

Rotation Points From

Motion Capture Data Using a Closed Form Solution

by

JONATHAN KIPLING KNIGHT

M.A. Applied Mathematics, Cal. State Fullerton, 1995

B.S. Physics, Cal Poly, San Luis Obispo, 1987

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2008

ii

Acknowledgements

First and foremost I would like to acknowledge my wife Kiki for her patience dur-

ing this research. I would also like to thank Gene Johnson for his support during the ups

and downs of my life during this major event in my life. He kept telling me to continue.

I would also like to thank my advisor Dr. Semwal for allowing me the freedom and guid-

ance to pursue the ideas laid down in this paper.

© Copyright by Jonathan Kipling Knight 2007-2008, All Rights Reserved

iii

This thesis for the Philosophical Doctor degree by

Jonathan Kipling Knight

has been approved for the

Department of Computer Science

by

Sudhanshu Kumar Semwal, Chair

Robert Carlson

C. Edward Chow

Jugal Kalita

Charles M. Shub

 Date

iv

Knight, Jonathan Kipling (Ph.D., Computer Science)

Rotation Points from Motion Capture Data Using a Closed Form Solution

Thesis directed by Professor Sudhanshu Kumar Semwal

Four new closed-form methods are present to find rotation points of a skeleton

from motion capture data. A generic skeleton can be directly extracted from noisy data

with no previous knowledge of skeleton measurements. The new methods are ten times

faster than the next fastest and a hundred times faster than the most widely accepted

method. Two phases are used to produce an accurate skeleton of the captured data. The

first phase, fitting the skeleton, is robust even with noisy motion capture data. The for-

mulae use an asymptotically unbiased version of the Generalized Delogne-Kása (GDKE)

Hyperspherical Estimation (first estimator: UGDK). The second estimator takes advan-

tage of multiple markers located at different distances from the rotation point (MGDK)

thereby increasing accuracy. The third estimator removes singularities to allow for cy-

lindrical joint motion (SGDK). The fourth estimator incrementally improves an answer

and has advantages of constant memory requirements suitable for firmware applications

(IGDK). The UGDK produces the answer faster than any previous algorithm and with

the same efficiency with respect to the Cramér-Rao Lower Bound for fitting spheres and

circles. The UGDK method significantly reduces the amount of work needed for calcu-

lating rotation points by only requiring 26N flops for each joint. The next fastest method,

Linear Least-Squares requires 236N flops. In-depth statistical analysis shows the UGDK

method converges to the actual rotation point with an error of O(σ/√N) improving on the

GDKE’s biased answer of O(σ). The second phase is a real-time algorithm to draw the

v

skeleton at each time frame with as little as one point on a segment. This speedy method,

on the order of the number of segments, aids the realism of motion data animation by al-

lowing for the subtle nuances of each time frame to be displayed. Flexibility of motion is

displayed in detail as the figure follows the captured motion more closely. With the re-

duced time complexity, multiple figures, even crowds can be animated. In addition, cal-

culations can be reused for the same actor and marker-set allowing different data sets to

be blended. The main contributions in this dissertation are the new unbiased center for-

mulae; the full statistical analysis of this new formula; and the analysis of when the best

measurement conditions are to initiate the formula. The dissertation further establishes

the application of these new formulae to motion capture to produce a real-time method of

drawing skeletons of arbitrary articulated figures.

vi

CONTENTS

PREFACE xiii

Chapter 1 INTRODUCTION 1

1.1 Articulated Figure Animation 4

1.2 Motion Capture Systems 7

1.3 Symbols and Conventions 9

Chapter 2 STATEMENT OF THE PROBLEM 11

2.1 Why are skeleton calculations required? 11

2.2 Problems encountered 12

2.2.1 Inaccuracies 12

2.2.2 Non-standard Files 13

2.2.3 Missing Data 13

Chapter 3 SURVEY 14

3.1 Skeleton Extraction 14

3.2 Sphere Estimates 14

3.3 Inverse Kinematics 17

3.4 Kinetics 18

Chapter 4 PREVIOUS SOLUTIONS 19

4.1 Spherical Curve-fitting Approaches 19

4.1.1 Monte-Carlo Experiment 19

4.1.2 Cramér-Rao Lower Bound 23

vii

4.1.3 Non-linear Maximum-Likelihood Estimator 34

4.1.4 Linear Least-Squares Solution 37

4.1.5 Generalized Delogne-Kása Estimator 40

4.2 Skeleton Approaches 62

Chapter 5 PROPOSED SOLUTION 64

5.1 Unbiased Generalized Delogne-Kása Estimator 64

5.1.1 Derivation 64

5.1.2 Statistical Properties 66

5.2 Cylindrical Joint Solution 75

5.3 Multiple Marker Solution 76

5.4 Incrementally Improved Solution 78

5.5 Hierarchical Skeleton Solution 81

5.5.1 Arbitrary Figure 81

5.5.2 Predefined Marker Association 86

Chapter 6 RESULTS 90

6.1 Case Study of CMU Data 60-08 90

6.2 Case Study of Eric Camper Data 94

6.3 Comparison 95

6.4 Speed 96

6.5 Conclusion 98

6.6 Important Contributions 99

6.7 Further Research 101

viii

Chapter 7 APPENDIX 102

7.1 Mathematical Proofs 102

7.1.1 Moments of Multivariate Normal 102

7.1.2 Positive-Semidefinite Sample Covariance 110

7.2 Inertial Properties of a Tetrahedron 111

7.3 File Formats 114

7.3.1 Marker Association Format 114

7.3.2 Articulated Tetrahedral Model Format 115

7.3.3 MESH Format 117

7.3.4 PLY Format 121

7.3.5 C3D Format 121

7.4 User’s Guide to Program 121

7.4.1 Menu 122

7.4.2 Options Pane 126

7.4.3 Animation Pane 127

7.4.4 Graphs Pane 129

7.5 Programmer’s Reference 130

7.5.1 Class Diagrams 130

7.6 C++ Implementations 132

7.6.1 Unbiased Generalized Delogne-Kása Method 132

7.6.2 Incrementally Improved Generalized Delogne-Kása 133

7.6.3 Collecting the Raw Data for Rotation Point 134

7.6.4 Rotation Point Calculation of Segment 136

7.6.5 Constants Calculation of Hierarchical Articulated Data 137

7.6.6 Calculation of fixed axes of data 139

7.6.7 Drawing Rotation Points with Constants of Motion 140

ix

Chapter 8 BIBLIOGRAPHY 143

Chapter 9 INDEX 151

x

TABLES

Table 1 Marker Associations 86

Table 2 Table of Means of Rotation Points 90

Table 3 Table of Standard Deviations of Rotation Points 91

Table 4 Comparison of Center Estimators 95

Table 5 Primitives in MESH Format 117

Table 6 Preservation Adjectives in MESH Format 118

Table 7 Optional Adjectives of Primitives in MESH Format 119

xi

FIGURES

Figure 1 Display of Motion-Capture Data xv

Figure 2 Markers on Actor 2

Figure 3 Human Articulated Shoulder 5

Figure 4 Human Elbow 6

Figure 5 Video Capture Analysis Software (SIMI°MotionCapture 3D)1 8

Figure 6 Vicon BodyBuilder Software 9

Figure 7 Constrained Measurements on Circle 20

Figure 8 Relative Error Comparison 22

Figure 9 Eigenvectors of CRLB for Circle 28

Figure 10 Eigenvalues of CRLB for Circle 29

Figure 11 Eigenvectors of CRLB for Sphere 32

Figure 12 Eigenvalues of CRLB for Sphere 33

Figure 13 MLE Compared to CRLB 36

Figure 14 MLE Error Versus Sphere Coverage 36

Figure 15 LLS Compared to CRLB 39

Figure 16 GDKE Compared to CRLB 43

Figure 17 GDKE Error Ellipse 48

Figure 18 UGDK Error Ellipse 68

Figure 19 Sample Size Dependency of Deviation 69

Figure 20 One hundred samples comparison of MLE (green), UGDK (red), GDKE (blue) 70

Figure 21 UGDK Compared to CRLB 70

Figure 22 Circle with Constrained Data 72

Figure 23 MGDK example 78

Figure 24 Inverse Power Law for Rotation Point Calculation 94

Figure 25 Eric Camper Skeleton 94

Figure 26 Timing of Algorithms 97

Figure 27 Timing Comparison to GDKE 98

xii

Figure 28 File Menu GUI 123

Figure 29 Options Pane GUI 127

Figure 30 Animation Pane GUI 128

Figure 31 Graphs Pane GUI 129

Figure 32 UML Diagram of Articulated Figure 131

 xiii

PREFACE

The research that will be presented in this paper is the culmination of a story. The

five-year journey involves the typical parts of a novel with protagonist, antagonists,

heartaches, and triumphs. The protagonist is, of course, me – the author. The antagonists

in this story were the many hurdles that I stumbled over to finally realize what my actual

goal was for the research. The story of this research is a good example of what it means

for the research topic itself to tell you are going in the wrong direction. Perseverance has

declared a victory in the research only by finally exposing a vital and missing piece of the

puzzle that builds up the topic at hand.

So, what is the topic? The research started out five years ago as an idea that cur-

rent technology for articulated motion analysis and display was much too slow and unre-

alistic. I started the research, albeit naively, by thinking that a combination of physics

and genetic algorithms could infuse a sense of realism and speed into analyzing the mo-

tion. So I sat down and coded up the infrastructure needed to build up this combination.

First, I needed a computer representation of an articulated figure. To keep phys-

ics in the equation, I decided to make each segment of the figure solid. I found that, for

physics related simulations, this is the only way to go since calculations of inertial mo-

ments are fairly simple (cf. Chapter 7.2). A few other authors use this approach for high-

end physical simulations but, for the most part, most use triangulated surfaces for their

“solid” figures. It is usually difficult to calculate moments of inertia from only the sur-

face data. A tetrahedral solid mesh was chosen to simplify building up an arbitrary

shape. With a solid shape, and its mass, the rotational and translational physics are fully

calculable from the Newton-Euler differential equation. As I progressed further in the

 xiv

research, I found it increasingly time-intensive to calculate projected motions based on

solving the second-order differential equation on an arbitrary articulated figure.

This suggested that I pursue an alternative approach. So, what if I relied more on

motion-capture data and infuse only a little bit of physics? I then looked at reading in

and using raw motion-capture data. Little did I know that motion-capture data was ex-

cruciatingly hard to acquire both on your own and on the Internet. The people and com-

panies that did any kind of work with capturing motion data were usually quite willing to

sell it. Only a few free examples were found that were of any use. A file reader was built

from scratch for the most popular format since no one had open source code. I struggled

for a year with reading the quirky data format with the small amount of data I found until

a goldmine was found. Carnegie-Melon University Graphics Laboratory had just started

placing a large cache of raw and analyzed motion-capture data on the Internet through a

government grant. I subsequently downloaded gigabytes of raw binary data for a pleth-

ora of motions captured by the students at this lab. One problem solved – gathering data

to analyze.

Now I set about trying to analyze the raw data so that I may use it to better ana-

lyze the underlying articulated motion. Starting with the simplest issue, I started trying to

display the motion on a 3-D scene. As it turns out, the raw data was very inconsistent in

storing which measurement units it was using. Sometimes it was in meters, sometimes it

was in feet, sometimes it was stored in feet and the format said it was meters. Once you

figure out what scale the data is in, you can display the points on the screen.

 xv

Figure 1 Display of Motion-Capture Data

Now, all I had was a bunch of squirrelly lines on the screen (cf. Figure 1). Clearly, the

lines had to be associated and grouped. Each line was attached (i.e. correlated) to a par-

ticular segment on the articulated figure. This can be done in one of two ways – autocor-

relation and precognition. I chose the latter since autocorrelation is extremely time inten-

sive. Precognition may sound like cheating but nine times out of ten, the user will know

ahead of time which bits of data are associated with which segment on the articulated

figure.

What do I have so far? I have a bunch of lines that each segment can follow in

time. As data shows marker location at each time frame, each segment has some surface

positions pin-pointed in space. In addition, exact marker location on segments usually

were not known or given. That leaves an unsavory taste in your mouth when the segment

can be placed almost anywhere relative to these points. A systematic approach must be

 xvi

thought of that allows the conclusive attachment of the segments to the data. This im-

plies that the data must contain both relative position and orientation of the segment so

the model can be sized and oriented into position. This satisfies an individual segment,

but not the whole articulated figure. For that I needed the rotation points in between the

segments. What this boils down to is that I needed to draw a stick figure based solely on

the motion-capture data. I could then attach whatever shape model I wanted onto the

stick figure. I did a search for existing methods and found a few examples in the litera-

ture (cf. Chapter 8). The most popular was to perform a least-squares fit and a few still

did non-linear fitting of the data. They all had one thing in common – they all assumed

the marker moved on a sphere around the rotation point of the joint. This means that, to

draw a stick figure, I had to solve for the center of a sphere at every joint. A little re-

search showed there were only three major algorithms to solve for the center of a sphere

by data points sitting on the sphere. The most popular was the Maximum-Likelihood Es-

timator (MLE) that solved the problem in a non-linear fashion. This had the undesirable

effect of being excruciatingly slow and sometimes not producing an answer at all. The

next most popular type was linear least-squares solutions that involve fairly slow (but

faster than MLE) pseudo-inverse matrix solutions. This was the preferred method by

most authors concerned with speed. The third type of solution was a small set of ap-

proximations that were closed-form solutions to the best-fit sphere. These formulae were

unpopular and usually used only in the case to start off a non-linear search for the real

answer. They were unpopular because of biases introduced.

I was unsatisfied with any of these solutions found in the existing literature. They

would get me to the answer, but they were too slow or quirky. I decided to sit back and

 xvii

analyze a case study of a particular joint movement. To proceed with analyzing, the raw

(x,y,z) data was loaded into a spreadsheet for the step-by-step analysis to see how the ro-

tation point could be retrieved from the data. A column of distances from an unknown

point (the rotation point) was made for each data point. Then, thinking about it – what

would happen if the unknown point were truly at the center of rotation? Then, the dis-

tances to the data points would all be about the same. What this translates into is that the

standard deviation from the mean of the distances would be minimized. This can be eas-

ily done in Excel with the Solve tool. Thinking about it further, that this is exactly what

the Maximum Likelihood Estimator (MLE) solution is – minimizing the standard devia-

tion of the distance to the center of rotation. I looked carefully at the mathematics to see

if a closed form solution can be found. The MLE does not solve to a closed form. I then

altered the column to be the square of the distance. The Solve tool still got nearly the

same answer as the MLE. I looked at the math for this minimizing and lo and behold, a

closed form solution dropped out on the floor. So the minimum of the standard deviation

of the square of the distance to the center of rotation can be solved with a fairly simple

formula.

I found this new formula easy to use and very fast compared to the other two

techniques. I was all ready to name my new discovery but then I thought it was too good

to be true. I tried desperately to find an author in the existing literature that used this

formula. I could not find a single author that even implied the existence until a month

later. I found an author [119] who had published three months earlier in some obscure

electronics conference (yes 3 months!). His formula was a different arrangement of the

same solution I had developed. So, at least I knew what to call the formula – Generalized

 xviii

Delogne-Kása Estimator (GDKE). Apparently this formula had been used off and on in

many industries since 1972 [56][57] in only its two-dimensional form (i.e. circle). This

new formula can handle any dimensional sphere. The formula had not risen in popularity

because of a certain flaw. In a particular arrangement of data, the estimator would be ex-

pected NOT to be the answer. The flaw would not show itself if the data points were dis-

tributed evenly over the entire sphere. Unfortunately, this ideal case is not too common

in the real world. Therefore, the formula ended up only being useful when the measure-

ment system was extremely accurate – another not so common real world case.

Fine, someone beat me to a fast and flawed formula that solves my problem. Not

good enough for me, so I set out to remove the flaw and retain the speed. The first thing

to do to remove the flaw is to exactly identify it. The original paper from 2004 [119] did

not explain in detail what the flaw was, just that the bias was about the size of the meas-

urement error. As it turns out, the multiplication factor can amplify the bias far beyond

the simple measurement error. It took over two years to work out the exact relationship

of the bias. It involves the probability analysis of multidimensional random variables

multiplied together up to six times. It was slow going since the equation grew rather

large. Keeping track of all of the variables became unwieldy, as even Mathematica

couldn’t handle the math. Finally, the flaw was identified and a systematic equation was

produced that effectively removed the flaw. The results were a simple modification to

the GDKE that made the formula guarantee to converge to the true center and radius as

more raw data was thrown at it. The gap in technology for building a skeleton from mo-

tion capture data was identified and filled. This paper goes into excruciating detail to

prove the capabilities of this new method for skeletal extraction.

 xix

 1

Chapter 1 INTRODUCTION

First of all, an explanation is needed for “articulated motion”. There are many

examples of this kind of motion in everyday life. Just typing this paper involves articu-

lated motion. Riding a bicycle involves articulated motion. These examples themselves

are topics of research in their own right. An articulated figure can be formally defined as

a collection of segments that are connected by joints. The type of joint defines its mo-

tion. If a joint rotates then the two segments can rotate around a point in up to three di-

rections (i.e. degrees of freedom). If a joint can translate in space then the two segments

can separate from each other in up to three directions adding more degrees of freedom.

These motions for a joint, up to six degrees of freedom (DOF), are considered to be ar-

ticulated motion – the topic at hand. The complications arise when more than one joint is

in the figure. This creates multiple possibilities and there is no straightforward solution

to the problem of analyzing the motion.

First, a computer representation of an articulated figure is needed. To keep phys-

ics in the equation, each segment of the figure must be solid. For physics related simula-

tions, this is the only way to go since calculations of moments of inertia are fairly simple

(cf. Chapter 7.2). A few other authors [97][113][121][122] use this approach for high-

end physical simulations but most use triangulated surfaces for their “solid” figures. It is

usually difficult to calculate moments of inertia from only the surface data. A tetrahedral

solid mesh was chosen to simplify building up an arbitrary shape. With a solid shape,

and its mass, the rotational physics and translational physics are fully calculable from

solving the Newton-Euler differential equation. This unfortunately proves time-

intensive.

