
5.5 Hierarchical Skeleton Solution 

5.5.1 Arbitrary Figure 
An arbitrary figure can be drawn at each time frame if certain criteria are met for 

the data at that time frame.  An arbitrary figure is made up of linked segments stored in a 

single parent-multiple children tree structure.  The drawing of the figure consists of con-

necting the rotation points from parent to children.  Each line drawn would then be fixed 

inside the segment.  The process would continue from the root segment to the leaf seg-

ments.  The leaf segments would have to just draw lines to the existing data points on that 

segment. 

Starting with the original data, each assigned to their corresponding segment (xs i), 

the point must be transformed to the coordinate system fixed to the parent of the segment 

s. 

(234) 

! 

ysi =Ms"1

T
xsi " ps"1( )  

These new vectors (ys i) are what are passed to the spherical center estimator for-

mula.  This formula remains valid and allows the process to continue to the children only 

if both p and M can be determined for the parent.  This amounts to being able to con-

struct three axes and a point that are fixed on a segment.  There are three cases that are 

acceptable and are the criteria for being able to draw the entire skeleton at a particular 

time frame. 
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5.5.1.1 Case 1 – Three or more points 
This is the easiest case to determine the segment’s coordinate system.  First, pick 

three of the available points, (xs 1, xs 2, xs 3).  One of the points must be chosen as the center 

of the coordinate system 

(235) 

! 

ps = xs1 

The three coordinate axes must then be constructed in a mutually perpendicular 

fashion (right-handed coordinate system).  Two points can determine the first direction: 

(236) 

! 

ˆ x =
x

s2
" x

s1

x
s2
" x

s1

 

A second direction can be determined from the third point and the first direction: 

(237) 

! 

ˆ z =
x

s3
" ˆ x 

x
s3
" ˆ x 

 

The third direction can be determined from the previous two directions: 

(238) 

! 

ˆ y = ˆ z " ˆ x  

The floating point operations involved in calculating one coordinate system is 

(239) 

! 

FLOP
3

= 39 

Drawing a skeleton using solely this case of markers involves calculating the centers of 

rotation for all non-leaf segments in the hierarchical figure. 

(240) 

! 

FLOPs = N
S
39 + N

S
" N

L( )18  

where NS is the number of segments and NL is the number of leaf segments.  A typical 

human figure with fourteen segments and five leaf segments produces 
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(241) 

! 

FLOPs = 708 

 

5.5.1.2 Case 2 – Two points 
This relies on some previously calculated information to determine the coordinate 

system.  Three points are needed and some point must be divined that is fixed on the 

segment.  Luckily, the common rotation point between the segment and its parent has 

been previously calculated because of the tree traversal.  The three available points are 

now (xs 1, xs 2, cs).  One of these points must be chosen as the center of the coordinate sys-

tem 

(242) 

! 

ps = xs1 

The center of rotation for this segment is determined from the parent’s coordinate system 

with 

(243) 

! 

cs = ps"1
+Ms"1

˜ c s 

where 

! 

˜ c 
s
 is a constant vector in the parent’s coordinate system pointing at the child’s ro-

tation point.  The three coordinate axes must then be constructed in a mutually perpen-

dicular fashion (right-handed coordinate system).  Two points can determine the first di-

rection: 

(244) 

! 

ˆ x =
x

s2
" x

s1

x
s2
" x

s1

 

A second direction can be determined from the third point and the first direction: 

(245) 

! 

ˆ z =
c

s
" ˆ x 

c
s
" ˆ x 
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The third direction can be determined from the previous two directions: 

(246) 

! 

ˆ y = ˆ z " ˆ x  

The floating point operations involved in calculating one coordinate system is 

(247) 

! 

FLOP
2

= 57 +FLOP
P

 

where FLOPP is the FLOPs needed to calculate the coordinate matrix M of the parent.  

Drawing a skeleton using solely this case of markers involves calculating the centers of 

rotation for all non-leaf segments in the hierarchical figure. 

(248) 

! 

FLOPs = N
S
39 + N

S
" N

L
+ N

2( )18  

where N2 is the number of segments with two data points with a parent with three. 

5.5.1.3 Case 3 – One Point 
This is the easiest case to determine the segment’s coordinate system.  First, pick 

three of the available points, (xs 1, cs).  One of the points must be chosen as the center of 

the coordinate system 

(249) 

! 

ps = xs1 

The three coordinate axes must then be constructed in a mutually perpendicular 

fashion (right-handed coordinate system).  Two points can determine the first direction: 

(250) 

! 

