
Chapter 5 PROPOSED SOLUTION 
The proposed solution to provide a quick method to draw a skeleton from motion 

capture data is presented in this chapter.  The main contribution to the state of the science 

is the thorough analysis of the previously fastest sphere-fitting technique and the subse-

quent improvement of the answer. 

5.1 Unbiased Generalized Delogne-Kása Estimator 
The estimator explained in this chapter is asymptotically unbiased. Asymptoti-

cally unbiased is defined as an inversely proportional relationship with the sample count: 
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! 

E ˆ q ( ) = q
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where q0 is the parameter that the estimator is trying to estimate.  This basically says that 

the estimator is expected to get closer to the true answer if more samples are taken.  From 

the previous discussion in Section 4.1.5, it was shown that the GDKE estimators for cen-

ter and radius do not satisfy this requirement.  Our algorithm uses a simple substitution 

that turns the GDKE into one with a diminishing bias.  It involves the use of an a-priori 

estimate of the measurement error in the samples.  This is not that unreasonable since 

most systems of measurement have some kind of estimate to the measurement error.  

Since the sample covariance matrix C is the only biased term in the equation for the 

GDKE center, this is what will be altered. 

5.1.1 Derivation 
The derivation stems from a simple substitution.  The substitution 

(171) 
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has the convenient property of 

(172) 
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E " C ( ) = C
0

+ #$ ˆ #  

If the true measurement covariance is the same as the estimated measurement covariance 

then 

(173) 

! 

E " C ( ) = C
0
 

The covariance of the new sample covariance matrix is the same as the old one since we 

are just adding a constant to the variable. 

(174) 
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Cov " C ij , " C mn( ) = Cov Cij ,Cmn( ) 

if the error estimate is the same as the truth error covariance. 

Inserting Equation (171) will produce the following equations for the solution of a hyper-

sphere 
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The radius estimator can be similarly compensated for its bias by 
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where Tr(*) means the trace of the matrix. 

So where does this estimate of the measurement covariance come from?  An un-

biased estimator for the trace of the measurement covariance is presented below which 

relies on known information about the sphere being measured. 
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During calibration (i.e. finding the measurement error), a known sphere with ra-

dius and center can be measured, providing the estimate of the trace of the measurement 

covariance. 

5.1.2 Statistical Properties 
Now it is desirable to find the statistical properties of the new estimators and 

compare them to the old GDKE.  If the estimate is equal to the true sample covariance 

then these new equations have the following statistical properties.  The altered covariance 

is expanded by the Leontief inverse as 
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Using this expansion, the altered center estimator is 
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The expectation of the altered center estimator is 
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Using the same analysis for the GDKE in the previous section, the new estimator has an 

expectation of 
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Then, the bias of the new estimator is exposed as 
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The covariance of the new center estimator, with similar analysis, is 

(183) 
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The expectation of the square of the new radius estimator is 
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The variance of the radius estimator comes to 
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The expectation of the measurement covariance estimator is simply 

(186) 
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The variance of the measurement covariance estimator is found from the expectation of 

the square.  Starting from the square 
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The expectation of this square is 
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This expectation turns the variance into 
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(189) 
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If the measurement covariance is expected to be diagonal (

! 

" =# 2
I) then the variance of 

the variance estimator is 
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where D is the dimension of the measurement.  A typical use of these new estimators can 

be displayed using Mathematica, with exactly the same data as was displayed for the 

GDKE in Figure 17. 

 

Figure 18 UGDK Error Ellipse 

As can be seen in Figure 18, the true center is within the error ellipsoid.  This data con-

tains 100 points generated with a diagonal measurement covariance with all diagonals 
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equal to 0.052.  The Leontief condition (

! 

" <1) is satisfied with the spectral radius in ques-

tion equal to 0.557238. 

These equations show that there still is a bias, but it is asymptotically unbiased.  Figure 

19 shows a Monte-Carlo run that explicitly shows the 1/√N dependency.  The error in the 

estimate is compared with how many points were analyzed for a particular joint in some 

motion capture data. 
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Figure 19 Sample Size Dependency of Deviation 

An example analysis using MLE, UGDK and GDKE is presented in Figure 20.  The fig-

ure clearly shows the improvement over the GDKE.  The figure shows the bias is re-

moved using the UGDK. 
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Figure 20 One hundred samples comparison of MLE (green), UGDK (red), GDKE (blue) 

There is a case where this new method fails to bring an improvement.  The case is 

not very common and should not be of concern.  The following graph shows the problem.  

 

Figure 21 UGDK Compared to CRLB 

There is no concern here since all of the methods have troubles in this area.  This 

situation is a bit impractical, as no one wants a system whose measurement error is actu-

ally bigger than the item being measured? 
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That brings up the point - when should a measurement system be trusted?  A cur-

sory glance would say 

(191) 
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" < r
0
 

is when the system should be accepted.  Upon further analysis, the answer comes from 

the world of economics [101] - the Leontief inverse. 
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This series expansion is convergent when the spectral radius (i.e. largest absolute eigen-

value) is 
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The matrix of interest in our application is the sample covariance matrix C.  The 

matrix can be expanded two ways.  The first way is of practical importance and that is 

when 
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which allows us to expand the inverse of the expectation of the covariance matrix into 
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If the spectral radius is greater than one, then the expansion turns into 
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So what is this magical turning point?  If the measurement covariance Σ is diago-

nal with equal variances in all directions (i.e. Σ=σ2I) then the spectral radius can be 

evaluated as 
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(197) 
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The where 
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"
min

 is the smallest eigenvalue of the sample covariance matrix C0.  