 2

More reliance on motion data can increase the speed. The motion data is usually

made of raw position measurements of markers that have been placed on the surface of

the body as in Figure 2.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figure 2 Markers on Actor

 Each marker in the data must be assigned (i.e. correlated) to a particular segment

on the articulated figure. This can be done in one of two ways – autocorrelation and pre-

 3

cognition. The latter is better for this research since autocorrelation is extremely time

intensive. Precognition may sound like cheating but nine times out of ten, the user will

know ahead of time which bits of data are associated with which segment on the articu-

lated figure. A systematic approach must be thought of that allows the conclusive at-

tachment of the segments to the data. This implies that the data must contain both rela-

tive position and orientation of the segment so the model can be sized and oriented into

position. This satisfies an individual segment, but not the whole articulated figure. The

rotation points in between the segments are needed. What this boils down to is that a

stick figure needs to be drawn based solely on the motion-capture data. Whatever shape

model can then be attached onto the stick figure. Existing methods were found in a few

examples in the literature (cf. Chapter 8). The most popular was to perform a least-

squares fit and a few still did non-linear fitting of the data. They all had one thing in

common – they all assumed the marker moved on a sphere around the rotation point of

the joint. This means that, to draw a stick figure, the center of a sphere must be solved at

every joint. A little research shows there were only three major algorithms that solve the

center of a sphere from data points sitting on the sphere. The most popular was the

Maximum-Likelihood Estimator (MLE) that solved the problem in a non-linear fashion.

This had the undesirable effect of being excruciatingly slow and sometimes not produc-

ing an answer at all. The next most popular type was linear least-squares solutions that

involve fairly slow (but faster than MLE) pseudo-inverse matrix solutions. This was the

preferred method by most authors concerned with speed. The third type of solution was a

small set of approximations that were closed-form solutions to the best-fit sphere. These

 4

formulae were unpopular because of biases and usually used only in the case to start off a

non-linear search for the real answer.

1.1 Articulated Figure Animation

An articulated figure has a simple definition. It is defined as a set of jointed seg-

ments. The joint in between two segments can be free to rotate in one, two, or three di-

rections and translate in one, two, or three directions. These types of movements are a

rating system called the degrees of freedom (DOF). One DOF means the joint is free to

rotate around only one axis. Two DOF and three DOF are similar. Four DOF joints are

free to rotate around all three orthogonal axes and translate along one of them. Five and

six add more translational freedom. A full six DOF joint has no restrictions in move-

ment.

An articulated figure is made of a set of linked segments. A human figure and

many other animal forms have a tree-like set of connected segments. Realistically, each

segment is not some independent object attached at a specific point in space. Examining

the human shoulder (see Figure 3) will uncover a complex joint system involving the

scapula (shoulder blade), clavicle, and the humerus (upper arm bone).

 5

Figure 3 Human Articulated Shoulder

Not only does each of these bones rotate around sockets but also have small

amounts of translational freedom. Even with this complexity, certain levels of approxi-

mation can make this joint look like it is capable of simple three DOF motion. It is also

customary to approximate the elbow joint (see Figure 4) with a one DOF model even

though there are three bones involved (humerus, radius, ulna).

 6

Figure 4 Human Elbow

Full physics based animation must present a suitable musculoskeletal model that

produces the level of approximation desired for the figure. The attachments of muscles

to the skeleton must be well defined. Forward kinetics is the study of motion by applying

forces on a skeleton to produce the joint motion. This method of animation is usually

used in simulators. Inverse kinetics is backwards to this approach and calculates forces

that are necessary to make a joint move from one position to another. The ability for this

method to get from one pose to the next is what makes it ideal for cartoon or game ani-

mation when key framing is used. Kinematics is different from kinetics in that it uses

angular motion instead of forces. Forward kinematics produces skeletal motion by apply-

 7

ing joint rotations from a specific motion model. Inverse kinematics produces the desired

pose by calculating the necessary angular movements.

1.2 Motion Capture Systems

Studying articulated motion is not possible without capturing positions of real

motion during the activities. There have been many methods devised to capture posi-

tional information. The most common information that is captured is the three-

dimensional position of specific points on the articulated figure. There are various com-

mercial systems for 3D positions that involve many technologies. zFlo, Inc.

(http://www.zflomotion.com/) has a video based system. The Basler A 600 series of digi-

tal cameras can take 105 frames per second.

Three or more of these cameras are placed around the actor in such a way to be

able to see the markers on the body throughout the motion under study. After the videos

are taken, the markers can be triangulated assuming that the camera positions are previ-

ously measured or calibrated. zFlo provides software for this analysis (Figure 5).

 8

Figure 5 Video Capture Analysis Software (SIMI°MotionCapture 3D)1

Another more popular video capture system is BodyBuilder (Figure 6) from Vi-

con Peak (http://www.vicon.com). Their system has been around for more than ten years

and has been used in movies by Industrial Light and Magic. Their software is considered

robust with many man-years of software development.

 9

Figure 6 Vicon BodyBuilder Software1

1.3 Symbols and Conventions

The mathematical symbols and acronyms that are used consistently through this

paper are presented in the following table. The definitions are presented later when they

are first used.

O y() ... on the order of (i.e. size of) y
N .. number of measurements
CRLB ...Cramér-Rao Lower Bound covariance of estimator
D .. dimension of hypersphere
FLOP .. floating point operation
xi .. i

th measurement of position
x .. average of all measurements of positions

1 Copyright Vicon Peak used with permission

 10

µi .. expectation of the ith position
µ .. average of expectations of all positions
Σ ..measurement covariance of each position
ˆ Σ ..measurement covariance estimator
σ ..measurement standard deviation
C .. sample covariance
C0 ... true covariance of expected positions
S... sample third central vector moment
S0 ... true third central moment of expected positions

0F ... true fourth central moment of expected positions
ˆ c ... center estimator
c0 .. true center of hypersphere
ˆ r ... radius estimator
r0 .. true radius of hypersphere
λ .. eigenvalue of matrix
v ... eigenvector of matrix
xT ... transpose of column vector into row vector
A−1..multiplicative inverse of matrix
AT .. transpose of matrix
∇ .. vector gradient operator
x ..magnitude of vector
A ... determinant of matrix
N3 µ,Σ().. three dimensional vector Normal Distribution
ρ A()... spectral radius of matrix
Tr A().. trace (sum of diagonals) of matrix
E A() .. expectation of random variate
Var A() ... variance of random variate
Cov A,B() ... covariance of two variates (matrix or scalar)

Chapter 2 STATEMENT OF THE PROBLEM

Skeletons from motion capture can be produced by two broad categories: predic-

tive and direct. Predictive methods start with an existing pose and, through constraints or

rules, projects forward to find the next pose or fills in between data. These methods are

good for filling in missing data or solving for new poses for a skeleton where no data ex-

isted before. Examples of predictive methods are inverse kinematics and kinetics. These

methods are basically simulations of what the skeleton should look like based on some

rules. Direct methods, on the other hand, are raw calculations that produce a skeleton

from existing motion data. Examples of direct methods are sphere-fit joints and best-fit

whole skeleton squishing. The problem addressed in this thesis lies in direct skeleton

formation from motion capture data. The solutions presented do not in any way predict

where a skeleton should be but instead calculates directly from raw motion data where

the skeleton is currently. The motion capture systems in use today produce real-time

data, but producing a skeleton usually involves many off-line processes. Iterative proce-

dures, both linear and non-linear, are currently used to produce a skeleton that fits the

data. Although some of these are considered fast with today’s computers, they still take

much computer labor. The goal of this thesis is to produce a faster direct measurement of

a skeleton that produces a solid basis for further uses.

2.1 Why are skeleton calculations required?

Joint locations are one of the key steps in producing animation from motion cap-

ture data. Just like the human skeleton, a skeleton from motion capture data is a solid

framework on which shapes can be attached. The movie industry has been using motion

 12

capture for the purposes of animating a figure (e.g. Gollum of “The Lord Of The Rings”)

for many years. The status quo for this science seems to satisfy many industries. The

research presented here will show that producing a skeleton can be improved ten-fold in

speed.

2.2 Problems encountered

Many animation systems require painstaking detail to determine point of rotation.

A-priori knowledge of the skeleton is a major obstacle in finding joint locations. The

human body does not come in standard sizes and the point of rotation is below the skin

making measurements difficult. The a-priori measurements taken are usually segment

lengths and marker positions on the body. Unfortunately, most readily available motion

capture data do not come with this detail. There are ways around the measurements of

the actor. They usually involve a non-linear iteration of squishing a skeleton until it fits

the motion capture data as in Kirk:2005 [60].

2.2.1 Inaccuracies

The inaccuracies in determining joint location can be divided into two types - po-

sitional and systematic inaccuracies. Positional errors are those that simply explain the

error ellipsoid around the position coordinates. These are usually referred to as meas-

urement error and are symbolized as σ for the standard deviation and Σ for the full vari-

ance-covariance matrix in this paper. Systematic errors involve gradual drifts, hysteresis,

or other kinds of “slippages”. One simple example on a marker system is when a marker

is placed on loose clothing so that the marker position does not represent a stationary po-

sition on the segment. Even if the marker is glued flush with the skin, the fact muscles

 13

flex and contract will introduce systematic errors. It would be better if the markers were

drilled under the skin and attached to the bone, but volunteers are hard to find.

2.2.2 Non-standard Files

Another issue that comes with motion capture data is that files incompletely fol-

low a standard format. This may result in integers being stored in signed instead of un-

signed format or vice versa. This produces messed up data that may or may not be visi-

ble after the file is read. Some of the fields in files may be filled incorrectly. This would

lead to unknown behavior or worse.

2.2.3 Missing Data

There are many situations that occur during a motion capture session when data

becomes unavailable to grab. Markers can be occluded during even normal motion de-

pending on angles and positions of cameras. This shows up in the data file as various

frames of data with missing pieces. The reader of the file must carefully consider what to

do when data is missing. Frame-based storage of the data has inherent holes whereas

linked data can skip over these holes as long as the non-linear time increments are con-

sidered.

Chapter 3 SURVEY

3.1 Skeleton Extraction

O’Brien, et al., in 2000 [84] and with Kirk in 2005 [60] have produced a fast

method for skeleton formation using a linear least squares method assuming there is a

relatively stationary point between two segments, and then solving for that point, which

is the rotation point.

3.2 Sphere Estimates

Leendert de Witte [116], in 1960, found a solution for a circle in 3-D space. He

used spherical trigonometry to solve the minimized distance from the best great circle

path. He used approximations that are convenient for large radii and had to choose from

three solutions to get the correct one.

The Maximum Likelihood Estimator (MLE) was the first solution for finding the

sphere parameters. In 1961 Stephen Robinson [95] presented the iterative method of

solving the sphere by minimizing

(1) ε2 = xi − ˆ c ()T xi − ˆ c () − ˆ r ⎛
⎝
⎜ ⎞

⎠
⎟

2

i=1

N

∑

There is a closed form solution for the radius estimator but not for the center es-

timator. Robinson showed the radius estimator to be

(2) ˆ r = 1
N xi − ˆ c ()T xi − ˆ c ()

i=1

N

∑

A truly closed form solution wasn’t found until another function to minimize was

recognized. The new function to minimize was

 15

(3) ε2 = xi − ˆ c ()T xi − ˆ c ()− ˆ r 2()2

i=1

N

∑

Paul Delogne pioneered what would eventually become the Generalized Delogne-

Kása estimator. In 1972, Delogne presented [41] a method for solving a circle for the

purposes of determining reflection measurements on transmission lines. Delogne’s solu-

tion to the circle involves the inverse of a 3x3 matrix. He presented the matrix solution

and a rough error analysis as

(4)
ˆ c

ˆ c T ˆ c − ˆ r 2
⎛

⎝
⎜

⎞

⎠
⎟ =

8 xixi
T

i=1

N

∑ −4Nx

−4Nx T 2N

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

−1 4 xixi
T xi

i=1

N

∑

−2 xi
T xi

i=1

N

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(5) σ i
2 = 2ˆ r xi − ˆ c ()T xi − ˆ c () − ˆ r .

István Kása did more analysis in 1976 [57]. He was the first to recognize the bias

in the answer and produced better error analysis.

(6)
ˆ c

ˆ r 2 − ˆ c T ˆ c
⎛

⎝
⎜

⎞

⎠
⎟ =

2Nx T N

2 xixi
T

i=1

N

∑ Nx

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1 xi
T xi

i=1

N

∑

xixi
T xi

i=1

N

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(7) σ 2 =
1

4 ˆ r 2N
xi − ˆ c ()T xi − ˆ c ()− ˆ r 2()2

i=1

N

∑

Vaughan Pratt [93] in 1987 produced a very generic linear least squares method

for algebraic surfaces. His solution was slower for spheres due to the need to extract the

eigenvectors.

 16

Gander, et. al. in 1994 [47] produced the linear least-squares method for circle fit-

ting with the equation

(8)

0 =
x1

T x1 x1
T 1

M M M

xN
T xN xN

T 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
2ˆ c

ˆ c T ˆ c − ˆ r 2

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

They solved this through finding the null vector of the left matrix that is in essence the

singular value decomposition.

Samuel Thomas and Y. Chan in 1995 [108] created a formula for the Cramér-Rao

Lower Bound for the circle estimation.

In 1997, Lukács, et. al. [73], produced some improvements on non-linear minimi-

zation for spheres.

Corral, et. al. [40] in 1998 analyzed Kása’s formula in more detail and a way to

reject the answer if the confinement angle got too small.

A paper in nuclear physics describes a method in 2000 to produce the circular arc

of a particular traveling in a cloud chamber. Strandlie, et. al. [106] transformed a Rie-

mann sphere into a plane and fit the plane using standard methods involving the eigen-

values of the sample covariance matrix.

Zelniker in 2003 [120] reformulated the circle equation to solve directly for the

center using the pseudo-inverse (#) of a 2xN matrix.

 17

(9)

ˆ c = 1
2

x1
T − x T

x2
T − x T

M

xN
T − x T

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x1
T x1 − 1

N xi
T xi

i=1

N

∑

x2
T x2 − 1

N xi
T xi

i=1

N

∑
M

xN
T xN − 1

N xi
T xi

i=1

N

∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟ ⎟

Zelniker also came up with a better evaluation of the Cramér-Rao Lower Bound for the

center estimator.

(10)

Cov ˆ c , ˆ c T()= r2σ 2

µ1
T − µ T

µ2
T − µ T

M

µN
T − µ T

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T
µ1

T − µ T

µ2
T − µ T

M

µN
T − µ T

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−1

Michael Burr, et. al. [31] in 2004 created a geometric inversion technique which

far surpasses the complexity needed to solve for a hypersphere. It was a non-linear ap-

proach and they failed to recognize there were simpler linear solutions to what they were

solving.

In 2007, Knight et al. [63], published the initial results from the research for this

dissertation in which a skeleton was formed from a closed-form solution of generic mo-

tion capture data.

3.3 Inverse Kinematics

Badler [12] in 1986 produced an interactive 6 DOF controlled technique to pro-

duce a skeleton using inverse kinematics and a joystick. Wiley et al. [115] in 1997, came

up with a way to splice various regimes of motion capture and skeleton formation based

on inverse kinematics. Bodenheim et al. [21], in 1997, produced an articulated skeleton

 18

by painstaking hand measurements of the markers and inverse kinematics to optimize the

joint angles.

3.4 Kinetics

In 1998 Znamenáček [118] created an efficient recursive algorithm for multibody

forward kinetics.

Chapter 4 PREVIOUS SOLUTIONS

The following chapters provide an exposé on the methods that have gone before

this. The theory in this thesis is presented in two phases and each phase can be analyzed

individually. The two phases are the determination of the rotation points of each joint

and the generation of the whole skeleton. The first phase boils down to a single mathe-

matical problem: that of finding the center of a sphere from noisy surface data. The sec-

ond phase, drawing the skeleton, is described in Chapter 4.1.5.3.

4.1 Spherical Curve-fitting Approaches

There are three techniques in use today: iterative; least squares; and algebraic best

fits. They each have their advantages and disadvantages. Iterative techniques are good

for accuracy, least squares are faster than iterative but slower than algebraic, and alge-

braic techniques are good for speed.

4.1.1 Monte-Carlo Experiment

In order to compare the three, a Monte-Carlo experiment was run using 1000 tri-

als, each of which had anywhere from 4 to 1,000,000 samples. The runs took over a

week of computational effort to collect. Each trial had a fixed standard deviation of the

samples from the sphere with values ranging from 10-13 to 1014. Each trial was further

varied by a limiting angle from some random point on a sphere. The limiting angle var-

ied from 0 to 180°, where 180° means full sphere coverage. It is important to have a lim-

iting angle in this experiment because all sphere-fit algorithms are error-prone when this

angle gets smaller. Each trial also had a radius r0 and center c0 randomly chosen. The

 20

radius was varied from 0.06 to 38.5 and the center moved as much as 3.6. The individual

samples were multivariate normal random variates thus

(11) xi ~ N3 µi,σ
2()

where the covariance is a diagonal matrix with each diagonal equal to the square of the

standard deviation. The expected value of each sample was a point that lies on a sphere

thus

(12) µi − c0 = r0.

Each sample was confined to cover only a partial part of the sphere by the following rela-

tionship (cf. Figure 7).

Figure 7 Constrained Measurements on Circle

The formula for checking if a point is acceptably within the limits becomes

(13) xi − c0()T p0 − c0()> xi − c0 r0 cos θ().

θ

xi

c0

p0
µi

maximum
extension

maximum
extension

 21

Said in another way, the sample must be confined to be within an angle from a

fixed point on the sphere. This experiment allows for the in-depth analysis of the error in

the answer from four different estimators. The four techniques are Maximum-Likelihood

Estimator (MLE), Linear Least-Squares (LLS), Generalized Delogne-Kása Estimator

(GDKE), and the new Unbiased Generalized Delogne-Kása estimator (UGDK) explained

in the Chapter 5.1. The first three are established formulae and has been used for two

hundred years (MLE [100]) to as young as three years (GDKE [119]).