ˆ x =
c

s
" x

s1

c
s
" x

s1

 

(251) 

! 

cs = ps"1
+Ms"1

˜ c s 

A second direction can be determined from the null vector previously calculated: 
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(252) 

! 

ˆ z = v
s
 

(253) 

! 

v
s
=M

s"1
˜ v 

s
 

The third direction can be determined from the previous two directions: 

(254) 

! 

ˆ y = ˆ z " ˆ x  

The rotation matrix Ms can now be constructed by placing the three coordinate axes as 

columns in the matrix. 

(255) 

! 

Ms =

ˆ x x ˆ y x ˆ z x

ˆ x y ˆ y y ˆ z y

ˆ x z ˆ y z ˆ z z

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 

These three cases will allow the reconstruction of an entire skeleton as long as the 

root segment has at least three markers (Case 1).  The recursive nature of the other cases 

precludes them from the root. 

The floating point operations involved in calculating one coordinate system is 

(256) 

! 

FLOP
1

= 54 +FLOP
P

 

where FLOPP is the FLOPs needed to calculate the coordinate matrix M of the parent.  

Drawing a skeleton using solely this case of markers involves calculating the centers of 

rotation for all non-leaf segments in the hierarchical figure. 

(257) 

! 

FLOPs = N
S
39 + N

S
" N

L
+ N

1( )18 

where N1 is the number of segments with one data points with a parent with three. 
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5.5.2 Predefined Marker Association 
During motion capture, markers are placed over the body and tracked by one of 

several methods available.  The animator of the tracked data either has to have previous 

knowledge of the marker’s associated segment or come up with an algorithm to do the 

association.  For those with no a-priori knowledge, the algorithm can get time consuming.  

Some authors [60] use this method by classifying markers together that don’t move rela-

tive to each other.  The grouping methods work when there is more than one marker per 

segment and the hierarchy of segments is well defined in the data.  These methods are 

very slow though. 

In order to figure out which markers are associated with which segments, the 

names of the markers within the data were analyzed for normal naming conventions.  The 

association was then hand written to a text file that is read after the data is read.  Naming 

conventions are fairly straightforward for most sets of data.  Examples of normal naming 

conventions and their segments can be found in Table 1. 

Table 1 Marker Associations 

Marker Name Associated Segment Location on Segment 

RFHD Head anterior right top 

LFHD Head anterior left top 

RSHO Chest mid right top 

RFTShould Chest anterior right top 



 88 

  

RRRShould Chest posterior right top 

LSHO Chest mid left top 

LFTShould Chest anterior left top 

LRRShould Chest posterior left top 

CLAV Chest anterior mid top 

RUPA Upper Right Arm mid right 

LUPA Upper Left Arm mid left 

RELB Upper Right Arm mid right bottom 

LELB Upper Left Arm mid left bottom 

RARM Lower Right Arm mid right 

LARM Lower Left Arm mid left 

RWRB Lower Right Arm posterior right top 

RWRA Lower Right Arm anterior right bottom 

LWRB Lower Left Arm posterior left top 

LWRA Lower Left Arm anterior left bottom 
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RFIN Right Hand mid right anterior 

LFIN Left Hand mid left posterior 

STRN Chest anterior mid bottom 

RTHI Upper Right Leg mid right top 

RGTR Upper Right Leg mid right top 

LTHI Upper Left Leg mid left 

LGTR Upper Left Leg mid left top 

RKNE Upper Right Leg mid right bottom 

LKNE Upper Left Leg mid left bottom 

RLEG Lower Right Leg mid right top 

RTIB Lower Right Leg mid right 

LLEG Lower Left Leg mid left 

LTIB Lower Left Leg mid left 

RANK Lower Right Leg mid right bottom 

LANK Lower Left Leg mid left bottom 
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RMT5 Right Foot anterior right top 

LMT5 Left Foot anterior left top 

RTOE Right Foot anterior left top 

LTOE Left Foot anterior right top 

RHEE Right Foot posterior mid top 

LHEE Left Foot posterior mid top 

RBHD Head posterior mid right 

LBHD Head posterior mid left 

C7 Chest posterior mid top 

R10 Chest posterior right top 

RBAC Chest posterior right top 

T10 Chest posterior mid 

RFWT Hips anterior right top 

LFWT Hips anterior left top 

RBWT Hips posterior mid top 
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LBWT Hips posterior mid top 

RPelvis Hips posterior right mid 

 

This is a fairly complete list of abbreviations but there are many operators and 

systems that use either more extension collections of markers or don’t even follow the 

naming convention.  A particular association for a dataset can be initially guessed and 

then with trial-and-error, the association can be improved.  This thesis has created asso-

ciation files for each dataset that was analyzed.  The files are simple texts files that relate 

the name given to the marker in the dataset and the “standard” name as given in Table 1.  