This is still not very useful because eigenvalues are mathematically intensive to solve.  

Let us set up a scenario to produce an answer for the limiting case of too many data 

points.  We want to develop an equation for the eigenvalues when the hypersphere is par-

tially covered by sample points. 

 

Figure 22 Circle with Constrained Data 

First is the case for a two-dimensional hypersphere (i.e. circle).  The points are 

confined to an angular distance θ from the y-axis.  Each point on the circle can be ex-

pressed as 
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where a is the angle from the y-axis.  The mean has an asymptote as the number of sam-

ples increase. 
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where 
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This gives us the answer of the asymptotic average being on the y-axis at 
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Similarly, the asymptotic covariance can be found as the integral 
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This matrix happens to be diagonal containing all of the eigenvalues which turn out to be 
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The three-dimensional hypersphere (i.e. sphere) is similarly evaluated only this 

time, the solid angle must be integrated.  The points are confined to an angular distance θ 

from the z-axis.    The point on the sphere is 
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The asymptotic limit of the average point is then 
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The asymptotic limit of the average lies on the z-axis at 
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Similarly, the asymptotic covariance is evaluated as 
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The diagonals of this matrix have two equal eigenvalues (the largest) and one smallest 

value. 
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Following this answer, a good measurement condition for the sphere is when 
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whereas the best condition to get a good answer for a circle is when 
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5.2 Cylindrical Joint Solution 
Special considerations are needed when a cylindrical joint is suspected.  In this 

case, a point on the upper segment will always draw a circular arc thereby remaining pla-

nar.  Any method for finding a sphere where only a circle exists will fail.  The planar 

condition can be discovered when the sample covariance matrix C becomes near singu-

lar: 

(214) 
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C " 0  

This occurs when the rank of C is less than the number of dimensions.  In es-

sence, one dimension must be removed from the sphere equation to get the circle estima-

tion.  The sample covariance matrix can be rewritten using its eigensystem values. 
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where λi are the eigenvalues and ν i are the corresponding unit eigenvectors.  The inverse 

of the matrix can be similarly expanded with the same eigensystem as 
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The GDKE solution to the circle in 3D space can be calculated two ways.  The 

first way does not involve inverting small values.  This is achieved by removing the ei-

genvalues that are below a certain limit.  This reduced matrix can then be used in the 

GDKE formula producing 
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This new center is the best-fit estimate of a circle for the data.  This equation is 

successful even if the sample covariance is exactly singular.  This formula can be used to 

calculate the center and radius of curvature for curvilinear paths in any dimensional 

space.  For the rotation point of a joint, it has a flaw.  A cylindrical joint rotates about an 

axis.  The center that is calculated lies on this axis but might not be the volumetric center 

of the cylinder.  To overcome this, two markers on either side of the center can be aver-

aged. 

5.3 Multiple Marker Solution 
For multiple markers going around the same center of rotation, another formula 

can be achieved by the same analysis of least squares.  This technique is good to use 

when more than one marker is available.  It has the ability to average out errors when one 

marker is too close to the rotation point or has other systematic problems.  The gradient 

of the sum of variances ( cf. Equation (85) ) is 
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where M is the number of markers.  Setting this to zero will provide a solution for multi-

ple markers: 

(220) 

! 

ˆ c m = Cp

p=1

M

"
# 

$ 
% % 

& 

' 
( ( 

)1

Cp x p + 1

2
Sp

p=1

M

"  



 78 

  

and the individual radius becomes 
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where M is the number of markers and the subscript p indicates values that utilize the 

single marker’s positions. 

The same unbiased analysis applies to this multiple marker version and results in 
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The matrix that is to be inversed here is still a positive-definite matrix since positive-

definite matrices added together still produce a positive-definite matrix.  This allows for 

the speedier Cholesky decomposition just like before.  The singular values can be ex-

cluded just like in Chapter 5.2.  An example of the MGDK method is presented in Figure 

23. 
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Figure 23 MGDK example 

This example shows what happens when the individual circles are compared to 

that when combined in the MGDK.  The outer circle solution is drawn in red; the inner 

circle solution is drawn in blue, and the MGDK solution is drawn in green.  The example 

shows a dramatic improvement over both of the individual circle calculations. 

5.4 Incrementally Improved Solution 
A more refined answer can be achieved when using a incremental improvement 

formula.  The idea here is a group of samples are collected and an answer is retrieved 
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from the GDKE or UGDK formulae.  Then a new sample is added, refining the previous 

answer for the center.  Starting off simple, the mean has a recursion of 
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One definition will make the following equations smaller: 
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The sample covariance matrix has a recurrence relationship of 
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The unbiased improvement of the sample covariance matrix is 
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The inverse of the covariance matrix also has a recurrence - without doing an additional 

matrix inverse 
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Putting these together produces a recurrence relationship for the center of the hypersphere 
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The cost of the incremental improvement to produce the new center and radius is 

measured in the FLOP count: 

(233) 
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For a sphere, the FLOPs are 123 for every new point.  When compared to the FLOPs for 

the GDKE method, this incremental approach is about four times slower.  This makes the 

incremental approach a last resort when a few extra points need to be added to a previ-

ously calculated center and radius.  This new estimator has the distinct advantage of con-

stant memory requirements no matter how many points are analyzed. 