The following graph (Figure 8) shows the errors in the estimators compared to the

standard deviation of the samples. The graph shows that the relative error versus relative

standard deviation is a line for each of the four methods. The error is thus proportional to

the standard deviation.

 22

Error of Center Estimate

1E-17
1E-15
1E-13
1E-11

0.000000001
0.0000001

0.00001
0.001

0.1
10

1000
100000

10000000
1000000000

1E+11
1E+13
1E+15
1E+17

1E-14 1E-10 0.000001 0.01 100 1000000 1E+10 1E+14

MLE

LLS

GDKE

UGDK

CRLB

Figure 8 Relative Error Comparison

What is also clear from the graph is the comparison. The outliers on the graph

have been circled. The obvious differences between the estimators show up in the graph

by deviations from the straight line when error equals standard deviation. From the

graph, it appears that there is a common limitation to the error in the estimator. This

common limitation is named the Cramér-Rao Lower Bound to the covariance of an esti-

mator. Section 4.1.2 discusses the limit to all estimators for this particular problem.

The MLE has outliers when the error equals the radius. This is due to multiple solutions

when the error equals the radius. The LLS has outliers when the standard deviation is

below about 10-6 times the radius and greater than 1010 times the radius. These are due to

numerical instability during the extremes of using finite representation of decimal num-

bers. The GDKE seems to be on par with the MLE except for the MLE outliers. The

 23

UGDK has consistently larger error when the standard deviation is greater than about 0.1

times the radius. Each one of these shortcomings will be further discussed in sections

4.1.3, 4.1.4, 4.1.5, and 5.1.

4.1.2 Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) is the proven lower bound for any esti-

mator’s covariance. It is equal to the inverse of the Fisher Information. It is an important

measure when dealing with any estimator because it is the best error that an estimator can

achieve. All estimators will have at best an error of the CRLB. The CRLB for the center

and radius estimators are given for this particular problem [55] as

(14) CRLB−1 =
µi − c0() µi − c0()T µi − c0()r0

µi − c0()T r0 r0
2

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

1
Tr µi − c0() µi − c0()T Σ()i=1

N

∑

where

µi is the expected value of the ith measurement on the surface

c0 is the true center

r0 is the true radius

Σ is the measurement covariance.

This is a positive-definite matrix of size (D+1)x(D+1) where D is the number of dimen-

sions of the hypersphere. The CRLB matrix is the smallest value of the covariance of a

estimator for a particular measurement system. This can be reduced using the isotropic

covariance assumption (Σ=Iσ2). The result of this substitution is

 24

(15) CRLB = σ 2

µi − c0() µi − c0()T

r0
2

i=1

N

∑ µi − c0()r0

r0
2

i=1

N

∑
µi − c0()T r0

r0
2

i=1

N

∑ r0
2

r0
2

i=1

N

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

because of the identity

(16) µi − c0()T µi − c0()= r0
2

This summation can be expanded and simplified. The equivalent sum is

(17) CRLB = σ 2

NB
r0

2 N
µ − c0()

r0

N
µ − c0()T

r0

N

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

where

(18) B =
1
N

µi − c0() µi − c0()T

i=1

N

∑

or equivalently

(19) CRLB =
σ 2

N

B
r0

2

µ − c0()
r0

µ − c0()T

r0

1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

This partitioned matrix is inverted to

(20) CRLB = 1
N σ 2 r0

2B−1 I + α µ − c0() µ − c0()T B−1() −αr0B
−1 µ − c0()

−αr0 µ − c0()T B−1 α

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

where

 25

(21) α = 1− Tr µ − c0() µ − c0()T B−1()()−1

The determinant of this matrix is

(22) CRLB = 1
N σ 2r0

2()D +1 α
B

For large amounts of sampling, the Cramér-Rao Lower Bound has an even more

refined formula for the constrained samples on the surface of the hypersphere. Like in

Figure 7, the constrained sampling is confined to an angle θ from a particular point on the

surface. The two-dimensional case (i.e. the circle) can be setup so that the calculus is

made simpler. First, use a coordinate system that has its center where the center of the

circle is. The y-axis is projected towards the particular point that lies on the surface and

is the center of the confinement. A point on the circumference is then defined as

(23) v2 =
r0 sina
r0 cosa

⎛

⎝
⎜

⎞

⎠
⎟

where a is the angle from the y-axis towards the x-axis. The center of the circle is then a

zero vector in this coordinate frame.

(24) c0 =
0
0

⎛

⎝
⎜

⎞

⎠
⎟

For large amounts of sampling of the two-dimensional case, Equation (14) be-

comes an integral that averages the integrand over the region on the circumference of the

circle thus

 26

 (25) lim
N →∞

CRLB ≡ CRLB2 = 1
N φ2r0

2

v2 − c0() v2 − c0()T

v2 − c0()T Σ v2 − c0()
da

−θ

θ

∫ v2 − c0()r0

v2 − c0()T Σ v2 − c0()
da

−θ

θ

∫
v2 − c0()T r0

v2 − c0()T Σ v2 − c0()
da

−θ

θ

∫ r0
2

v2 − c0()T Σ v2 − c0()
da

−θ

θ

∫

⎛

⎝

⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟ ⎟

−1

where

(26) φ2 = da
−θ

θ

∫ = 2θ

The CRLB2 simplifies greatly with an isotropic covariance (Σ=Iσ2) as well as a zero cen-

ter:

(27) CRLB2 = 1
N σ 2φ2r0

2
v2v2

T da
−θ

θ

∫ r0 v2da
−θ

θ

∫

r0 v2da
−θ

θ

∫ r0
2 da

−θ

θ

∫

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

Taking the integral produces the answer in this coordinate system.

(28) CRLB2 = 1
N σ 22θ

θ − cosθ sinθ 0 0
0 θ + cosθ sinθ 2sinθ
0 2sinθ 2θ

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

−1

The inverse produces

 (29) CRLB2 = 1
N σ 2 2θ

det 2

det 2

θ − cosθ sinθ
0 0

0 2θ −2sinθ
0 −2sinθ θ + cosθ sinθ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

where

(30) det2 = 2θ θ + cosθ sinθ()− 4 sin2 θ

This has three distinct eigenvalues. The one for the x-direction (perpendicular to the line
of symmetry) is

 27

(31)
θθθ

θσλ
sincos

221
2 −

= Nm

corresponding to the direction

(32)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
0
1

2xv

The largest eigenvalue corresponds, for the most part, to the y-direction and is

(33) λM 2 = 1
N σ 2 4θ

3θ + cosθ sinθ − θ − cosθ sinθ()2 +16sin2 θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

corresponding to the direction

(34) vy2 =
0
1

−α

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

where

(35) α =
−θ + cosθ sinθ + θ − cosθ sinθ()2 +16sin2 θ

4sinθ

The variable α is a function going from α=1 at θ=0 to α=0 at θ=π. It is graphed in the
next figure:

 28

Figure 9 Eigenvectors of CRLB for Circle

The smallest eigenvalue corresponds, for the most part, to the r-direction (radius error)
and is

(36) λr2 = 1
N σ 2 4θ

3θ + cosθ sinθ + θ − cosθ sinθ()2 +16sin2 θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

corresponding to the direction

(37) vr2 =
0
α
1

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The eigenvalues follow the relationship

(38) λr2 ≤ λm2 ≤ λM 2

for all values of the confinement angle. They are graphed in the following figure.

 29

Figure 10 Eigenvalues of CRLB for Circle

Figure 10 shows that the variance for the center estimation increases to infinite as

the confinement angle approaches zero. These eigenvalues determine the size of the error

ellipse, which bulges towards the points on the surface of the circle.

The three-dimensional equivalent (i.e. sphere) is a bit different. The idea is still

the same, which is to confine the measurements to be within an angle from a specific

point on the surface. The coordinate system is set up so that the z-axis is pointing to-

wards the confinement point on the surface. A point on the surface is then defined by

two angles a and b thus

(39) v3 =
r0 sinacosb
r0 sin asinb

r0 cosa

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The center of the sphere is at the center of the coordinate system thus

 30

(40) c0 =
0
0
0

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The CRLB in three dimensions has the limit for large sampling as

(41) lim
N →∞

CRLB ≡ CRLB3 = 1
N σ 2r0

2φ3

v3v3
T sina db da

0

2π

∫
0

θ

∫ r0 v3 sina db da
0

2π

∫
0

θ

∫

r0 v3
T sina db da

0

2π

∫
0

θ

∫ r0
2 sina db da

0

2π

∫
0

θ

∫

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

where

(42) φ3 = sina db
0

2π

∫ da
0

θ

∫ = 4π sin2 θ
2()

Taking the double integral produces

(43)CRLB3 = 1
N σ 2

2 + cosθ()sin2 θ
2()

3
0 0 0

0
2 + cosθ()sin2 θ

2()
3

0 0

0 0
3cos4 θ

2()+ sin4 θ
2()

3
cos2 θ

2()
0 0 cos2 θ

2() 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

−1

(44) CRLB3 = 1
N σ 2 3

sin4 θ
2()

sin2 θ
2()

2 + cosθ()
0 0 0

0
sin2 θ

2()
2 + cosθ()

0 0

0 0 1 −cos2 θ
2()

0 0 −cos2 θ
2() 3cos4 θ

2()+ sin4 θ
2()

3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

The middle sized eigenvalue is

(45) λm 3 = 1
N σ 2 3

2 + cosθ()sin2 θ
2()

 31

corresponding to the directions

(46) vx3 =

1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 and vy3 =

0
1
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The largest eigenvalue is

(47)

λM 3 = 1
N σ 2 24

18 + 4cosθ + 2cos 2θ()− 2 131+124cosθ + 28cos 2θ()+ 4cos 3θ()+ cos 4θ()

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

corresponding to the directions

(48) vz3 =

0
0
1
α

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

where

(49) α = −
1
3

2 + cosθ()tan2 θ
2()+

2 131+124 cosθ + 28cos 2θ()+ 4 cos 3θ()+ cos 4θ()
12 1− cosθ()cos2 θ

2()

The third and final eigenvalue corresponds to the r-direction and is

(50) λr3 = 1
N σ 2 2 +

3
tan2 θ

2()sin2 θ
2()

−
131+124cosθ + 28cos 2θ()+ 4cos 3θ()+ cos 4θ()

4 2 sin4 θ
2()

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

corresponding to the directions

 32

(51) vr3 =

0
0

−α
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The last two eigenvectors are determined by the one function α of the confinement angle.

This function is graphed in Figure 11.

Figure 11 Eigenvectors of CRLB for Sphere

All three eigenvalues for the confined points on a sphere are graphed in Figure 12.

 33

Figure 12 Eigenvalues of CRLB for Sphere

So what does all this gives me? The formulae for the eigenvalues provide the

best-case error of problem at hand, i.e. all estimators aspire to these limits. There is a

condition where the error in the estimate exceeds the error in the measurement. This

condition occurs, for the circle, as

(52) CRLB2 > σ 2

The comparison here is element by element in the matrix. The worst case for the center

estimator is

(53) N <
2θ 2

θ θ + cosθ sinθ()− 2sin2 θ

The sphere equivalent limit is

 34

(54) N <
3

sin4 θ
2()

These two lower limits for number of samples is a good start when the circumstances

arise for picking the number of samples.

4.1.3 Non-linear Maximum-Likelihood Estimator

According to the National Institute of Standards and Technology (NIST) [100],

the best way to find the center of a sphere is through non-linear minimization of the vari-

ance of the radius. This is also called the Maximum-Likelihood Estimator (MLE) for the

center ˆ c and radius ˆ r . The variance is written as

(55) sMLE
2 = 1

N −1 ri − ˆ r ()2

i=1

N

∑

where N is the number of samples whose positions are xi on or near the surface of the

sphere. The sample radius ri is expressed as the vector norm (distance) of the sample

from the center of the sphere thus

(56) ri ≡ xi − ˆ c .

The two estimators, i.e. the radius ˆ r and center ˆ c , are unknown in the equation and can

be solved by minimizing the variance. The radius is solved easily through taking the de-

rivative of the variance and setting it equal to zero. The derivative is

(57) ∂sMLE
2

∂ˆ r
= 1

N−1 2 ˆ r − ri()
i=1

N

∑ = 0

This summation is simplified to

(58) ˆ r
i=1

N

∑ = ri
i=1

N

∑

 35

which ultimately simplifies to

(59) ˆ r = 1
N ri

i=1

N

∑

This estimator of the radius is still dependent on the center estimator ˆ c because of the

definition of ri. The minimization is usually carried out by iterative methods like the

Levenberg-Marquardt Method [100] and cannot be solved directly. One disadvantage of

the iterative technique is the need to produce an initial guess. The following graphs

comes from the Monte-Carlo experiment previously mentioned and is another way of

showing the error, this time dividing by the square root of the CRLB instead of the ra-

dius. The first graph compares the error to the standard deviation.

MLE Center Error Compared to CRLB

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1E+11

1E-14 1E-10 0.000001 0.01 100 1000000 1E+10 1E+14

|c-c0|=r

 36

Figure 13 MLE Compared to CRLB

The outliers are clearly visible and correspond to when the error equals the radius.

This is the case when the coverage angle is small and the MLE converges to the middle

of the points instead of nearer to the center. The next graph explains when the outliers

occur in comparison to the coverage angle. An angle of 180° means full coverage of the

sphere, whereas an angle of 0° means all points confined to a single spot on the sphere.

MLE Error

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

100000
0

1E+07

1E+08

1E+09

1E+10

1E+11

0 50 100 150

Confinement Angle (°)

Figure 14 MLE Error Versus Sphere Coverage

This graph shows the outliers occur at low angles and indicate that the Levenberg-

Marquardt technique converged on an answer that was embedded in the set of points that

reside on the sphere as in the equation

(60) ˆ c − c0 ≈ r0.

 37

These outliers occur when the samples during a run are confined to a small area on the

sphere. For the most part, the answer error is proportional to the square root of the CRLB

as evident in Figure 13 and Figure 14.

(61) ˆ c − c0
2 ≈ CRLB

4.1.4 Linear Least-Squares Solution

The next best thing to the very slow MLE method is through linear least-squares

solution. Most authors use a similar solution to the one presented here. The method

starts out the equation for a hypersphere

(62) ˆ r 2 = xi − ˆ c ()T xi − ˆ c ().

Expanding the vector product produces N linear equations for the sphere thus

(63) xi
T xi = 2xi

T ˆ c + ˆ r 2 − ˆ c T ˆ c ().

This is usually an over-constrained problem since there are N equations and four (i.e.

D+1) unknowns. The N equations can be put into a single matrix equation to solve with

standard linear algebra techniques. The linear equation is

(64) Y = X ˆ A

where

(65)

Y =
x1

T x1

x2
T x2

M

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(66)

X =
2x1x 2x1y 2x1z 1
2x2x 2x2y 2x2z 1

M M M M

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

 38

(67) ˆ A =

ˆ c x
ˆ c y
ˆ c z

ˆ r 2 − ˆ c T ˆ c

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The Singular Value Decomposition (SVD) method is used to solved for ˆ A

thereby retrieving ˆ c and ˆ r . SVD has the advantage of being able to solve equations that

contain near singular matrices. It has the disadvantage of being a slow algorithm.

Figure 15 shows the error of the center estimator. Once again, the outlier case

shows when the answer erroneously lies on the sphere. This example, the LLS method

shows possible bad results at the extreme ends of the standard deviation spectrum.

LLS Center Error Compared to CRLB

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E-14 1E-10 0.000001 0.01 100 1000000 1E+10 1E+14

 39

Figure 15 LLS Compared to CRLB

For the most part, once again, the answer error is proportional to the square root of the

CRLB.

(68) ˆ c − c0
2 ≈ CRLB .

The speed of the algorithm can be measured in flop count. Flops are floating

point operations and the operations included in the count are not very well defined.

Many authors allow only multiplication, division, addition and subtraction of floating

point numbers to be included. Others also include the square-root function. Some ex-

clude addition and subtraction. We adopt the one with the most (i.e. * / + - √). The LLS

method here involves the Singular Value Decomposition. The Numerical Recipes [94]

implementation is the most popular. Counting the individual + - * / √ operations proves

cumbersome and involves an assumption about an iteration cycle in the implementation.

The setup and breakdown of Equation (64) contributes

(69) FLOPs = N(3D −1) + (2D +1)

Each iteration for the algorithm increases the count by

(70) FLOPs = N(6D2 +12D + 6) + 1
2 (53D2 +117D + 70)

If the iterations are assumed to be one pass then the total count is

(71) FLOPs = N(14D2 + 32D + 14) + 1
3 (13D3 + 102D2 + 245D +123)

where D is the dimension of the sphere (e.g. 2 for circle, 3 for sphere). So for a sphere,

the Linear Least-Squares method has

(72) FLOPs = N236 + 709

 40

4.1.5 Generalized Delogne-Kása Estimator

The GDKE was first introduced in 2004 by Zelniker [119] as an extension of the

estimator of the circle center. The circle estimator had been published since 1972 starting

with Paul Delogne [41]. István Kása [57] further expanded the 2D theory in 1976. In the

process of my investigating this problem, the research for this dissertation took the same

path as Zelniker and independently discovered the equation in a more efficient form in

2005. The new but algebraically equivalent equation was presented at the Winter School

of Computer Graphics Conference at Plzeň, Česká Republika in 2007 [63]. The estima-

tor has an algebraic solution and is considered fast in relation to the previously mentioned

methods.

4.1.5.1 Derivation

The problem starts out similar to the MLE, where a minimum to a variance is

needed. The variance takes on the form

(73) sGDK
2 = 1

N−1 ri
2 − ˆ r 2()2

i=1

N

∑

where

(74) ri
2 = xi − ˆ c ()T xi − ˆ c ()

The solution for the radius estimator falls out similar to the MLE except this time

it is the square root of the sum of the squares (RMS) of the sample radii.

