

Rotation Points From

Motion Capture Data Using a Closed Form Solution

by

JONATHAN KIPLING KNIGHT

M.A. Applied Mathematics, Cal. State Fullerton, 1995

B.S. Physics, Cal Poly, San Luis Obispo, 1987

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2008

ii

Acknowledgements

First and foremost I would like to acknowledge my wife Kiki for her patience dur-

ing this research. I would also like to thank Gene Johnson for his support during the ups

and downs of my life during this major event in my life. He kept telling me to continue.

I would also like to thank my advisor Dr. Semwal for allowing me the freedom and guid-

ance to pursue the ideas laid down in this paper.

© Copyright by Jonathan Kipling Knight 2007-2008, All Rights Reserved

iii

This thesis for the Philosophical Doctor degree by

Jonathan Kipling Knight

has been approved for the

Department of Computer Science

by

Sudhanshu Kumar Semwal, Chair

Robert Carlson

C. Edward Chow

Jugal Kalita

Charles M. Shub

 Date

iv

Knight, Jonathan Kipling (Ph.D., Computer Science)

Rotation Points from Motion Capture Data Using a Closed Form Solution

Thesis directed by Professor Sudhanshu Kumar Semwal

Four new closed-form methods are present to find rotation points of a skeleton

from motion capture data. A generic skeleton can be directly extracted from noisy data

with no previous knowledge of skeleton measurements. The new methods are ten times

faster than the next fastest and a hundred times faster than the most widely accepted

method. Two phases are used to produce an accurate skeleton of the captured data. The

first phase, fitting the skeleton, is robust even with noisy motion capture data. The for-

mulae use an asymptotically unbiased version of the Generalized Delogne-Kása (GDKE)

Hyperspherical Estimation (first estimator: UGDK). The second estimator takes advan-

tage of multiple markers located at different distances from the rotation point (MGDK)

thereby increasing accuracy. The third estimator removes singularities to allow for cy-

lindrical joint motion (SGDK). The fourth estimator incrementally improves an answer

and has advantages of constant memory requirements suitable for firmware applications

(IGDK). The UGDK produces the answer faster than any previous algorithm and with

the same efficiency with respect to the Cramér-Rao Lower Bound for fitting spheres and

circles. The UGDK method significantly reduces the amount of work needed for calcu-

lating rotation points by only requiring 26N flops for each joint. The next fastest method,

Linear Least-Squares requires 236N flops. In-depth statistical analysis shows the UGDK

method converges to the actual rotation point with an error of O(σ/√N) improving on the

GDKE’s biased answer of O(σ). The second phase is a real-time algorithm to draw the

v

skeleton at each time frame with as little as one point on a segment. This speedy method,

on the order of the number of segments, aids the realism of motion data animation by al-

lowing for the subtle nuances of each time frame to be displayed. Flexibility of motion is

displayed in detail as the figure follows the captured motion more closely. With the re-

duced time complexity, multiple figures, even crowds can be animated. In addition, cal-

culations can be reused for the same actor and marker-set allowing different data sets to

be blended. The main contributions in this dissertation are the new unbiased center for-

mulae; the full statistical analysis of this new formula; and the analysis of when the best

measurement conditions are to initiate the formula. The dissertation further establishes

the application of these new formulae to motion capture to produce a real-time method of

drawing skeletons of arbitrary articulated figures.

