53

Year of Publication: 2003

	[Forsyth2002]
	“Cellular Automata for Physical Modeling”

Game Programming Gems 3

 Year of Publication: 2002

	
	

	[Penton2002]
	Ron Penton

“Data Structures for Game Programmers”
Muska & Lipman/Premire Trade

Year of Publication: 2002

	
	

	[UCCS]
	Author Unknown
“Simulating Lightning”

http://www.uccs.edu/~physics/simulations/lightning.html

	
	

	[Glassner1999]
	Andrew Glassner
“The Digital Ceraunoscope: Synthetic Thunder and Lightning”
Microsoft Resarch Technical Report MSR-TR-99-17

Year of Publication: 1999

PAGE

_1151589044