(75) ˆ r = 1
N ri

2

i=1

N

∑

 41

If this estimator is then plugged back into the variance, it becomes evident that this esti-

mator is the absolute minimum of the variance for any center estimator. Choose an esti-

mator ′ r other than ˆ r and the difference of the variances becomes

(76) s2 ′ r ()− s2 ˆ r ()= ′ r 2 − ˆ r 2()2
≥ 0

Don’t forget that the center estimator ˆ c is in Equation (56) of the sample radii ri

for the radius estimator. To solve for the center estimator, the gradient of the variance

with respect to the changing center estimate must be taken and then set equal to zero

(77) ∇sGDK
2 = 0

where the gradient is defined as the vector operator with respect to the center estimate

(78) ∇ =
∂

∂ ˆ c x

∂
∂ ˆ c y

∂
∂ ˆ c z

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

T

Applying the derivative produces

(79) ∇sGDK
2 = 1

N−1 ∇ri
4

i=1

N

∑ − 2Nˆ r 2∇ˆ r 2
⎛

⎝
⎜

⎞

⎠
⎟

The further derivatives can be shown to be

(80) ∇ˆ r 2 = 2 ˆ c − x ()

(81) ∇ri
4 = 4ri

2 ˆ c − xi()

These relationships and further manipulation can produce

(82) ∇ri
4

i=1

N

∑ = 4 N −1() 2C ˆ c − x ()− S()+ 4Nˆ r 2 ˆ c − x ()

where the special values C and S are defined as

 42

(83) C = 1
N−1 xi − x () xi − x ()T

i=1

N

∑

(84) S = 1
N−1 xi − x () xi − x ()T xi − x ()

i=1

N

∑

C is the standard definition of the sample covariance matrix. S is the multidimen-

sional equivalent of the third central moment and as such can be called the sample third

central vector moment. Combining all of these makes the gradient of the variance end up

being

(85) ∇sGDK
2 = 4 2C ˆ c − x ()− S()

Setting this to zero, the solution for the center estimator becomes

(86) ˆ c = x + 1
2 C−1S

If this estimator is then plugged back into the variance, it becomes evident that this esti-

mator is the absolute minimum of the variance. Choose an estimator ′ c other than ˆ c and

the difference of the variances becomes

(87) s2 ′ c ()− s2 ˆ c ()= ′ c − ˆ c ()T C ′ c − ˆ c ()≥ 0

Applying this formula produced statistically similar results to the MLE iterations in the

Monte-Carlo experiment. The following graph shows that, similar to the MLE, it has er-

ror

(88) ˆ c − c0 = O σ()

 43

GDKE Center Error Compared to CRLB

0.001

0.01

0.1

1

10

100

1000

10000

100000

1E-14 1E-10 0.000001 0.01 100 1000000 1E+10 1E+14

Figure 16 GDKE Compared to CRLB

The floating-point operations count for the GDKE of the center of a hypersphere

of dimension D is

(89) FLOPs = N D2 + 6D −1()+ 1
3 D3 + 3D2 + 8

3 D +1()

where N is the number of samples. The spherical solution (D=3) becomes

(90) FLOPs = N26 + 45

You might ask at this point - it’s faster, produces similar results, what’s wrong

with it? This fast method has not been fully accepted because it is a biased estimator. An

estimator of a parameter is considered biased if it is expected to be a little off of the real

 44

answer. Zelniker [119] has shown that the bias of the GDKE is on the order of the meas-

urement standard deviation. The following statistical analysis will show exactly what the

bias is and that there are cases that the bias is quite significant and does not disappear

when more samples are taken.

4.1.5.2 Statistical Behavior

To understand completely the statistical behavior of the estimator, one must mul-

tiply multivariate Normal dependent variables six times to find the standard deviation of

the center estimator. Another obstacle to finding the behavior is the inverse of a matrix.

All these make it difficult to find an exact answer to the mean and standard deviation. A

limiting approximation can be achieved if the individual components are analyzed.

Let’s start off with our samples. Let us assume that each measurement xi is a D-

dimensional multivariate random Normal with constant covariance and differing means

that can be expressed as

(91) xi ~ ND µi,Σ()

where all of the means lie on the D-dimensional hypersphere.

(92) µi − c0 = r0

If the average of the samples is taken, then the new number is still a multivariate Normal

(93) x ~ ND µ , 1
N Σ()

Section 4.1.5.3 proves the following property of the sample covariance matrix:

(94) E C()= C0 + Σ

 45

(95) Cov C,CT()= 1
N−1() Σ C0 + Tr C0()()+ C0 + Σ() Σ + Tr Σ()()()

where

(96) C0 = 1
N−1 µi − µ () µi − µ ()T

i=1

N

∑ .

The expectation for C is here shown to be a biased estimator of the true covari-

ance C0. Most studies around this matrix are trying to estimate the measurement covari-

ance Σ and say that the sample covariance matrix is unbiased, but that is only in the case

when all samples have the same mean, thereby setting C0=0.

Similar analysis (cf. Section 4.1.5.4) will show that the expectation of the sample

third central moment is

(97) E S()= S0

where

(98) S0 = 1
N−1 µi − µ () µi − µ ()T µi − µ ()

i=1

N

∑

Now with the properties of the sample mean, sample covariance C and sample

third central moment S, the following property holds for the GDKE center estimator. The

inverse of the sample covariance can be expanded by Leontief inverse as

(99) C−1 = C0 + Σ()−1 + I − C0 + Σ()−1C()k
C0 + Σ()−1

k=1

∞

∑

Substituting this into the equation of the center produces

(100) ˆ c = x + 1
2 C0 + Σ()−1S + I − C0 + Σ()−1C()k

C0 + Σ()−1S
k=1

∞

∑

 46

This approximation results in the expectation of the center estimation as

(101)

E ˆ c ()= c0 + 1

2 C0 + Σ()−1 − C0
−1()S0 +L

The covariance of the center estimator can be expanded to be

(102)

Cov ˆ c , ˆ c T()= 1
N Σ + 1

2 C0 + Σ()−1Cov S, x T()+ 1
2 Cov x ,ST()C0 + Σ()−1

+ 1
4 C0 + Σ()−1Cov S,ST()C0 + Σ()−1 +L

The intermediate covariances are found to be independent (cf. Chapter 4.1.5.4)

(103) Cov S, x T()= Cov x ,ST()= 0

These reduce the covariance to

(104)

Cov ˆ c , ˆ c T()= 1

N Σ + 1
4 C0 + Σ()−1Cov S,ST()C0 + Σ()−1 +L

The covariance of the sample third central moment is

(105) Cov S,ST()= 1
N σ 2 8F0 + Tr F0()− 4C0

2 − 4Tr C0()C0 − Tr C0()2()+ O 1
N σ 4()

which makes the covariance of the center estimator

(106)

Cov ˆ c , ˆ c T()= 1
N σ 2 I − C0 + σ 2()−1

C0
2 C0 + σ 2()−1()

+ 1
4 N σ 2 C0 + σ 2()−1

8F0 + Tr F0()− 4Tr C0()C0 − Tr C0()2()C0 + σ 2()−1

+O 1
N σ 4()

The radius estimator is similarly biased. Starting from the square of the radius estimator

(107) ˆ r 2 = N−1
N Tr C()+ ˆ c − x ()T ˆ c − x ()

The expectation of the square is then

 47

(108) E ˆ r 2()= N−1
N Tr C0 + Σ()+ Tr Cov ˆ c , ˆ c T()+ E ˆ c ()E ˆ c T()()− 2E x T ˆ c ()+ µ Tµ + 1

N Tr Σ()

The intermediate expectation, which is related to the covariance between the mean and

the center estimator, is

(109) E ˆ c x T()= E x x T()+ 1
2 E C−1Sx ()

(110)

E ˆ c x T()= c0µ T + 1

N Σ + 1
2 C0 + Σ()−1 − C0

−1()S0µ +L

Inserting this into the expectation of the square, reduces it to

(111)

E ˆ r 2()= r0

2 + N−1
N Tr Σ()+ 1

4 S0
T C0 + Σ()−1 + C0

−1() C0 + Σ()−1 − C0
−1()S0 +L

This expectation shows the bias in the radius estimator that remains non-zero as long as

there is error in the measurement system. The variance of the square of the radius esti-

mator comes out to be

(112) Var ˆ r 2()= O 1
N Σ()

A typical example of the (mis-)use of these estimators can be displayed using Mathe-

matica as in Figure 17.

 48

Figure 17 GDKE Error Ellipse

The dashed bars in Figure 17 represent the error involved in the center estimate. As can

be seen, the true center is not anywhere within the error ellipsoid of the estimate. This is

due solely to the bias in the estimator. Figure 17 is a good example of why the GDKE

has not been adopted as much as the others. There is a simple way to remove this non-

diminishing bias and it is the method of choice for speed and accuracy as long as a bit of

a-priori knowledge is available (cf. Section 5.1).

4.1.5.3 Expectation of Sample Covariance

Theorem:

 49

The sample covariance matrix has biased expectation when the samples are inde-

pendently measured from the multivariate normal distribution with the same measure-

ment covariance but differing expectations.

Proof:

The sample covariance is defined as

(113) C = 1
N −1 xi − x () xi − x ()T

i=1

N

∑

where the samples are independent of each other and come from the multivariate normal

distribution

(114) xi ~ ND µi,Σ()

The sample covariance can be expanded to

(115) C = 1
N −1 xixi

T − x xi
T − xix T + x x T()

i=1

N

∑

When the summation is expanded, the covariance becomes

(116) C = 1
N −1 xixi

T

i=1

N

∑ − N
N −1 x x T

and ultimately to

(117) C = 1
N xixi

T

i=1

N

∑ − 1
N N−1() xix j

T

j≠ i
∑

i=1

N

∑ .

The expectation of the sample covariance is

 50

(118) E C()= 1
N E xixi

T()
i=1

N

∑ − 1
N N−1() E xix j

T()
j≠ i
∑

i=1

N

∑

Since these samples are independent, the expectation breaks down to

(119) E C()= 1
N E xixi

T()
i=1

N

∑ − 1
N N−1() E xi()E x j()T

j≠ i
∑

i=1

N

∑

The expectation of the same two multivariate normal vectors multiplied together is

(120) E xixi
T()= µiµi

T + Σ

The expectation of the sample covariance then becomes

(121) E C()= C0 + Σ

where

(122) C0 = 1
N −1 µi − µ () µi − µ ()T

i=1

N

∑ .

The sample covariance is thus biased whether it is an estimate of Σ or C0. The GDKE is

using the matrix as an estimate of C0 with Σ interfering. The variance of C is more com-

plicated involving six multivariate normal vectors multiplied together in a non-

independent manner. A solution was achieved by analyzing the individual elements of

the matrix. The covariance of each element in the matrix is defined as

(123) Cov Cij ,Cmn()= E CijCmn()− E Cij()E Cmn()

The square of the expectation of each element of the matrix is then

(124) E Cij()E Cmn()= C0ijC0mn + C0ijΣmn + C0mnΣij + ΣijΣmn

where

 51

(125) C0ij = 1
N−1 µki − µ i() µkj − µ j()

k=1

N

∑ = 1
N−1 µkiµkj

k=1

N

∑ − N
N−1 µ iµ j

The expectation of the square of each element is much more complicated involving com-

binations of four random variates multiplied to each other. The square starts as

(126)

CijCmn = 1
N−1()2 xkixkj xlm xnl

l=1

N

∑
k=1

N

∑

− N
N−1()2 xkixkj x m x n + xkm xkn x ix j

k=1

N

∑

+ N 2

N−1()2 x ix j x m x n

Since the points are independent of each other, the expectation of this is

(127)

E CijCmn()= 1
N−1()2 E xkixkj()E xlm xnl()

l=1

N

∑
k=1

N

∑

+ 1
N−1()2 E xkixkj xkm xnk()− E xkixkj()E xkm xnk()

k=1

N

∑

− 1
N−1()2 N

E xkixkj()E xlm()E xpn()+ E xkm xkn()E xli()E xpj()
p=1

N

∑
l=1

N

∑
k=1

N

∑

− 1
N−1()2 N

E xkixkj xkm()E x ln()+ E xkm xkn xki()E xlj()
−E xkixkj()E xkm()E x ln()− E xkm xkn()E xki()E xlj()l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

E xkixkj xkn()E xlm()+ E xkm xkn xkj()E xli()
−E xkixkj()E xlm()E xkn()− E xkm xkn()E xli()E xkj()l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

E xkixkj()E xlm x ln()+ E xkm xkn()E xlixlj()
−E xkixkj()E xlm()E x ln()− E xkm xkn()E xli()E xlj()l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

2E xkixkj xkm xkn()− E xkixkj()E xkm()E xkn()
−E xkm xkn()E xki()E xkj()k=1

N

∑

+ N 2

N−1()2 E x ix j x m x n()

 52

(128)

E CijCmn()= 1
N−1()2 µkiµkj + Σij()µlmµnl + Σmn()

l=1

N

∑
k=1

N

∑

+ 1
N−1()2

µkiµkjµkmµkn + ΣijΣmn + ΣimΣnj + ΣinΣ jm

+Σijµkmµkn + Σimµkjµkn + Σinµkjµkm + Σ jmµkiµkn

+Σ jnµkiµkm + Σmnµkiµkj − µkiµkj + Σij()µkmµkn + Σmn()

⎛

⎝

⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟ ⎟ k=1

N

∑

− 1
N−1()2 N

µkiµkj + Σij()µlmµpn + µkmµkn + Σmn()µliµpj
p=1

N

∑
l=1

N

∑
k=1

N

∑

− 1
N−1()2 N

µkiµkjµkm + Σijµkm + Σimµkj + Σ jmµki()µnl

+ µkmµknµki + Σmnµki + Σmiµkn + Σniµkm()µlj

− µkiµkj + Σij()µkmµln − µkmµkn + Σmn()µkiµlj

⎛

⎝

⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟ ⎟ l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

µkiµkjµkn + Σijµkn + Σinµkj + Σ jnµki()µlm

+ µkmµknµkj + Σmnµkj + Σmjµkn + Σnjµkm()µli

− µkiµkj + Σij()µlmµkn − µkmµkn + Σmn()µliµkj

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟ l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

µkiµkj + Σij()µlmµln + Σmn()
+ µkmµkn + Σmn() µliµlj + Σij()
− µkiµkj + Σij()µlmµln − µkmµkn + Σmn()µliµlj

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟ l≠k

N

∑
k=1

N

∑

− 1
N−1()2 N

2
µkiµkjµkmµkn + ΣijΣmn + ΣimΣnj + ΣinΣ jm

+Σijµkmµkn + Σimµkjµkn + Σinµkjµkm + Σ jmµkiµkn

+Σ jnµkiµkm + Σmnµkiµkj

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

− µkiµkj + Σij()µkmµkn − µkmµkn + Σmn()µkiµkj

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

k=1

N

∑

+ N 2

N−1()2

µ iµ jµ mµ n + 1
N 2 ΣijΣmn + 1

N 2 ΣimΣnj + 1
N 2 ΣinΣ jm

+ 1
N Σijµ mµ n + 1

N Σimµ jµ n + 1
N Σinµ jµ m + 1

N Σ jmµ iµ n
+ 1

N Σ jnµ iµ m + 1
N Σmnµ iµ j

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Expanding the sums and canceling terms reduces this gigantic equation to

 53

(129)

E CijCmn()= 1
N−1()2 N

Nµkiµkjµlmµnl + N −1()Σijµkmµnk + N −1()Σmnµkiµkj()
l=1

N

∑
k=1

N

∑

+ 1
N−1()2 N

N − 2()ΣimΣnj + N − 2()ΣinΣ jm + N N − 2()ΣijΣmn

+NΣimµkjµkn + NΣinµkjµkm + NΣ jmµkiµkn + NΣ jnµkiµkm

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

k=1

N

∑

− 1
N−1()2 N

µkiµkjµlmµpn + µkmµknµliµpj()
p=1

N

∑
l=1

N

∑
k=1

N

∑

− 1
N−1()2 N

2Σ jmµkiµnl + 2Σmiµknµlj + 2Σniµlmµkj + 2Σ jnµkiµlm

+NΣijµlmµkn + NΣmnµliµkj

⎛

⎝
⎜

⎞

⎠
⎟

l=1

N

∑
k=1

N

∑

+ N 2

N−1()2

µ iµ jµ mµ n + 1
N 2 ΣijΣmn + 1

N 2 ΣimΣnj + 1
N 2 ΣinΣ jm

+ 1
N Σijµ mµ n + 1

N Σimµ jµ n + 1
N Σinµ jµ m + 1

N Σ jmµ iµ n
+ 1

N Σ jnµ iµ m + 1
N Σmnµ iµ j

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

And finally, more cancellations produce the answer

(130)
E CijCmn()= C0ijC0mn + C0ijΣmn + ΣijC0mn + ΣijΣmn

+ 1
N−1() ΣimΣ jn + ΣinΣ jm + ΣimC0 jn + ΣinC0 jm + Σ jmC0in + C0imΣ jn()

Subtracting the square of the expectation of each produces the covariance:

(131) Cov Cij ,Cmn()= 1
N−1() ΣimΣnj + ΣinΣ jm + ΣimC0 jn + ΣinC0 jm + Σ jmC0in + Σ jnC0im()

The full matrix covariance then becomes

(132) Cov C,CT()= 1
N−1() Σ C0 + Tr C0()()+ C0 + Σ() Σ + Tr Σ()()()

If the measurement covariance is Σ = σ 2I then the variance reduces to

(133) Cov C,CT()= 1
N−1()σ

2 C0 2 + D()+ Tr C0()+ σ 2 1+ D()()

(134) Tr C()2 = CiiC jj
j=1

D

∑
i=1

D

∑

(135) E Tr C()2()= C0iiC0 jj + C0iiΣ jj + ΣiiC0 jj + ΣiiΣ jj + 1
N−1() 2ΣijΣij + 4ΣijC0ij()

j=1

D

∑
i=1

D

∑

 54

(136) E Tr C()2()= Tr C0()2 + 2Tr C0()Tr Σ()+ Tr Σ()2 + 1
N−1() 2Tr Σ2()+ 1

N−1() 4Tr C0Σ()

The inverse of the sample covariance is an important value to find its expectation.