vi

CONTENTS

PREFACE xiii

Chapter 1 INTRODUCTION 1

1.1 Articulated Figure Animation 4

1.2 Motion Capture Systems 7

1.3 Symbols and Conventions 9

Chapter 2 STATEMENT OF THE PROBLEM 11

2.1 Why are skeleton calculations required? 11

2.2 Problems encountered 12

2.2.1 Inaccuracies 12

2.2.2 Non-standard Files 13

2.2.3 Missing Data 13

Chapter 3 SURVEY 14

3.1 Skeleton Extraction 14

3.2 Sphere Estimates 14

3.3 Inverse Kinematics 17

3.4 Kinetics 18

Chapter 4 PREVIOUS SOLUTIONS 19

4.1 Spherical Curve-fitting Approaches 19

4.1.1 Monte-Carlo Experiment 19

4.1.2 Cramér-Rao Lower Bound 23

vii

4.1.3 Non-linear Maximum-Likelihood Estimator 34

4.1.4 Linear Least-Squares Solution 37

4.1.5 Generalized Delogne-Kása Estimator 40

4.2 Skeleton Approaches 62

Chapter 5 PROPOSED SOLUTION 64

5.1 Unbiased Generalized Delogne-Kása Estimator 64

5.1.1 Derivation 64

5.1.2 Statistical Properties 66

5.2 Cylindrical Joint Solution 75

5.3 Multiple Marker Solution 76

5.4 Incrementally Improved Solution 78

5.5 Hierarchical Skeleton Solution 81

5.5.1 Arbitrary Figure 81

5.5.2 Predefined Marker Association 86

Chapter 6 RESULTS 90

6.1 Case Study of CMU Data 60-08 90

6.2 Case Study of Eric Camper Data 94

6.3 Comparison 95

6.4 Speed 96

6.5 Conclusion 98

6.6 Important Contributions 99

6.7 Further Research 101

viii

Chapter 7 APPENDIX 102

7.1 Mathematical Proofs 102

7.1.1 Moments of Multivariate Normal 102

7.1.2 Positive-Semidefinite Sample Covariance 110

7.2 Inertial Properties of a Tetrahedron 111

7.3 File Formats 114

7.3.1 Marker Association Format 114

7.3.2 Articulated Tetrahedral Model Format 115

7.3.3 MESH Format 117

7.3.4 PLY Format 121

7.3.5 C3D Format 121

7.4 User’s Guide to Program 121

7.4.1 Menu 122

7.4.2 Options Pane 126

7.4.3 Animation Pane 127

7.4.4 Graphs Pane 129

7.5 Programmer’s Reference 130

7.5.1 Class Diagrams 130

7.6 C++ Implementations 132

7.6.1 Unbiased Generalized Delogne-Kása Method 132

7.6.2 Incrementally Improved Generalized Delogne-Kása 133

7.6.3 Collecting the Raw Data for Rotation Point 134

7.6.4 Rotation Point Calculation of Segment 136

7.6.5 Constants Calculation of Hierarchical Articulated Data 137

7.6.6 Calculation of fixed axes of data 139

7.6.7 Drawing Rotation Points with Constants of Motion 140

ix

Chapter 8 BIBLIOGRAPHY 143

Chapter 9 INDEX 151

x

TABLES

Table 1 Marker Associations 86

Table 2 Table of Means of Rotation Points 90

Table 3 Table of Standard Deviations of Rotation Points 91

Table 4 Comparison of Center Estimators 95

Table 5 Primitives in MESH Format 117

Table 6 Preservation Adjectives in MESH Format 118

Table 7 Optional Adjectives of Primitives in MESH Format 119

xi

FIGURES

Figure 1 Display of Motion-Capture Data xv

Figure 2 Markers on Actor 2

Figure 3 Human Articulated Shoulder 5

Figure 4 Human Elbow 6

Figure 5 Video Capture Analysis Software (SIMI°MotionCapture 3D)1 8

Figure 6 Vicon BodyBuilder Software 9

Figure 7 Constrained Measurements on Circle 20

Figure 8 Relative Error Comparison 22

Figure 9 Eigenvectors of CRLB for Circle 28

Figure 10 Eigenvalues of CRLB for Circle 29

Figure 11 Eigenvectors of CRLB for Sphere 32

Figure 12 Eigenvalues of CRLB for Sphere 33

Figure 13 MLE Compared to CRLB 36

Figure 14 MLE Error Versus Sphere Coverage 36

Figure 15 LLS Compared to CRLB 39

Figure 16 GDKE Compared to CRLB 43

Figure 17 GDKE Error Ellipse 48

Figure 18 UGDK Error Ellipse 68

Figure 19 Sample Size Dependency of Deviation 69

Figure 20 One hundred samples comparison of MLE (green), UGDK (red), GDKE (blue) 70