The format is explained in Chapter 7.3.1. 

Chapter 6 RESULTS 

6.1 Case Study of CMU Data 60-08 
The CMU Graphics Lab produced a one minute long motion capture data-set of a 

salsa dance in 60-08.  The data file contains 3421 time slices for 41 markers on two fig-

ures.  This case study will concentrate on analyzing the performance of the UGDK in de-

termining the rotation points in the female subject.  Four passes on the data will collect 

rotation point calculations, each pass randomly removing from 0 to 99% of the time 

frames in increments of 1%.  400 calculated rotation points were collected for each seg-

ment modeled.  The calculated constants are the relative rotation points as referenced in 

each segment’s parent’s coordinate system.  The 400 calculations were averaged and the 
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standard deviations were calculated as well.  These values are presented in the tables be-

low. 

Table 2 Table of Means of Rotation Points 

Rotation Point Mean x (m) Mean y (m) Mean z (m) 

Waist 0.13324824 -0.063898286 0.130439024 

Neck -0.077279042 -0.003811468 -0.010261576 

Left Ankle 0.437510805 -0.032639212 0.040255145 

Left Wrist 0.110981565 -0.075779216 0.014702334 

Left Elbow 0.283393628 -0.060979142 0.012893845 

Left Knee -0.244076283 -0.07952933 0.009066338 

Right Elbow 0.253621623 -0.146993545 -0.001828167 

Right Knee 0.188950453 -0.080176833 -0.003163181 

Right Ankle 0.241527156 -0.065156728 0.006255086 

Right Wrist 0.211446183 -0.069707086 -0.019905695 

Left Shoulder 0.01607591 -0.069950812 -0.119403856 

Left Hip 0.003814737 -0.019484536 -0.198284078 
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Right Shoulder -0.00219989 -0.069832041 0.132929455 

Right Hip 0.263017638 -0.022520684 -0.202218743 

 

Table 3 Table of Standard Deviations of Rotation Points 

Rotation Point σx σy σz 

Waist 0.003896258 0.004605284 0.014676666 

Neck 0.001768695 0.001355136 0.001206322 

Left Ankle 0.01981794 0.011053845 0.011233588 

Left Wrist 0.002071725 0.002539415 0.000947775 

Left Elbow 0.015518996 0.004050952 0.00398332 

Left Knee 0.011752322 0.002762332 0.003553895 

Right Elbow 0.017223326 0.00815392 0.004313482 

Right Knee 0.016813465 0.003744518 0.003104466 

Right Ankle 0.129159355 0.034143233 0.020772927 

Right Wrist 0.00163169 0.000935295 0.000834657 

Left Shoulder 0.001960198 0.000852649 0.00314934 
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Left Hip 0.001577703 0.001635193 0.004697627 

Right Shoulder 0.000891381 0.00158762 0.003755364 

Right Hip 0.001447724 0.00128305 0.004635324 

 

 

Most of the standard deviations are less than one centimeter, but there are some 

significant outliers like the right ankle.  Further analysis of the calculated points for the 

ankles and elbows show that the four runs produced two answer due to different orienta-

tions of the parent’s reference frame.  Therefore the standard deviation presented above 

for the ankles and elbows are erroneously calculating the deviation from the average of 

two distinct means.  It is more appropriate to calculate the standard deviation from a sin-

gle mean.  When these outliers are removed from the calculation of the deviation, a very 

informative graph can be produced below.  Every calculation for every segment is pre-

sented below as a deviation from the single mean rotation point versus the number of 

sample. 
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Deviation From Mean Rotation Point
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Figure 24 Inverse Power Law for Rotation Point Calculation 

As can be readily seen from the above graph, a statistically significant amount of 

calculations are within one centimeter of accuracy when analyzing more than about 200 

samples.  The accuracy gets better on average with a power law close to 1/√N. 

6.2 Case Study of Eric Camper Data 
The motion capture data in the ericcamper.c3d was analyzed to produce a skele-

ton.  The results of the drawing produced favorable results due to the range of motion 

(ROM) involved in the exercise recorded.  The subject did various martial arts maneuvers 

that moved every joint involved in drawing.  One time frame is presented in the following 

figure.  Although this is a purely qualitative analysis, the picture shows what appears to 

be a natural pose for all joints during a karate exercise. 
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Figure 25 Eric Camper Skeleton 

6.3 Comparison 
The following table provides a succinct view of all of the methods studied in this 

thesis.  It provides the positive and negative aspects of the methods.  This table makes it 

easier to choose which solution is right for their particular situation. 