The inverse of any matrix can be expanded by the Leontief Inverse to

(137) A−1 = I − E A()−1 A()k
E A()−1

k= 0

∞

∑

as long as the spectral radius (largest absolute eigenvalue) is

(138) ρ I − E A−1()A()<1

Substituting A for the sample covariance produces

(139) C−1 = C0 + Σ()−1 + I − C0 + Σ()−1C()k
C0 + Σ()−1

k=1

∞

∑

An intermediate expectation is needed to get the second order approximation

(140)

E CAC()= C0AC0 + C0AΣ + ΣAC0 + ΣAΣ

+ 1
N−1()

ΣAΣ + ΣTr AΣ()+ ΣAC0 + C0AΣ

+ΣTr AC0()+ Tr ΣA()C0

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

Then, using this identity, the expectation of the inverse expands to

(141)

E C−1()= C0 + Σ()−1

+ 1
N−1() C0 + Σ()−1 Σ 2 + D()+ Tr Σ C0 + Σ()−1()C0 − Σ C0 + Σ()−1Σ()C0 + Σ()−1

+ E I − C0 + Σ()−1C()k⎛
⎝
⎜

⎞
⎠
⎟ C0 + Σ()−1

k= 3

∞

∑

So the second order approximation using the diagonal covariance is

(142) E C−1()= C0
−1 + 1

N−1σ 2C0
−1 2 + D()C0

−1 + Tr C0
−1()− C0

−2σ 2()

 55

4.1.5.4 Expectation of Sample Third Central Moment

Theorem:

The Sample Third Central Moment is unbiased when the samples are independ-

ently measured from the multivariate Normal distribution with the same covariance but

differing expectations.

Proof:

The Sample Third Central Moment for multivariates is defined as

(143) S = 1
N−1 xk − x () xk − x ()T xk − x ()

k=1

N

∑

where the samples are independent of each other and come from the multivariate Normal

distribution

(144) xi ~ ND µi,Σ()

(145) xi − x ~ ND µi − µ , N −1
N Σ()

Then expectation of the moment is

 (146) E S()= 1
N−1 E xk − x () xk − x ()T xk − x ()()

k=1

N

∑

Then using the expectation and covariance from (144) gives

(147) E Si()= 1
N −1 µki − µ i() µkj − µ j()2

+ µki − µ i() N −1
N Σ jj + 2 N −1

N Σij µkj − µ j()
j=1

D

∑
k=1

N

∑

and the last two parts disappear because of the definition of the average, leaving behind

 56

(148) E S()= S0 = 1
N −1 µi − µ () µi − µ ()T µi − µ ()

i=1

N

∑

As can be seen, the sample third central moment is an unbiased estimator in the general

case of constant covariance but different mean.

Another important property is the covariance between the sample third central

moment and the sample mean. This value starts with expanding the sum as

(149) Sx T = 1
N −1 xk xk

T xk x T
k=1

N

∑ − 2
N−1 xk xk

T x x T
k=1

N

∑ − 1
N −1 x xk

T xk x T
k=1

N

∑ + 2N
N −1 x x T x x T

And expanding the means produce

(150) Sx T = 1
N−1()N xk xk

T xk x j
T

k=1

N

∑
j=1

N

∑ − 1
N−1()N 2 2xk xk

T xix j
T + xixk

T xk x j
T()

k=1

N

∑
j=1

N

∑
i=1

N

∑ + 2N
N−1 x x T x x T

Separating the independent values produce the expanded sums

 57

(151)

E Sx T()= 1
N−1()N E xk xk

T xk()E x j
T()

k=1

N

∑
j=1

N

∑

+ 1
N−1()N E xk xk

T xk xk
T()− E xk xk

T xk()E xk
T()

k=1

N

∑

− 1
N−1()N 2 2E xk xk

T()E xi()E x j
T()+ E xi()E xk

T xk()E x j
T()

k=1

N

∑
j=1

N

∑
i=1

N

∑

− 1
N−1()N 2 3E xk xk

T xk()E x j
T()

k≠ j

N

∑
j=1

N

∑

+ 1
N−1()N 2 2E xk xk

T()E xk()E x j
T()+ E xk()E xk

T xk()E x j
T()

k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2 2E xk xk

Tµ j xk
T()+ E x j()E xk

T xk xk
T()

k≠ j

N

∑
j=1

N

∑

+ 1
N−1()N 2 2E xk xk

T()E x j()E xk
T()+ E x j()E xk

T xk()E xk
T()

k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2 2E xk xk

T()E x j x j
T()+ E x j x j

T()E xk
T xk()

k≠ j

N

∑
j=1

N

∑

+ 1
N−1()N 2 2E xk xk

T()E x j()E x j
T()+ E x j()E xk

T xk()E x j
T()

k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2 3E xk xk

T xk xk
T()− 2E xk xk

T()E xk()E xk
T()− E xk()E xk

T xk()E xk
T()

k=1

N

∑

+ 2N
N−1 E x x T x x T()

Substituting the expectations produce the sums

 58

(152)

E Sx T()= 1
N−1()N 2 Nµkµk

Tµkµ j
T + NTr Σ()µkµ j

T + 2NΣµkµ j
T()

k=1

N

∑
j=1

N

∑

+ 1
N−1()N 2 2NΣ2 + NΣTr Σ()+ 2Nµkµk

T Σ + NΣµk
Tµk()

k=1

N

∑

− 1
N−1()N 2

2µkµk
Tµiµ j

T + 2Σµiµ j
T

+µiµk
Tµkµ j

T + Tr Σ()µiµ j
T

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

k=1

N

∑
j=1

N

∑
i=1

N

∑

− 1
N−1()N 2 2Tr Σ()µkµ j

T + 4Σµkµ j
T()

k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2 2Σµk

Tµ j + 2µkµ j
T Σ + 2µ jµk

T Σ()
k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2

2µkµk
T Σ + 2ΣΣ + µ jµ j

Tµk
Tµk

+Σµk
Tµk + Tr Σ()Σ

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

k≠ j

N

∑
j=1

N

∑

+ 1
N−1()N 2 µ jµk

Tµkµ j
T()

k≠ j

N

∑
j=1

N

∑

− 1
N−1()N 2

6Σ2 + 3ΣTr Σ()+ 2Tr Σ()µkµk
T + 6µkµk

T Σ

+4Σµkµk
T + 3Σµk

Tµk

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

k=1

N

∑

+ 2N
N−1

µ µ Tµ µ T + 2 1
N 2 Σ2 + 1

N 2 ΣTr Σ()+ 1
N Tr Σ()µ µ T

+2 1
N µ µ T Σ + 2 1

N Σµ µ T + 1
N Σµ Tµ

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

This rather large sum simplifies all the way down to

(153) E Sx T()= S0µ T

thus proving that the sample third central moment is independent of the sample mean.

The covariance of the sample third central moment is much more difficult involving the

multiplication of six multivariate normals together. To determine the covariance, the fol-

lowing matrix must be analyzed.

(154) SST = 1
N−1()2 x j − x () x j − x ()T

x j − x () xk − x ()T xk − x () xk − x ()T

k=1

N

∑
j=1

N

∑

The expectation of this matrix is

 59

(155)
E SST()= 1

N−1()2 E x j − x () x j − x ()T
x j − x () xk − x ()T xk − x () xk − x ()T()

k≠ j

N

∑
j=1

N

∑

+ 1
N−1()2 E xk − x () xk − x ()T xk − x () xk − x ()T xk − x () xk − x ()T()

k=1

N

∑

Separating out the covariance produces

(156)

E SST()= 1
N−1()2 E x j − x () x j − x ()T

x j − x ()()E xk − x ()T xk − x () xk − x ()T()
k≠ j

N

∑
j=1

N

∑

+ 1
N−1()2 E xk − x () xk − x ()T xk − x () xk − x ()T xk − x () xk − x ()T()

k=1

N

∑

+ 1
N−1()2 Cov x j − x () x j − x ()T

x j − x (), xk − x ()T xk − x () xk − x ()T()
k≠ j

N

∑
j=1

N

∑

These expectations are found in Section (7.1.1) and produces the covariance as

(157)

Cov S,ST()= N−1
N 2

ΣTr F0()+ 2F0Σ + 2ΣF0

+4 N
N−1()2 µk − µ () µk − µ ()T Σ µk − µ () µk − µ ()T

k=1

N

∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+ N−1
N 2

4ΣC0Σ + 8Σ2C0 + 8C0Σ
2 + 2C0ΣTr Σ()+ 2ΣTr Σ()C0

+2Tr Σ2()C0 + 4Σ2Tr C0()+ 2ΣTr Σ()Tr C0()

+4Σ 1
N−1 µk − µ ()T Σ µk − µ ()

k=1

N

∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

+ N−1
N 2 ΣTr Σ()2 + 2ΣTr Σ2()+ 8Σ3 + 4Σ2Tr Σ()()

+ 1
N−1()2 Cov x j − x () x j − x ()T

x j − x (), xk − x ()T xk − x () xk − x ()T()
k≠ j

N

∑
j=1

N

∑

The j and k vectors are not quite independent with their covariance being

(158) Cov x j − x (), xk − x ()T()= − 1
N Σ

This means the larger covariance in Equation (157) can be approximated by

 60

(159) Cov x j − x () x j − x ()T
x j − x (), xk − x ()T xk − x () xk − x ()T()= O 1

N ΣC0
2()

Using this and the special case of diagonal covariance

(160) Σ = σ 2I

produces the simplified equation for the covariance of the sample third vector moment as

(161)
 Cov S,ST()= 1

N σ 2 8F0 + Tr F0()− 4C0
2 − 4Tr C0()C0 − Tr C0()2 + 38σ 2C0 +14σ 2Tr C0()()+ O 1

N σ 6()

4.1.5.5 Center Equation Theorem

This section proves that the GDKE estimator of the center of the hypersphere is

truly the center of the sphere when the points all lie on the sphere.

Theorem:

The Center Equation (86) calculates the true center of the hypersphere if all points are

equidistant from the center, i.e. they all lie on the surface of the same hypersphere.

Proof:

The Center Equation can be rearranged to be

(162) 0 = 2C x − c0()+ S.

Expanding this into the summation produces

(163) 0 = 2 xi − x () xi − x ()T x − c0()
i=1

N

∑ + xi − x () xi − x ()T xi − x ()
i=1

N

∑

Combining the two summations gives

 61

(164) 0 = xi − x () xi − x ()T xi + x − 2c0()
i=1

N

∑

The difference can be changed to be around the center instead of the mean thus

(165) 0 = xi − x () xi − c0 + c0 − x ()T xi − c0 + x − c0()
i=1

N

∑

Then expanding the second and third term under the summation produces

(166) 0 = xi − x () xi − c0()T xi − c0()− x − c0()T x − c0()()
i=1

N

∑

The square of the distance of point i from the center is defined as

(167) ri
2 ≡ xi − c0()T xi − c0()

The summation can be then simplified to

(168) 0 = xi − x ()ri
2

i=1

N

∑ − Nx − Nx () x − c0()T x − c0()

The second term is then eliminated, producing the simple summation

(169) 0 = xi − x ()ri
2

i=1

N

∑

It is easy to see that if all points are equidistant (i.e. ri=r) from the center then this

equation becomes true. There are other ways to produce zero with this sum, but that is

where the GDKE steps in. The GDKE solves this equation when the distances are not

equal.

 62

4.2 Skeleton Approaches

Producing a skeleton involves finding the centers of joint rotations, which was

addressed in Section 4.1, the hierarchy of segmentation, and the orientation of each seg-

ment. This thesis does not rely on novel ideas for the remaining steps of producing a

skeleton. The hierarchy of segmentation is known ahead of time. The orientation of a

segment is determined by one of two methods. Either it is given in the raw data, e.g.

magnetic trackers, or it is calculated by the fastest technique known. The fastest way to

calculate the orientation of a segment from positional information of markers is quite in-

tuitive and has been in use for a long time. One of the earliest uses found in motion cap-

ture were published in 2000 by Herda, et al. [50]. Unfortunately, many authors don’t re-

alize that this speedy method of orienting the segment can also be used to calculate the

entire skeleton. The most common approach to calculating a skeleton from motion cap-

ture data is through minimization until the skeleton fits where the rotation points have

been approximated. The minimization involves squishing segments and moving joints

until all joints are nearest to the calculated rotation points. O’Brien, et al. [84] uses a lin-

ear least-squares minimization that produces the rotation points from a collection of time

frames. Their method relies on the constraint that two connected segments have a com-

mon point between them during rotation. Their solution calculates a point from the

knowledge of the orientation of both the parent and the child segments and calculates the

best fit point that remains the most still relative to the two segments. The solution in-

volves the Singular Value Decomposition of a 3Nx6 matrix to produce the common point

that is the rotation point. If the solution fails to come up with an answer, as in the case of

no motion or planar motion, then the closest point between the two coordinate systems is

 63

used. This technique relies heavily on orientation information that is not always avail-

able. In their study, magnetic motion tracking devices are used which contain both posi-

tion and orientation. This is akin to solving for the best-fit sphere around a center. The

state of the science for sphere fitting was presented in Section 4.1 but the improvement

upon the state is now presented in Section 5.1.

Chapter 5 PROPOSED SOLUTION

The proposed solution to provide a quick method to draw a skeleton from motion

capture data is presented in this chapter. The main contribution to the state of the science

is the thorough analysis of the previously fastest sphere-fitting technique and the subse-

quent improvement of the answer.

5.1 Unbiased Generalized Delogne-Kása Estimator

The estimator explained in this chapter is asymptotically unbiased. Asymptoti-

cally unbiased is defined as an inversely proportional relationship with the sample count:

(170) E ˆ q ()= q0 + O 1
N()

where q0 is the parameter that the estimator is trying to estimate. This basically says that

the estimator is expected to get closer to the true answer if more samples are taken. From

the previous discussion in Section 4.1.5, it was shown that the GDKE estimators for cen-

ter and radius do not satisfy this requirement. Our algorithm uses a simple substitution

that turns the GDKE into one with a diminishing bias. It involves the use of an a-priori

estimate of the measurement error in the samples. This is not that unreasonable since

most systems of measurement have some kind of estimate to the measurement error.

Since the sample covariance matrix C is the only biased term in the equation for the

GDKE center, this is what will be altered.

5.1.1 Derivation

The derivation stems from a simple substitution. The substitution

(171) ′ C = C − ˆ Σ

 65

has the convenient property of

(172) E ′ C ()= C0 + Σ − ˆ Σ

If the true measurement covariance is the same as the estimated measurement covariance

then

(173) E ′ C ()= C0

The covariance of the new sample covariance matrix is the same as the old one since we

are just adding a constant to the variable.

(174) Cov ′ C ij , ′ C mn()= Cov Cij ,Cmn()

if the error estimate is the same as the truth error covariance.

Inserting Equation (171) will produce the following equations for the solution of a hyper-

sphere

(175) ˆ ′ c = x + 1
2 ′ C −1S

The radius estimator can be similarly compensated for its bias by

(176) ˆ ′ r = N−1
N Tr ′ C ()+ x − ˆ ′ c ()T x − ˆ ′ c ()

where Tr(*) means the trace of the matrix.

So where does this estimate of the measurement covariance come from? An un-

biased estimator for the trace of the measurement covariance is presented below which

relies on known information about the sphere being measured.

(177) Tr ˆ Σ ()= 1
N xi − c0()T xi − c0()

i=1

N

∑ − r0
2

 66

During calibration (i.e. finding the measurement error), a known sphere with ra-

dius and center can be measured, providing the estimate of the trace of the measurement

covariance.

5.1.2 Statistical Properties

Now it is desirable to find the statistical properties of the new estimators and

compare them to the old GDKE. If the estimate is equal to the true sample covariance

then these new equations have the following statistical properties. The altered covariance

is expanded by the Leontief inverse as

(178) ′ C −1 = C0
−1 + I − C0

−1 ′ C ()k
C0

−1

k=1

∞

∑

Using this expansion, the altered center estimator is

(179) ˆ ′ c = x + 1
2 C0

−1S + 1
2 I − C0

−1 ′ C ()k
C0

−1S
k=1

∞

∑

The expectation of the altered center estimator is

(180) E ˆ ′ c ()= µ + 1
2 C0

−1S0 + 1
2 E I − C0

−1 ′ C ()k
C0

−1S⎛
⎝
⎜ ⎞

⎠
⎟

k=1

∞

∑

Using the same analysis for the GDKE in the previous section, the new estimator has an

expectation of

(181) E ˆ ′ c ()= c0 − 1
2 C0

−1∆S + 1
2 −C0

−1∆C()k
C0

−1 S0 + ∆S()
k= 2

∞

∑

Then, the bias of the new estimator is exposed as

(182) E ˆ ′ c ()= c0 + O 1
N

σC0
−1 F0()

 67

The covariance of the new center estimator, with similar analysis, is

(183) Cov ˆ ′ c , ˆ ′ c T()= 1
N σ 2C0

−1 8F0 + Tr F0()− 4Tr C0()C0 − Tr C0()2()C0
−1 + O σ 4

N()

The expectation of the square of the new radius estimator is

(184) E ˆ ′ r 2()= r0
2 + O 1

N
σµ TC0

−1 F0()

The variance of the radius estimator comes to

(185) Var ˆ ′ r 2()= O 1
N Σ()

The expectation of the measurement covariance estimator is simply

(186) E Tr ˆ Σ ()()= Tr Σ()

The variance of the measurement covariance estimator is found from the expectation of

the square. Starting from the square

(187)

Tr ˆ Σ ()2
= r0

2 − c0
Tc0()2

+ 4 r0
2 − c0

Tc0()c0
T x + 4c0

T x x Tc0 − 4c0
T 1

N 2 x j xi
T xi

j=1

N

∑
i=1

N

∑

+2 c0
Tc0 − r0

2()1
N xi

T xi
i=1

N

∑ + 1
N 2 xi

T xix j
T x j

j=1

N

∑
i=1

N

∑

The expectation of this square is

(188)

E Tr ˆ Σ ()2⎛
⎝
⎜ ⎞

⎠
⎟ = r0

2 − c0
Tc0 − Tr Σ()+ 4c0

Tµ − 2 1
N µi

Tµi
i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ r0

2 − c0
Tc0 − Tr Σ()()

+4c0
Tµ µ Tc0 − 1

N µi
Tµi

i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ + 4 1

N c0
T Σc0 − 8 1

N c0
T Σµ

+ 1
N µi

Tµi
i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

2

+2 1
N Tr Σ2()+ 4 1

N 2 µi
T Σµi

i=1

N

∑

This expectation turns the variance into

 68

(189) Var Tr ˆ Σ ()()= 2 1
N Tr Σ2()+ 2 1

N µi − c0()T Σ µi − c0()
i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

If the measurement covariance is expected to be diagonal (Σ = σ 2I) then the variance of

the variance estimator is

(190) Var ˆ σ 2()= 2 1
ND 2 σ 2 Dσ 2 + 2r0

2()

where D is the dimension of the measurement. A typical use of these new estimators can

be displayed using Mathematica, with exactly the same data as was displayed for the

GDKE in Figure 17.