Figure 21 UGDK Compared to CRLB 70

Figure 22 Circle with Constrained Data 72

Figure 23 MGDK example 78

Figure 24 Inverse Power Law for Rotation Point Calculation 94

Figure 25 Eric Camper Skeleton 94

Figure 26 Timing of Algorithms 97

Figure 27 Timing Comparison to GDKE 98

xii

Figure 28 File Menu GUI 123

Figure 29 Options Pane GUI 127

Figure 30 Animation Pane GUI 128

Figure 31 Graphs Pane GUI 129

Figure 32 UML Diagram of Articulated Figure 131

 xiii

PREFACE

The research that will be presented in this paper is the culmination of a story. The

five-year journey involves the typical parts of a novel with protagonist, antagonists,

heartaches, and triumphs. The protagonist is, of course, me – the author. The antagonists

in this story were the many hurdles that I stumbled over to finally realize what my actual

goal was for the research. The story of this research is a good example of what it means

for the research topic itself to tell you are going in the wrong direction. Perseverance has

declared a victory in the research only by finally exposing a vital and missing piece of the

puzzle that builds up the topic at hand.

So, what is the topic? The research started out five years ago as an idea that cur-

rent technology for articulated motion analysis and display was much too slow and unre-

alistic. I started the research, albeit naively, by thinking that a combination of physics

and genetic algorithms could infuse a sense of realism and speed into analyzing the mo-

tion. So I sat down and coded up the infrastructure needed to build up this combination.

First, I needed a computer representation of an articulated figure. To keep phys-

ics in the equation, I decided to make each segment of the figure solid. I found that, for

physics related simulations, this is the only way to go since calculations of inertial mo-

ments are fairly simple (cf. Chapter 7.2). A few other authors use this approach for high-

end physical simulations but, for the most part, most use triangulated surfaces for their

“solid” figures. It is usually difficult to calculate moments of inertia from only the sur-

face data. A tetrahedral solid mesh was chosen to simplify building up an arbitrary

shape. With a solid shape, and its mass, the rotational and translational physics are fully

calculable from the Newton-Euler differential equation. As I progressed further in the

 xiv

research, I found it increasingly time-intensive to calculate projected motions based on

solving the second-order differential equation on an arbitrary articulated figure.

This suggested that I pursue an alternative approach. So, what if I relied more on

motion-capture data and infuse only a little bit of physics? I then looked at reading in

and using raw motion-capture data. Little did I know that motion-capture data was ex-

cruciatingly hard to acquire both on your own and on the Internet. The people and com-

panies that did any kind of work with capturing motion data were usually quite willing to

sell it. Only a few free examples were found that were of any use. A file reader was built

from scratch for the most popular format since no one had open source code. I struggled

for a year with reading the quirky data format with the small amount of data I found until

a goldmine was found. Carnegie-Melon University Graphics Laboratory had just started

placing a large cache of raw and analyzed motion-capture data on the Internet through a

government grant. I subsequently downloaded gigabytes of raw binary data for a pleth-

ora of motions captured by the students at this lab. One problem solved – gathering data

to analyze.

Now I set about trying to analyze the raw data so that I may use it to better ana-

lyze the underlying articulated motion. Starting with the simplest issue, I started trying to

display the motion on a 3-D scene. As it turns out, the raw data was very inconsistent in

storing which measurement units it was using. Sometimes it was in meters, sometimes it

was in feet, sometimes it was stored in feet and the format said it was meters. Once you

figure out what scale the data is in, you can display the points on the screen.

 xv

Figure 1 Display of Motion-Capture Data

Now, all I had was a bunch of squirrelly lines on the screen (cf. Figure 1). Clearly, the

lines had to be associated and grouped. Each line was attached (i.e. correlated) to a par-

ticular segment on the articulated figure. This can be done in one of two ways – autocor-

relation and precognition. I chose the latter since autocorrelation is extremely time inten-

sive. Precognition may sound like cheating but nine times out of ten, the user will know

ahead of time which bits of data are associated with which segment on the articulated

figure.

What do I have so far? I have a bunch of lines that each segment can follow in

time. As data shows marker location at each time frame, each segment has some surface

positions pin-pointed in space. In addition, exact marker location on segments usually

were not known or given. That leaves an unsavory taste in your mouth when the segment

can be placed almost anywhere relative to these points. A systematic approach must be

 xvi

thought of that allows the conclusive attachment of the segments to the data. This im-

plies that the data must contain both relative position and orientation of the segment so

the model can be sized and oriented into position. This satisfies an individual segment,

but not the whole articulated figure. For that I needed the rotation points in between the

segments. What this boils down to is that I needed to draw a stick figure based solely on

the motion-capture data. I could then attach whatever shape model I wanted onto the