 

 

Table 4 Comparison of Center Estimators 

Method Advantages Disadvantages 

MLE accepted theory of best solution slow, initial guess, may not converge 
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LLS semi fast O(236N), no initial guess loss of significant figures 

GDKE fast O(26N), no initial guess biased O(σ) 

UGDK* fast O(26N), no initial guess, asymp-

totically unbiased 

slightly biased O(σ/√N) 

SGDK* removes singularities matrices slower – need eigenvalues 

MGDK* handles multiple markers, averages 

out errors 

slightly biased O(σ/√N) 

IGDK* space O(1), time O(123N) uses GDK first 

* new solutions developed in this thesis 

6.4 Speed 
A Monte-Carlo experiment was set up to determine the speed of the various 

sphere-fit algorithms.  Up to a million samples were chosen on a sphere with varying 

measurement error, confinement angle, sphere center and sphere radius.  The measure-

ment error varied from 1x10-11 to 1x1012.  The confinement angle varied from 0 to 180°.  

The sphere center varied as much as 2 around the origin.  The radius varied 0 to 37.  The 

linear algebra algorithms were all implemented from well-accepted implementations pre-

sented in Numerical Recipes in C [94].  The code was compiled optimized for a PowerPC 
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G4 processor and run on a 1GHz Apple PowerBook 12”.  The next graph presents the 

timing for the four algorithms. 

 

Figure 26 Timing of Algorithms 

The previous graph shows that all of these algorithms are linearly dependent on 

sample count ( i.e. O(N) ).  It further shows the MLE as messier with two distinct multi-

plication factors to this dependency.  More information can be retrieved if the times are 

compared to the GDKE’s time.  The next graph shows this ratio compared to the meas-

urement error. 
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Figure 27 Timing Comparison to GDKE 

As can be seen, the GDKE is always faster.  The GDKE is 2.17 times faster than 

IGDK on average.  The GDKE is 11.05 times faster than the LLS method and about 80 

times faster than the MLE when the measurement error is less than one.  The FLOP count 

predicts this closely with LLS = 236/26 = 9.07 and IGDK = 123/26 = 4.73.  The differ-

ences between the FLOP count and experiment can be accounted for in the hardware and 

software overhead that FLOP count never accounts for. 

6.5 Conclusion 
This five year research effort into trying to speed up motion capture animation re-

sulted in the discovery of the vital low-level hole that needed filling.  That hole is the 

speedy calculations of rotation points directly from motion capture data.  This thesis ex-

plains the fastest known general method for calculating these rotation points and can be 
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as much as ten times faster than the next fastest method.  An international community of 

computer scientists has accepted the initial results of this research earlier this year as a 

full paper [63].  This thesis demonstrates the mathematics, probabilities, and implementa-

tions for this new method for determining the center of a hypersphere.  The UGDK 

method has further impact in a vast collection of fields as diverse as character recognition 

to nuclear physics where an algorithm is needed for the speedy recovery of the center of a 

circle or sphere.  The UGDK is expected to play a vital role in the process of determining 

a skeleton from motion capture data.  The MGDK adds robustness to the equations allow-

ing to use every bit of available data.  The IGDK further has the application of being an 

ideal algorithm to burn into a silicon chip whose memory requirements are constrained. 

6.6 Important Contributions 
First and foremost, the best contribution to the science for this dissertation is the 

fastest, asymptotically unbiased estimator of a hypersphere 
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These made it possible for a closed form solution of a skeleton from generic, noisy mo-

tion capture data.  Understanding when the best measurement conditions are for reducing 

the risks of measurements is important.  This paper presents an easy to measure limit to 
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strive for when trying to calculate the center of a sphere with partial coverage.  The rela-

tionship 
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must be satisfied in order to achieve good results using our algorithm. 

Another important contribution is the full analysis of the Cramér-Rao Lower 

Bound for the confined points on a hypersphere.  The circle CRLB is 
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and the spherical CRLB is 
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These covariances of the estimators allow us to determine the best possible error 

in any estimator for the sphere. 

The contributions of this thesis cover every aspect of generating arbitrary skele-

tons from motion capture data in a speedy fashion without compromising accuracy. 
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6.7 Further Research 
The UGDK estimators are an improvement on existing science but they are 

strictly dependent on a-priori knowledge of the measurement error.  It has been shown 

that the measurement error trace can itself be estimated but not the whole measurement 

covariance matrix.  An estimator for the whole matrix would be most ideal but was not 

found in the course of this study.  In addition, the statistical properties were not explored 

in this paper when the points do not have the same measurement covariance.  This will 

surely introduce an additional error or bias in the estimators’ answers. 