Figure 18 UGDK Error Ellipse

As can be seen in Figure 18, the true center is within the error ellipsoid. This data con-

tains 100 points generated with a diagonal measurement covariance with all diagonals

 69

equal to 0.052. The Leontief condition (ρ <1) is satisfied with the spectral radius in ques-

tion equal to 0.557238.

These equations show that there still is a bias, but it is asymptotically unbiased. Figure

19 shows a Monte-Carlo run that explicitly shows the 1/√N dependency. The error in the

estimate is compared with how many points were analyzed for a particular joint in some

motion capture data.

Deviation From Mean Rotation Point

y = 0.5117x-0.8125

0.00001

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500

Number of Samples

Figure 19 Sample Size Dependency of Deviation

An example analysis using MLE, UGDK and GDKE is presented in Figure 20. The fig-

ure clearly shows the improvement over the GDKE. The figure shows the bias is re-

moved using the UGDK.

 70

Figure 20 One hundred samples comparison of MLE (green), UGDK (red), GDKE (blue)

There is a case where this new method fails to bring an improvement. The case is

not very common and should not be of concern. The following graph shows the problem.

Error!

UGDK Center Error Compared to CRLB

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

1E-14 1E-10 0.000001 0.01 100 1000000 1E+10 1E+14

Figure 21 UGDK Compared to CRLB

 71

There is no concern here since all of the methods have troubles in this area. This

situation is a bit impractical, as no one wants a system whose measurement error is actu-

ally bigger than the item being measured?

That brings up the point - when should a measurement system be trusted? A cur-

sory glance would say

(191) σ < r0

is when the system should be accepted. Upon further analysis, the answer comes from

the world of economics [101] - the Leontief inverse.

(192) I − A()−1 = I + A + A 2 + A 3 +L

This series expansion is convergent when the spectral radius (i.e. largest absolute eigen-

value) is

(193) ρ A()< 1

The matrix of interest in our application is the sample covariance matrix C. The

matrix can be expanded two ways. The first way is of practical importance and that is

when

(194) ρ C0
−1Σ()< 1

which allows us to expand the inverse of the expectation of the covariance matrix into

(195)

C0 + Σ()−1 = C0

−1 − C0
−1ΣC0

−1 + C0
−1Σ()2

C0
−1 −L

If the spectral radius is greater than one, then the expansion turns into

(196) C0 + Σ()−1
= Σ−1 − Σ−1C0Σ

−1 + Σ−1C0()2
Σ−1 −L

 72

So what is this magical turning point? If the measurement covariance Σ is diago-

nal with equal variances in all directions (i.e. Σ=σ2I) then the spectral radius can be

evaluated as

(197) ρ C0
−1Σ()=

σ 2

λmin

The where λmin is the smallest eigenvalue of the sample covariance matrix C0.

This is still not very useful because eigenvalues are mathematically intensive to solve.

Let us set up a scenario to produce an answer for the limiting case of too many data

points. We want to develop an equation for the eigenvalues when the hypersphere is par-

tially covered by sample points.

Figure 22 Circle with Constrained Data

µ2

θ θ

 73

First is the case for a two-dimensional hypersphere (i.e. circle). The points are

confined to an angular distance θ from the y-axis. Each point on the circle can be ex-

pressed as

(198) v2 =
r0 sina
r0 cosa

⎛

⎝
⎜

⎞

⎠
⎟

where a is the angle from the y-axis. The mean has an asymptote as the number of sam-

ples increase.

(199) µ2 = lim
N →∞

1
N v2

i=1

N

∑ = 1
φ2

v2da
−θ

θ

∫

where

(200) φ2 = da
−θ

θ

∫ = 2θ

This gives us the answer of the asymptotic average being on the y-axis at

(201) µ2 = r0
sinθ

θ
0
1

⎛

⎝
⎜

⎞

⎠
⎟

Similarly, the asymptotic covariance can be found as the integral

(202) C2 = 1
φ2

v2 − µ2() v2 − µ2()T da
−θ

θ

∫ =
λmax 2 0

0 λmin 2

⎛

⎝
⎜

⎞

⎠
⎟

This matrix happens to be diagonal containing all of the eigenvalues which turn out to be

(203) λmin 2 = r0
2 θ 2θ + sin 2θ()()− 4sin2 θ

4θ 2 and

(204) λmax 2 = r0
2 θ − cosθ sinθ

2θ

 74

The three-dimensional hypersphere (i.e. sphere) is similarly evaluated only this

time, the solid angle must be integrated. The points are confined to an angular distance θ

from the z-axis. The point on the sphere is

(205) v3 =
r0 sinacosb
r0 sinasinb

r0 cosa

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The asymptotic limit of the average point is then

(206) µ3 = 1
φ3

v3 sinadbda
0

2π

∫
0

θ

∫

where

(207) φ3 = sinadbda
0

2π

∫
0

θ

∫ = 2π 1− cosθ()

The asymptotic limit of the average lies on the z-axis at

(208) µ3 = r0 cos2 θ
2

⎛
⎝
⎜

⎞
⎠
⎟

0
0
1

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

Similarly, the asymptotic covariance is evaluated as

(209) C3 = 1
φ3

v3 − µ3() v3 − µ3()T sinadbda
0

2π

∫
0

θ

∫ =
λmax 3 0 0

0 λmax 3 0
0 0 λmin 3

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

The diagonals of this matrix have two equal eigenvalues (the largest) and one smallest

value.

(210) λmin 3 = r0
2 1

3 sin4 θ
2

⎛
⎝
⎜

⎞
⎠
⎟ and

 75

(211) λmax 3 = r0
2 1

3 2 + cosθ()sin2 θ
2

⎛
⎝
⎜

⎞
⎠
⎟

Following this answer, a good measurement condition for the sphere is when

(212) σ < r0
1
3

sin2 θ
2

⎛
⎝
⎜

⎞
⎠
⎟

whereas the best condition to get a good answer for a circle is when

(213) σ < r0

θ 2θ + sin 2θ()()− 4sin2 θ

2θ

5.2 Cylindrical Joint Solution

Special considerations are needed when a cylindrical joint is suspected. In this

case, a point on the upper segment will always draw a circular arc thereby remaining pla-

nar. Any method for finding a sphere where only a circle exists will fail. The planar

condition can be discovered when the sample covariance matrix C becomes near singu-

lar:

(214) C ≈ 0

This occurs when the rank of C is less than the number of dimensions. In es-

sence, one dimension must be removed from the sphere equation to get the circle estima-

tion. The sample covariance matrix can be rewritten using its eigensystem values.

(215) C = λivivi
T

i=1

D

∑

where λi are the eigenvalues and ν i are the corresponding unit eigenvectors. The inverse

of the matrix can be similarly expanded with the same eigensystem as

 76

(216) C−1 =
1
λi

ν iν i
T

i=1

D

∑

The GDKE solution to the circle in 3D space can be calculated two ways. The

first way does not involve inverting small values. This is achieved by removing the ei-

genvalues that are below a certain limit. This reduced matrix can then be used in the

GDKE formula producing

(217) ˆ c = x + 1
2

1
λi

ν iν i
TS

λi >ε
∑

(218) ˆ r = 1
4λi

2 ν i
TS()2

+ N−1
N λi

λi >ε
∑

This new center is the best-fit estimate of a circle for the data. This equation is

successful even if the sample covariance is exactly singular. This formula can be used to

calculate the center and radius of curvature for curvilinear paths in any dimensional

space. For the rotation point of a joint, it has a flaw. A cylindrical joint rotates about an

axis. The center that is calculated lies on this axis but might not be the volumetric center

of the cylinder. To overcome this, two markers on either side of the center can be aver-

aged.

5.3 Multiple Marker Solution

For multiple markers going around the same center of rotation, another formula

can be achieved by the same analysis of least squares. This technique is good to use

when more than one marker is available. It has the ability to average out errors when one

marker is too close to the rotation point or has other systematic problems. The gradient

of the sum of variances (cf. Equation (85)) is

 77

(219) ∇sm
2 = 4 2Cp ˆ c m − x p()− Sp()

p=1

M

∑

where M is the number of markers. Setting this to zero will provide a solution for multi-

ple markers:

(220) ˆ c m = Cp
p=1

M

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

−1

Cp x p + 1
2 Sp

p=1

M

∑

and the individual radius becomes

 (221) ˆ r p = N−1
N Tr Cp()+ x p − ˆ c m()T

x p − ˆ c m()

where M is the number of markers and the subscript p indicates values that utilize the

single marker’s positions.

The same unbiased analysis applies to this multiple marker version and results in

(222) ˆ ′ c m = ′ C p
p=1

M

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

−1

′ C p x p + 1
2 Sp

p=1

M

∑ and

(223) ˆ ′ r p = N−1
N Tr ′ C p()+ x p − ˆ ′ c m()T

x p − ˆ ′ c m().

The matrix that is to be inversed here is still a positive-definite matrix since positive-

definite matrices added together still produce a positive-definite matrix. This allows for

the speedier Cholesky decomposition just like before. The singular values can be ex-

cluded just like in Chapter 5.2. An example of the MGDK method is presented in Figure

23.

 78

Figure 23 MGDK example

This example shows what happens when the individual circles are compared to

that when combined in the MGDK. The outer circle solution is drawn in red; the inner

circle solution is drawn in blue, and the MGDK solution is drawn in green. The example

shows a dramatic improvement over both of the individual circle calculations.

5.4 Incrementally Improved Solution

A more refined answer can be achieved when using a incremental improvement

formula. The idea here is a group of samples are collected and an answer is retrieved

 79

from the GDKE or UGDK formulae. Then a new sample is added, refining the previous

answer for the center. Starting off simple, the mean has a recursion of

(224) x n +1 = x n +
xn +1 − x n

n +1
, x 1 = x1

One definition will make the following equations smaller:

(225) δn ≡ xn − x n

(226) δn +1 = n x n +1 − x n()

The sample covariance matrix has a recurrence relationship of

(227) Cn +1 =
n −1

n
Cn +

n +1
n2 δn +1δn +1

T , C1 = 0

The unbiased improvement of the sample covariance matrix is

(228) ′ C n +1 =
n −1

n
′ C n −

1
n

ˆ Σ +
n +1
n2 δn +1δn +1

T , ′ C 1 = 0

The inverse of the covariance matrix also has a recurrence - without doing an additional

matrix inverse

(229) Cn +1
−1 =

n
n −1

Cn
−1 I +

δn +1δn +1
T Cn

−1

n n−1()
n +1 + Tr δn +1δn +1

T Cn
−1()

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Putting these together produces a recurrence relationship for the center of the hypersphere

(230) Sn +1 = n−1
n Sn + 1

n −2Cn +1 − Tr Cn +1()+ n +1() n +2()
n 2 δn +1δn +1

T()δn +1

(231) ˆ c n +1 = x n +1 + 1
2 Cn +1

−1 Sn +1

(232) ˆ r n +1
2 = n

n +1 Tr Cn +1()+ x n +1 − ˆ c n +1()T x n +1 − ˆ c n +1()

 80

The cost of the incremental improvement to produce the new center and radius is

measured in the FLOP count:

(233) FLOPs =17 1
2 D2 + 23 1

2 D +12

For a sphere, the FLOPs are 123 for every new point. When compared to the FLOPs for

the GDKE method, this incremental approach is about four times slower. This makes the

incremental approach a last resort when a few extra points need to be added to a previ-

ously calculated center and radius. This new estimator has the distinct advantage of con-

stant memory requirements no matter how many points are analyzed.

5.5 Hierarchical Skeleton Solution

5.5.1 Arbitrary Figure

An arbitrary figure can be drawn at each time frame if certain criteria are met for

the data at that time frame. An arbitrary figure is made up of linked segments stored in a

single parent-multiple children tree structure. The drawing of the figure consists of con-

necting the rotation points from parent to children. Each line drawn would then be fixed

inside the segment. The process would continue from the root segment to the leaf seg-

ments. The leaf segments would have to just draw lines to the existing data points on that

segment.

Starting with the original data, each assigned to their corresponding segment (xs i),

the point must be transformed to the coordinate system fixed to the parent of the segment

s.

(234) ysi = Ms−1
T xsi − ps−1()

These new vectors (ys i) are what are passed to the spherical center estimator for-

mula. This formula remains valid and allows the process to continue to the children only

if both p and M can be determined for the parent. This amounts to being able to con-

struct three axes and a point that are fixed on a segment. There are three cases that are

acceptable and are the criteria for being able to draw the entire skeleton at a particular

time frame.

 82

5.5.1.1 Case 1 – Three or more points

This is the easiest case to determine the segment’s coordinate system. First, pick

three of the available points, (xs 1, xs 2, xs 3). One of the points must be chosen as the cen-

ter of the coordinate system

(235) ps = xs1

The three coordinate axes must then be constructed in a mutually perpendicular

fashion (right-handed coordinate system). Two points can determine the first direction:

(236) ˆ x =
xs2 − xs1

xs2 − xs1

A second direction can be determined from the third point and the first direction:

(237) ˆ z =
xs3 × ˆ x

xs3 × ˆ x

The third direction can be determined from the previous two directions:

(238) ˆ y = ˆ z × ˆ x

The floating point operations involved in calculating one coordinate system is

(239) FLOP3 = 39

Drawing a skeleton using solely this case of markers involves calculating the centers of

rotation for all non-leaf segments in the hierarchical figure.

(240) FLOPs = NS 39 + NS − NL()18

where NS is the number of segments and NL is the number of leaf segments. A typical

human figure with fourteen segments and five leaf segments produces

 83

(241) FLOPs = 708

5.5.1.2 Case 2 – Two points

This relies on some previously calculated information to determine the coordinate

system. Three points are needed and some point must be divined that is fixed on the

segment. Luckily, the common rotation point between the segment and its parent has

been previously calculated because of the tree traversal. The three available points are

now (xs 1, xs 2, cs). One of these points must be chosen as the center of the coordinate sys-

tem

(242) ps = xs1

The center of rotation for this segment is determined from the parent’s coordinate system

with

(243) cs = ps−1 + Ms−1˜ c s

where ˜ c s is a constant vector in the parent’s coordinate system pointing at the child’s ro-

tation point. The three coordinate axes must then be constructed in a mutually perpen-

dicular fashion (right-handed coordinate system). Two points can determine the first di-

rection:

(244) ˆ x =
xs2 − xs1

xs2 − xs1

A second direction can be determined from the third point and the first direction:

(245) ˆ z =
cs × ˆ x
cs × ˆ x

 84

The third direction can be determined from the previous two directions:

(246) ˆ y = ˆ z × ˆ x

The floating point operations involved in calculating one coordinate system is

(247) FLOP2 = 57 + FLOPP

where FLOPP is the FLOPs needed to calculate the coordinate matrix M of the parent.

Drawing a skeleton using solely this case of markers involves calculating the centers of

rotation for all non-leaf segments in the hierarchical figure.

(248) FLOPs = NS 39 + NS − NL + N2()18

where N2 is the number of segments with two data points with a parent with three.

5.5.1.3 Case 3 – One Point

This is the easiest case to determine the segment’s coordinate system. First, pick

three of the available points, (xs 1, cs). One of the points must be chosen as the center of

the coordinate system

(249) ps = xs1

The three coordinate axes must then be constructed in a mutually perpendicular

fashion (right-handed coordinate system). Two points can determine the first direction:

(250) ˆ x =
cs − xs1

cs − xs1

(251) cs = ps−1 + Ms−1˜ c s

A second direction can be determined from the null vector previously calculated:

 85

(252) ˆ z = vs

(253) vs = Ms−1˜ v s

The third direction can be determined from the previous two directions:

(254) ˆ y = ˆ z × ˆ x

The rotation matrix Ms can now be constructed by placing the three coordinate axes as

columns in the matrix.

(255) Ms =

ˆ x x ˆ y x ˆ z x
ˆ x y ˆ y y ˆ z y
ˆ x z ˆ y z ˆ z z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

These three cases will allow the reconstruction of an entire skeleton as long as the

root segment has at least three markers (Case 1). The recursive nature of the other cases

precludes them from the root.

The floating point operations involved in calculating one coordinate system is

(256) FLOP1 = 54 + FLOPP

where FLOPP is the FLOPs needed to calculate the coordinate matrix M of the parent.

Drawing a skeleton using solely this case of markers involves calculating the centers of

rotation for all non-leaf segments in the hierarchical figure.

(257) FLOPs = NS 39 + NS − NL + N1()18

where N1 is the number of segments with one data points with a parent with three.

 86

5.5.2 Predefined Marker Association

During motion capture, markers are placed over the body and tracked by one of

several methods available. The animator of the tracked data either has to have previous

knowledge of the marker’s associated segment or come up with an algorithm to do the

association. For those with no a-priori knowledge, the algorithm can get time consuming.

Some authors [60] use this method by classifying markers together that don’t move rela-

tive to each other. The grouping methods work when there is more than one marker per

segment and the hierarchy of segments is well defined in the data. These methods are

very slow though.