stick figure. I did a search for existing methods and found a few examples in the litera-

ture (cf. Chapter 8). The most popular was to perform a least-squares fit and a few still

did non-linear fitting of the data. They all had one thing in common – they all assumed

the marker moved on a sphere around the rotation point of the joint. This means that, to

draw a stick figure, I had to solve for the center of a sphere at every joint. A little re-

search showed there were only three major algorithms to solve for the center of a sphere

by data points sitting on the sphere. The most popular was the Maximum-Likelihood Es-

timator (MLE) that solved the problem in a non-linear fashion. This had the undesirable

effect of being excruciatingly slow and sometimes not producing an answer at all. The

next most popular type was linear least-squares solutions that involve fairly slow (but

faster than MLE) pseudo-inverse matrix solutions. This was the preferred method by

most authors concerned with speed. The third type of solution was a small set of ap-

proximations that were closed-form solutions to the best-fit sphere. These formulae were

unpopular and usually used only in the case to start off a non-linear search for the real

answer. They were unpopular because of biases introduced.

I was unsatisfied with any of these solutions found in the existing literature. They

would get me to the answer, but they were too slow or quirky. I decided to sit back and

 xvii

analyze a case study of a particular joint movement. To proceed with analyzing, the raw

(x,y,z) data was loaded into a spreadsheet for the step-by-step analysis to see how the ro-

tation point could be retrieved from the data. A column of distances from an unknown

point (the rotation point) was made for each data point. Then, thinking about it – what

would happen if the unknown point were truly at the center of rotation? Then, the dis-

tances to the data points would all be about the same. What this translates into is that the

standard deviation from the mean of the distances would be minimized. This can be eas-

ily done in Excel with the Solve tool. Thinking about it further, that this is exactly what

the Maximum Likelihood Estimator (MLE) solution is – minimizing the standard devia-

tion of the distance to the center of rotation. I looked carefully at the mathematics to see

if a closed form solution can be found. The MLE does not solve to a closed form. I then

altered the column to be the square of the distance. The Solve tool still got nearly the

same answer as the MLE. I looked at the math for this minimizing and lo and behold, a

closed form solution dropped out on the floor. So the minimum of the standard deviation

of the square of the distance to the center of rotation can be solved with a fairly simple

formula.

I found this new formula easy to use and very fast compared to the other two

techniques. I was all ready to name my new discovery but then I thought it was too good

to be true. I tried desperately to find an author in the existing literature that used this

formula. I could not find a single author that even implied the existence until a month

later. I found an author [119] who had published three months earlier in some obscure

electronics conference (yes 3 months!). His formula was a different arrangement of the

same solution I had developed. So, at least I knew what to call the formula – Generalized

 xviii

Delogne-Kása Estimator (GDKE). Apparently this formula had been used off and on in

many industries since 1972 [56][57] in only its two-dimensional form (i.e. circle). This

new formula can handle any dimensional sphere. The formula had not risen in popularity

because of a certain flaw. In a particular arrangement of data, the estimator would be ex-

pected NOT to be the answer. The flaw would not show itself if the data points were dis-

tributed evenly over the entire sphere. Unfortunately, this ideal case is not too common

in the real world. Therefore, the formula ended up only being useful when the measure-

ment system was extremely accurate – another not so common real world case.

Fine, someone beat me to a fast and flawed formula that solves my problem. Not

good enough for me, so I set out to remove the flaw and retain the speed. The first thing

to do to remove the flaw is to exactly identify it. The original paper from 2004 [119] did

not explain in detail what the flaw was, just that the bias was about the size of the meas-

urement error. As it turns out, the multiplication factor can amplify the bias far beyond

the simple measurement error. It took over two years to work out the exact relationship

of the bias. It involves the probability analysis of multidimensional random variables

multiplied together up to six times. It was slow going since the equation grew rather

large. Keeping track of all of the variables became unwieldy, as even Mathematica

couldn’t handle the math. Finally, the flaw was identified and a systematic equation was

produced that effectively removed the flaw. The results were a simple modification to

the GDKE that made the formula guarantee to converge to the true center and radius as

more raw data was thrown at it. The gap in technology for building a skeleton from mo-

tion capture data was identified and filled. This paper goes into excruciating detail to

prove the capabilities of this new method for skeletal extraction.

 xix