In order to figure out which markers are associated with which segments, the

names of the markers within the data were analyzed for normal naming conventions. The

association was then hand written to a text file that is read after the data is read. Naming

conventions are fairly straightforward for most sets of data. Examples of normal naming

conventions and their segments can be found in Table 1.

Table 1 Marker Associations

Marker Name Associated Segment Location on Segment

RFHD Head anterior right top

LFHD Head anterior left top

RSHO Chest mid right top

RFTShould Chest anterior right top

 87

RRRShould Chest posterior right top

LSHO Chest mid left top

LFTShould Chest anterior left top

LRRShould Chest posterior left top

CLAV Chest anterior mid top

RUPA Upper Right Arm mid right

LUPA Upper Left Arm mid left

RELB Upper Right Arm mid right bottom

LELB Upper Left Arm mid left bottom

RARM Lower Right Arm mid right

LARM Lower Left Arm mid left

RWRB Lower Right Arm posterior right top

RWRA Lower Right Arm anterior right bottom

LWRB Lower Left Arm posterior left top

LWRA Lower Left Arm anterior left bottom

RFIN Right Hand mid right anterior

 88

LFIN Left Hand mid left posterior

STRN Chest anterior mid bottom

RTHI Upper Right Leg mid right top

RGTR Upper Right Leg mid right top

LTHI Upper Left Leg mid left

LGTR Upper Left Leg mid left top

RKNE Upper Right Leg mid right bottom

LKNE Upper Left Leg mid left bottom

RLEG Lower Right Leg mid right top

RTIB Lower Right Leg mid right

LLEG Lower Left Leg mid left

LTIB Lower Left Leg mid left

RANK Lower Right Leg mid right bottom

LANK Lower Left Leg mid left bottom

RMT5 Right Foot anterior right top

LMT5 Left Foot anterior left top

 89

RTOE Right Foot anterior left top

LTOE Left Foot anterior right top

RHEE Right Foot posterior mid top

LHEE Left Foot posterior mid top

RBHD Head posterior mid right

LBHD Head posterior mid left

C7 Chest posterior mid top

R10 Chest posterior right top

RBAC Chest posterior right top

T10 Chest posterior mid

RFWT Hips anterior right top

LFWT Hips anterior left top

RBWT Hips posterior mid top

LBWT Hips posterior mid top

RPelvis Hips posterior right mid

 90

This is a fairly complete list of abbreviations but there are many operators and

systems that use either more extension collections of markers or don’t even follow the

naming convention. A particular association for a dataset can be initially guessed and

then with trial-and-error, the association can be improved. This thesis has created asso-

ciation files for each dataset that was analyzed. The files are simple texts files that relate

the name given to the marker in the dataset and the “standard” name as given in Table 1.

The format is explained in Chapter 7.3.1.

Chapter 6 RESULTS

6.1 Case Study of CMU Data 60-08

The CMU Graphics Lab produced a one minute long motion capture data-set of a

salsa dance in 60-08. The data file contains 3421 time slices for 41 markers on two fig-

ures. This case study will concentrate on analyzing the performance of the UGDK in de-

termining the rotation points in the female subject. Four passes on the data will collect

rotation point calculations, each pass randomly removing from 0 to 99% of the time

frames in increments of 1%. 400 calculated rotation points were collected for each seg-

ment modeled. The calculated constants are the relative rotation points as referenced in

each segment’s parent’s coordinate system. The 400 calculations were averaged and the

standard deviations were calculated as well. These values are presented in the tables be-

low.

Table 2 Table of Means of Rotation Points

Rotation Point Mean x (m) Mean y (m) Mean z (m)

 91

Waist 0.13324824 -0.063898286 0.130439024

Neck -0.077279042 -0.003811468 -0.010261576

Left Ankle 0.437510805 -0.032639212 0.040255145

Left Wrist 0.110981565 -0.075779216 0.014702334

Left Elbow 0.283393628 -0.060979142 0.012893845

Left Knee -0.244076283 -0.07952933 0.009066338

Right Elbow 0.253621623 -0.146993545 -0.001828167

Right Knee 0.188950453 -0.080176833 -0.003163181

Right Ankle 0.241527156 -0.065156728 0.006255086

Right Wrist 0.211446183 -0.069707086 -0.019905695

Left Shoulder 0.01607591 -0.069950812 -0.119403856

Left Hip 0.003814737 -0.019484536 -0.198284078

Right Shoulder -0.00219989 -0.069832041 0.132929455

Right Hip 0.263017638 -0.022520684 -0.202218743

Table 3 Table of Standard Deviations of Rotation Points

 92

Rotation Point σx σy σz

Waist 0.003896258 0.004605284 0.014676666

Neck 0.001768695 0.001355136 0.001206322

Left Ankle 0.01981794 0.011053845 0.011233588

Left Wrist 0.002071725 0.002539415 0.000947775

Left Elbow 0.015518996 0.004050952 0.00398332

Left Knee 0.011752322 0.002762332 0.003553895

Right Elbow 0.017223326 0.00815392 0.004313482

Right Knee 0.016813465 0.003744518 0.003104466

Right Ankle 0.129159355 0.034143233 0.020772927

Right Wrist 0.00163169 0.000935295 0.000834657

Left Shoulder 0.001960198 0.000852649 0.00314934

Left Hip 0.001577703 0.001635193 0.004697627

Right Shoulder 0.000891381 0.00158762 0.003755364

Right Hip 0.001447724 0.00128305 0.004635324

 93

Most of the standard deviations are less than one centimeter, but there are some

significant outliers like the right ankle. Further analysis of the calculated points for the

ankles and elbows show that the four runs produced two answer due to different orienta-

tions of the parent’s reference frame. Therefore the standard deviation presented above

for the ankles and elbows are erroneously calculating the deviation from the average of

two distinct means. It is more appropriate to calculate the standard deviation from a sin-

gle mean. When these outliers are removed from the calculation of the deviation, a very

informative graph can be produced below. Every calculation for every segment is pre-

sented below as a deviation from the single mean rotation point versus the number of

sample.

Deviation From Mean Rotation Point

y = 0.5117x-0.8125

0.00001

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500

Number of Samples

 94

Figure 24 Inverse Power Law for Rotation Point Calculation

As can be readily seen from the above graph, a statistically significant amount of

calculations are within one centimeter of accuracy when analyzing more than about 200

samples. The accuracy gets better on average with a power law close to 1/√N.

6.2 Case Study of Eric Camper Data

The motion capture data in the ericcamper.c3d was analyzed to produce a skele-

ton. The results of the drawing produced favorable results due to the range of motion

(ROM) involved in the exercise recorded. The subject did various martial arts maneuvers

that moved every joint involved in drawing. One time frame is presented in the following

figure. Although this is a purely qualitative analysis, the picture shows what appears to

be a natural pose for all joints during a karate exercise.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figure 25 Eric Camper Skeleton

 95

6.3 Comparison

The following table provides a succinct view of all of the methods studied in this

thesis. It provides the positive and negative aspects of the methods. This table makes it

easier to choose which solution is right for their particular situation.

Table 4 Comparison of Center Estimators

Method Advantages Disadvantages

MLE accepted theory of best solution slow, initial guess, may not converge

LLS semi fast O(236N), no initial guess loss of significant figures

GDKE fast O(26N), no initial guess biased O(σ)

UGDK* fast O(26N), no initial guess, asymp-

totically unbiased

slightly biased O(σ/√N)

SGDK* removes singularities matrices slower – need eigenvalues

MGDK* handles multiple markers, averages

out errors

slightly biased O(σ/√N)

 96

IGDK* space O(1), time O(123N) uses GDK first

* new solutions developed in this thesis

6.4 Speed

A Monte-Carlo experiment was set up to determine the speed of the various

sphere-fit algorithms. Up to a million samples were chosen on a sphere with varying

measurement error, confinement angle, sphere center and sphere radius. The measure-

ment error varied from 1x10-11 to 1x1012. The confinement angle varied from 0 to 180°.

The sphere center varied as much as 2 around the origin. The radius varied 0 to 37. The

linear algebra algorithms were all implemented from well-accepted implementations pre-

sented in Numerical Recipes in C [94]. The code was compiled optimized for a PowerPC

G4 processor and run on a 1GHz Apple PowerBook 12”. The next graph presents the

timing for the four algorithms.

 97

Timing of Sphere-Fit Algorithms

0.001

0.01

0.1

1

10

100

1000

1000 10000 100000 1000000

Sample Count

MLE

LLS

IGDK

GDKE

Figure 26 Timing of Algorithms

The previous graph shows that all of these algorithms are linearly dependent on

sample count (i.e. O(N)). It further shows the MLE as messier with two distinct multi-

plication factors to this dependency. More information can be retrieved if the times are

compared to the GDKE’s time. The next graph shows this ratio compared to the meas-

urement error.

 98

Timing Comparison of Sphere-Fit Algorithms

1

10

100

1000

1E-12 1E-08 0.0001 1 10000 1E+08 1E+12

Measurement Error

MLE
LLS
IGDK

Figure 27 Timing Comparison to GDKE

As can be seen, the GDKE is always faster. The GDKE is 2.17 times faster than

IGDK on average. The GDKE is 11.05 times faster than the LLS method and about 80

times faster than the MLE when the measurement error is less than one. The FLOP count

predicts this closely with LLS = 236/26 = 9.07 and IGDK = 123/26 = 4.73. The differ-

ences between the FLOP count and experiment can be accounted for in the hardware and

software overhead that FLOP count never accounts for.

6.5 Conclusion

This five year research effort into trying to speed up motion capture animation re-

sulted in the discovery of the vital low-level hole that needed filling. That hole is the

speedy calculations of rotation points directly from motion capture data. This thesis ex-

plains the fastest known general method for calculating these rotation points and can be

 99

as much as ten times faster than the next fastest method. An international community of

computer scientists has accepted the initial results of this research earlier this year as a

full paper [63]. This thesis demonstrates the mathematics, probabilities, and implementa-

tions for this new method for determining the center of a hypersphere. The UGDK

method has further impact in a vast collection of fields as diverse as character recognition

to nuclear physics where an algorithm is needed for the speedy recovery of the center of a

circle or sphere. The UGDK is expected to play a vital role in the process of determining

a skeleton from motion capture data. The MGDK adds robustness to the equations allow-

ing to use every bit of available data. The IGDK further has the application of being an

ideal algorithm to burn into a silicon chip whose memory requirements are constrained.

6.6 Important Contributions

First and foremost, the best contribution to the science for this dissertation is the

fastest, asymptotically unbiased estimator of a hypersphere

 ˆ ′ c = x + 1
2 C − ˆ Σ ()−1

S

 ˆ ′ r = N−1
N Tr C − ˆ Σ ()+ x − ˆ ′ c ()T x − ˆ ′ c ()

and for multiple markers

 ˆ ′ c m = Cp − ˆ Σ ()
p=1

M

∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

−1

Cp − ˆ Σ ()x p + 1
2 Sp()

p=1

M

∑ .

These made it possible for a closed form solution of a skeleton from generic, noisy mo-

tion capture data. Understanding when the best measurement conditions are for reducing

the risks of measurements is important. This paper presents an easy to measure limit to

 100

strive for when trying to calculate the center of a sphere with partial coverage. The rela-

tionship

 σ < r 1
3

sin2 θ
2

⎛
⎝
⎜

⎞
⎠
⎟

must be satisfied in order to achieve good results using our algorithm.

Another important contribution is the full analysis of the Cramér-Rao Lower

Bound for the confined points on a hypersphere. The circle CRLB is

CRLB2 = 1
N σ 2 2θ

2θ θ + cosθ sinθ()− 4 sin2 θ

2θ θ + cosθ sinθ()− 4 sin2 θ
θ − cosθ sinθ

0 0

0 2θ −2sinθ
0 −2sinθ θ + cosθ sinθ

⎛

⎝

⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟ ⎟

and the spherical CRLB is

 CRLB3 = 1
N σ 2 3

sin4 θ
2()

sin2 θ
2()

2 + cosθ()
0 0 0

0
sin2 θ

2()
2 + cosθ()

0 0

0 0 1 −cos2 θ
2()

0 0 −cos2 θ
2() 3cos4 θ

2()+ sin4 θ
2()

3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

These covariances of the estimators allow us to determine the best possible error

in any estimator for the sphere.

The contributions of this thesis cover every aspect of generating arbitrary skele-

tons from motion capture data in a speedy fashion without compromising accuracy.

 101

6.7 Further Research

The UGDK estimators are an improvement on existing science but they are

strictly dependent on a-priori knowledge of the measurement error. It has been shown

that the measurement error trace can itself be estimated but not the whole measurement

covariance matrix. An estimator for the whole matrix would be most ideal but was not

found in the course of this study. In addition, the statistical properties were not explored

in this paper when the points do not have the same measurement covariance. This will

surely introduce an additional error or bias in the estimators’ answers.

Chapter 7 APPENDIX

7.1 Mathematical Proofs

7.1.1 Moments of Multivariate Normal

The probability analysis presented in this thesis relies on determining the mo-

ments of the multivariate normal probability distribution. A multivariate normal deviate

has the probability density function of

(258) fN x;µ,Σ()=
1

2π()N Σ
e− 1

2 x−µ()T Σ−1 x−µ()

for a deviate x defined by

(259) x = x1 x2 L xN()T

and the distribution parameters of

(260) µ = µ1 µ2 L µN()T

(261)

Σ =

Σ11 Σ12 L Σ1N

Σ21 Σ22 L Σ2N

M M O M

ΣN1 ΣN 2 L ΣNN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The moment generating function is

(262) MN t;µ,Σ()= eµ T t + 1
2 t T Σt

where

(263) t = t1 t2 L tN()T

The moments can be retrieved from the derivatives of the moment generating function by

 103

(264)

E xi
k x j

l xk
m L()=

∂ k

∂ti
k

∂ l

∂t j
l

∂m

∂tk
m LMN

t= 0

That leads to the moments of the elements of the vector x

(265) E xi()= µi

(266) E xix j()= µiµ j + Σij

(267) E xix j xk()= µiµ jµk + Σijµk + Σikµ j + Σ jkµi

(268)
E xix j xk xl()= µiµ jµkµl + ΣijΣkl + ΣikΣlj + ΣilΣ jk

+Σijµkµl + Σikµ jµl + Σilµ jµk + Σ jkµiµl + Σ jlµiµk + Σklµiµ j

(269)

E xix j xk xl xm()= µiµ jµkµlµm

+Σij µkµlµm + Σklµm + Σkmµl + Σlmµk()
+Σik µ jµlµm + Σ jlµm + Σ jmµl + Σlmµ j()
+Σil µ jµkµm + Σ jkµm + Σ jmµk + Σkmµ j()
+Σim µ jµkµl + Σ jkµl + Σ jlµk + Σklµ j()
+Σ jkµiµlµm + Σ jlµiµkµm + Σ jmµiµkµl

+Σ jmΣklµi + Σ jkΣlmµi + Σ jlΣmkµi

+Σklµiµ jµm + Σkmµiµ jµl + Σlmµiµ jµk

 104

(270)

E xix j xk xl xm xn()= µiµ jµkµlµmµn

+Σij

µmµnµkµl + ΣmnΣkl + ΣmkΣnl + ΣknΣlm

+Σklµmµn + Σkmµlµn + Σknµlµm + Σlmµkµn

+Σnlµkµm + Σmnµkµl

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

+Σik

µ jµlµmµn + Σ jlΣmn + Σ jmΣnl + Σ jnΣlm

+Σ jlµmµn + Σ jmµlµn + Σ jnµlµm + Σlmµ jµn

+Σnlµ jµm + Σmnµ jµl

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+Σil

µ jµkµmµn + Σ jkΣmn + Σ jmΣkn + Σ jnΣkm

+Σ jkµmµn + Σ jmµkµn + Σ jnµkµm + Σkmµ jµn

+Σknµ jµm + Σmnµ jµk

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+Σim

µ jµkµlµn + Σ jkΣnl + Σ jlΣkn + Σ jnΣkl

+Σ jkµlµn + Σ jlµkµn + Σ jnµkµl + Σklµ jµn

+Σknµ jµl + Σnlµ jµk

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+Σin

µ jµkµlµm + Σ jkΣlm + Σ jlΣkm + Σ jmΣkl

+Σ jkµlµm + Σ jlµkµm + Σ jmµkµl + Σklµ jµm

+Σkmµ jµl + Σlmµ jµk

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+µi

Σ jk µlµmµn + Σlmµn + Σlnµm + Σmnµl()
+Σ jl µkµmµn + Σkmµn + Σknµm + Σmnµk()
+Σ jm µkµlµn + Σklµn + Σknµl + Σlnµk()
+Σ jn µkµlµm + Σklµm + Σkmµl + Σlmµk()
+Σklµ jµmµn + Σkmµ jµlµn + Σknµ jµlµm

+ΣknΣlmµ j + ΣklΣmnµ j + ΣkmΣnlµ j

+Σlmµ jµkµn + Σlnµ jµkµm + Σmnµ jµkµl

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

If all indices are equal, the expectations simplify to

(271) E xi()= µi

(272) E xi
2()= µi

2 + Σii

(273) E xi
3()= µi

3 + 3Σiiµi

(274) E xi
4()= µi

4 + 6Σiiµi
2 + 3Σii

2

 105

(275) E xi
5()= µi

5 +10Σiiµi
3 +15Σii

2µi

(276) E xi
6()= µi

6 +15Σiiµi
4 + 45Σii

2µi
2 +15Σii

3

The vector moments are

(277) E x()= µ

(278) E xxT()= µµT + Σ

(279) E xT x()= µTµ + Tr Σ()

(280) E xxT x()= µµTµ + Tr Σ()µ + 2Σµ

(281) E xxT xxT()= µµTµµT + 2Σ2 + ΣTr Σ()+ Tr Σ()µµT + 2µµT Σ + 2ΣµµT + ΣµTµ

(282) E xxT axT()= µµT aµT + ΣµT a + ΣaµT + µaT Σ

(283) E xT xxT x()= µTµµTµ + 2Tr Σ2()+ Tr Σ()2 + 2Tr Σ()µTµ + 4µT Σµ

(284)
E xxT xxT x()= µµTµµTµ + 2Tr Σ()µµTµ + 4µµT Σµ + 4ΣµµTµ

+2Tr Σ2()µ + Tr Σ()2µ + 4Tr Σ()Σµ + 8Σ2µ

(285)

E xxT xxT axT()= µµTµµT aµT + ΣaTµµTµ + ΣTr Σ()aTµ + Tr Σ()µµT aµT

+2ΣaT Σµ + ΣaµTµµT + 2ΣaµT Σ + ΣaµTTr Σ()+ 2ΣµaTµµT

+2ΣµaT Σ + 2ΣΣaTµ + 2ΣΣaµT + µµTµaT Σ + 2µaTµµT Σ

+2µaT ΣΣ + µaT ΣTr Σ()+ 2µaT ΣµµT

(286)
E xxT abT xxT()= µµT abTµµT + ΣaT Σb + ΣabT Σ + ΣbaT Σ + ΣµT abTµ

+ΣabTµµT + ΣbaTµµT + µµTbaT Σ + µµT abT Σ + µbT ΣaµT

(287)
E xxT AxxT()= µµT AµµT + ΣTr AΣ()+ ΣAΣ + ΣAT Σ + ΣµT Aµ

+ΣAµµT + ΣATµµT + µµT AT Σ + µµT AΣ + Tr AT Σ()µµT

 106

(288)

E xxT xxT xxT()= µµTµµTµµT + ΣTr Σ()2 + 2ΣTr Σ2()+ 8Σ3 + 4Σ2Tr Σ()
+4ΣµT Σµ + 8ΣµµT Σ + 4Σ2µTµ + 8Σ2µµT + 8µµT Σ2

+4µµT ΣTr Σ()+ 4ΣTr Σ()µµT + 2Tr Σ2()µµT + Tr Σ()2µµT

+2ΣTr Σ()µTµ + 4ΣµµTµµT + 4µµTµµT Σ + 4µµT ΣµµT

+2µµTµµTTr Σ()+ ΣµTµµTµ

The vector covariances are calculated with the definition of

(289) Cov a,b()= E ab()− E a()E b()

to produce the following

(290) Cov x, xT()= Σ

(291) Cov xT , x()= Tr Σ()

(292) Cov x, xT x()= 2Σµ

(293) Cov xxT , x()= Tr Σ()µ + Σµ

(294) Cov x, xT xxT()= 2Σ2 + ΣTr Σ()+ 2ΣµµT + ΣµTµ

(295) Cov xxT , xxT()= Σ2 + ΣTr Σ()+ Tr Σ()µµT + µµT Σ + ΣµµT + ΣµTµ

(296) Cov xxT x, xT()= 2Σ2 + ΣTr Σ()+ 2µµT Σ + ΣµTµ

(297) Cov x, xT axT()= ΣµT a + ΣaµT

(298) Cov xxT ,axT()= ΣµT a + µaT Σ

(299) Cov xxT a, xT()= ΣµT a + µaT Σ

(300) Cov xT ,xxT x()= 2Tr Σ2()+ Tr Σ()2 + Tr Σ()µTµ + 2µT Σµ

(301) Cov xT x, xT x()= 2Tr Σ2()+ 4µT Σµ

(302) Cov xT xxT ,x()= 2Tr Σ2()+ Tr Σ()2 + Tr Σ()µTµ + 2µT Σµ

 107

(303) Cov x, xT xxT x()= 4ΣµµTµ + 4Tr Σ()Σµ + 8Σ2µ

(304) Cov xxT ,xxT x()= Tr Σ()+ 3Σ() µµT + Tr Σ()()+ 2µµT Σ + 2Tr Σ2()+ 6Σ2()µ

(305) Cov xxT x, xT x()= 4µµT Σµ + 2ΣµµTµ + 2Tr Σ2()µ + 2Tr Σ()Σµ + 8Σ2µ

(306)
Cov xxT xxT , x()= Tr Σ()µµTµ + 2µµT Σµ + ΣµµTµ

+2Tr Σ2()µ + Tr Σ()2µ + 3Tr Σ()Σµ + 6Σ2µ

(307)

Cov x,xT xxT xxT()= ΣTr Σ()2 + 2ΣTr Σ2()+ 8Σ3 + 4Σ2Tr Σ()
+4ΣµT Σµ + 8ΣµµT Σ + 4Σ2µTµ + 8Σ2µµT

+4ΣTr Σ()µµT + 2ΣTr Σ()µTµ + 4ΣµµTµµT + ΣµTµµTµ

(308)

Cov xxT ,xxT xxT()= ΣTr Σ()2 + 2ΣTr Σ2()+ 6Σ3 + 3Σ2Tr Σ()
+4ΣµT Σµ + 6ΣµµT Σ + 3Σ2µTµ + 6Σ2µµT + 6µµT Σ2

+4µµT ΣTr Σ()+ 3ΣTr Σ()µµT + 2Tr Σ2()µµT + Tr Σ()2µµT

+2ΣTr Σ()µTµ + 3ΣµµTµµT + µµTµµT Σ + 2µµT ΣµµT

+µµTµµTTr Σ()+ ΣµTµµTµ

(309)

Cov xxT x,xT xxT()= ΣTr Σ()2 + 2ΣTr Σ2()+ 8Σ3 + 4Σ2Tr Σ()
+4ΣµT Σµ + 4ΣµµT Σ + 4Σ2µTµ + 8Σ2µµT + 8µµT Σ2

+2µµT ΣTr Σ()+ 2ΣTr Σ()µµT + 2Tr Σ2()µµT + 2ΣTr Σ()µTµ

+2ΣµµTµµT + 2µµTµµT Σ + 4µµT ΣµµT + ΣµTµµTµ

The vector central moments are

(310) E x − µ()= 0

(311) E x − µ() x − µ()T()= Σ

(312) Cov x − µ(), x − µ()T()= Σ

(313) E x − µ()T x − µ()()= Tr Σ()

(314) Cov x − µ()T , x − µ()()= Tr Σ()

 108

(315) E x − µ() x − µ()T x − µ()()= 0

(316) E x − µ() x − µ()T x − µ() x − µ()T()= 2Σ2 + ΣTr Σ()

(317) Cov x − µ() x − µ()T , x − µ() x − µ()T()= Σ2 + ΣTr Σ()

(318) E x − µ()T x − µ() x − µ()T x − µ()()= 2Tr Σ2()+ Tr Σ()2

(319) Cov x − µ()T x − µ(), x − µ()T x − µ()()= 2Tr Σ2()

(320) E x − µ() x − µ()T x − µ() x − µ()T x − µ()()= 0

(321)
E x − µ() x − µ()T x − µ() x − µ()T x − µ() x − µ()T()= 8Σ3 + 4Σ2Tr Σ()

+2ΣTr Σ2()+ ΣTr Σ()2

(322)
Cov x − µ() x − µ()T x − µ(), x − µ()T x − µ() x − µ()T()= 8Σ3 + 4Σ2Tr Σ()

+2ΣTr Σ2()+ ΣTr Σ()2

(323) E x − µ()T x − µ() x − µ()T x − µ() x − µ()T x − µ()()= 8Tr Σ3()+ 6Tr Σ2()Tr Σ()+ Tr Σ()3

Now, we will consider when there are multiple measurements with the same covariance

but different mean. The kth measurement then has the properties of

(324) E xk()= µk and

(325) Cov xk,xk
T()= Σ

The vector expectations of the averages of N independent measurements are

(326) E x ()= µ

(327) E xk x T()= µkµ T + 1
N Σ

(328) E xk xl
T x ()= µkµl

Tµ + 1
N Tr Σ()µk + 1

N Σµl

 109

(329) E xk xk
T x ()= µkµk

T + Σ()µ + 1
N Tr Σ()µk + 1

N Σµk

(330) E x x T x ()= µ µ T + 1
N Σ()µ + 1

N Tr Σ()µ + 1
N Σµ

(331) E xk x T x ()= µk µ Tµ + 1
N Tr Σ()()+ 2

N Σµ

(332) E x x T xk()= µ µ T + 1
N Σ()µk + 1

N Tr Σ()µ + 1
N Σµ

(333) E x xk
T xk()= µ µk

Tµk + Tr Σ()()+ 2
N Σµk

(334) E x xk
T xl()= µ µk

Tµl + 1
N Σµk + 1

N Σµl

The sample vector central moments are

(335) E xk − x ()= µk − µ

(336) E xk − x () xl − x ()T()= µk − µ () µl − µ ()T − 1
N Σ

(337) E xk − x ()T xl − x ()()= µk − µ ()T µl − µ ()− 1
N Tr Σ()

(338)
E xk − x () xl − x ()T xl − x ()()= µk − µ () µl − µ ()T µl − µ ()

+ N−1
N Tr Σ() µk − µ ()− 2

N Σ µl − µ ()

Unbiased estimators of the vector central moments from N samples are

(339) C = 1
N−1 xk − x () xk − x ()T

k=1

N

∑

(340) E C()= C0 + Σ

(341) Cov Cij ,Cmn()= 1
N−1 ΣimΣnj + ΣinΣ jm + ΣimC0nj + ΣinC0 jm + Σ jmC0in + Σ jnC0im()

(342) D = 1
N−1 xk − x ()T xk − x ()

k=1

N

∑

(343) E D()= Tr C0 + Σ()

(344) Cov D,D()= 1
N−1 Tr 2Σ2 + 4C0Σ()

 110

(345) S = 1
N−1 xk − x () xk − x ()T xk − x ()

k=1

N

∑

(346) E S()= S0

(347) Cov S,ST()= 1
N−1 Σ3 + Σ2C0 + ΣC0Σ + C0Σ

2 + F0Σ + ΣF0()

(348) F = N
N−1()2 xk − x () xk − x ()T xk − x () xk − x ()T

k=1

N

∑

(349) E F()= F0 + 2Σ2 + ΣTr Σ()

(350) G = N
N−1()2 xk − x ()T xk − x () xk − x ()T xk − x ()

k=1

N

∑

(351) E G()= Tr F0()+ 2Tr Σ2()+ Tr Σ()2

7.1.2 Positive-Semidefinite Sample Covariance

A positive-semidefinite matrix A is defined as having the property hTAh ≥ 0 for

an arbitrary vector h ≠ 0. The sample covariance matrix is

(352) C = 1
N −1 xi − x () xi − x ()T

i=1

N

∑

Then applying an arbitrary vector h

(353) hTCh = 1
N −1 hT xi − x () xi − x ()T h

i=1

N

∑

Now defining qi ≡ xi − x ()T h simplifies the sum to

(354) hTCh = 1
N −1 qi

2

i=1

N

∑

 111

which is always positive for an arbitrary set of values qi except for one non-trivial case.

The exception is when the points are coplanar. In the coplanar case, qi = 0 for all i when

h is normal to the plane and therefore hTCh=0.

7.2 Inertial Properties of a Tetrahedron

This paper does not deal with inertia but in the process of doing this research,

various physical models were created. One model was the tetrahedral mesh along with

its physical properties. Inertia properties were not easy to calculate so this section was

left in for the convenience of future simulation work. Inertial properties can be quite dif-

ficult to calculate but can be exactly determined. The moment of inertia and angular

momentum is taken from standard analytical mechanics books as

(355) I = ˆ w × r 2 dm∫

(356) L = r × w × r()dm∫

where dm = ρ dV, the density times the differential volume.

The moment of inertia and angular momentum are very desirable traits to follow in any

dynamic simulation. They both involve integrating over the tetrahedral volume. I have

derived them below using parameterized coordinates. A point inside the tetrahedron can

be uniquely determined by

(357) r = a0 + a1 + a2 + a3t0()t1()t2

where

(358) a0 = v2

(359) a1 = v3 − v2

 112

(360) a2 = v0 − v3

(361) a3 = v1 − v0

and vi are one of the tetrahedron vertices

The differential volume is determined by the parameter space change formula

(362) dV =
∂r
∂t2

⋅
∂r
∂t1

×
∂r
∂t0

⎛

⎝
⎜

⎞

⎠
⎟ dt0dt1dt2

(363) ∂r
∂t2

⋅
∂r
∂t1

×
∂r
∂t0

⎛

⎝
⎜

⎞

⎠
⎟ 6t1t2

2VTet

Each parameter ti varies from zero to one for inside the tetrahedron so the entire integral

results in

(364) I = 6m ˆ w × r 2 t1t2
2dt0dt1dt2

0

1

∫
0

1

∫
0

1

∫

where ˆ w is the angular velocity unit vector (i.e. the spin axis) and m is the mass of the

entire tetrahedron. The density of the tetrahedron is kept constant and thus the mass is

brought out of the integrand as the density times the volume. Performing the triple inte-

gral produces a double sum. The integral turns into the double sum

(365) I = 6m ˆ w × ai()⋅ ˆ w × a j() t0
n0 ij t1

n1ij t2
n2 ij dt0dt1dt2

0

1

∫
0

1

∫
0

1

∫
j= 0

3

∑
i= 0

3

∑

where

(366) nkij =
i + k

3
⎢
⎣ ⎢

⎥
⎦ ⎥ +

j + k
3

⎢
⎣ ⎢

⎥
⎦ ⎥ + k

Integrating the double sum and expanding the ai terms into vi terms produces the equation

 113

(367) I = m qijaij
j= 0

3

∑
i= 0

3

∑

(368) aij = ˆ w × vi()⋅ ˆ w × v j()

(369) qij =

1
20

j ≠ i

1
10

j = i

⎧

⎨
⎪

⎩
⎪

Since both qij and aij are symmetric then Equation (367) reduces to ten terms.

The angular momentum is very similar with the integral

(370) L = 6m r × w × r()t1t2
2dt0dt1dt2

0

1

∫
0

1

∫
0

1

∫

(371) L = m qijbij
j= 0

3

∑
i= 0

3

∑

(372) bij = vi × w × v j()

In this case, bij is not symmetric so all sixteen terms must be calculated. A much simpler

form of these equations occurs when a body has a coordinate system that is centered on

its center of mass and is aligned to its principal axes. This simplification will be ap-

proached in the next section. The following matrix equations separate out the purely

geometric quantity Q from the spinning quantity ˆ w .

(373) Itet = mtet ˆ w TQ c() ˆ w

(374) Ltet = mtetQ c()w

(375) Qtet c()= Q cm − c()+
1
20

Q vi − cm()
i= 0

3

∑

 114

(376) Q ρ()= ρT ρ − ρρT =
ρ2 − x 2 −xy −xz

−yx ρ2 − y 2 −yz
−zx −zy ρ2 − z2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The time complexity of Qtet is 30 multiplications + 54 additions. For each of the above

equations, the vectors are relative to the center of rotation. To generalize, one must sub-

tract the center of rotation from the four vertex vectors.

7.3 File Formats

7.3.1 Marker Association Format

This file is a simple text file that associates the marker identification string stored

in a C3D file with a known marker label. The known marker label is identified in a

marker-set file that clearly associates it with a particular segment on the body. This file

allows for quick association of the data with a segment. The only other alternative is to

do grouping analysis for all of the data that is very time consuming. The file contains the

following format:

46 WANDS

MARKERSET vicon512.txt

TestSubjectProdMS-V2:Root = unknown
TestSubjectProdMS-V2:LFWT = LFWT
TestSubjectProdMS-V2:RFWT = RFWT
TestSubjectProdMS-V2:LBWT = LBWT
TestSubjectProdMS-V2:RBWT = RBWT
TestSubjectProdMS-V2:LKNE = LKNE
TestSubjectProdMS-V2:LTHI = LTHI
TestSubjectProdMS-V2:LANK = LANK
TestSubjectProdMS-V2:LSHN = LLEG
TestSubjectProdMS-V2:LHEE = LHEE
…

 115

7.3.2 Articulated Tetrahedral Model Format

The Articulated Tetrahedral Model (ATM) file format was created in order to

bring together the necessary information to produce a jointed figure. It is a text format

that references other the individual segments’ mesh files. The text file has keywords fol-

lowed by values and sub-fields. All words are separated by spaces. The following are

the list of available keywords:

FIGURE myFigure

This keyword defines the name of the entire figure.

SEGMENTS 16

The number of segments of the figure follows:

MESH 0 chest.mesh

mesh identifies the mesh file that follows the index value. The file is identified as a tet-

rahedral or triangular mesh in the *.mesh format defined by the freeware MEDIT tool for

editing meshes and explained in Chapter 7.3.3. The filename is for a file that is located in

the same folder as the ATM file.

NAME Chest

The name of the segment follows this keyword.

MASS 30.0 // kg

The mass of the segment follows this keyword.

SCALE_XYZ 0.2 0.2 1.0
TRANSLATE_X 1.5
TRANSLATE_Y 1.5

 116

TRANSLATE_Z 1.5
TRANSLATE_XYZ 1.5 2.5 3.5
ROTATE_X 35.2
PARENT 4 // hips

The index of the parent segment is defined here.

JOINT Waist
 3 0.994765 1.002953 1.084350
DEGREES_OF_FREEDOM 1 0
 VALUE 0.0
 3 -0.257042 0.966392 -0.003915
 FROM -93.199994 TO 29.000000

The name of the joint that is proximal to this segment is defined here followed by

joint parameters. The center of rotation is defined immediately following the JOINT

keyword. First a count of how many dimensions for the vector is specified (usually 3).

Then, each coordinate, e.g. x y z. After the joint position, its freedoms are defined. DE-

GREES_OF_FREEDOM is followed by two integers. The first is the count of rotational

freedoms, and the second is the count of translational freedoms. Then comes the list of

freedom parameters for which there are three for each freedom. The current value is de-

fined, then the freedom axis, then the freedom limits. Rotational limits and values are in

degrees and translational ones are in meters.

CHILDREN 3
 1 // Neck
 2 // Upper Left Arm
 3 // Upper Right Arm

The list of child indices are defined here

ENDMESH

 117

Mandatory ending of the segment information

ENDFIGURE

Mandatory ending of the figure information

7.3.3 MESH Format

The MESH format is the easiest format I have found for tetrahedral meshes. It is

the default format for the free Internet program MEDIT available from

http://www.ann.jussieu.fr/~frey/logiciels/medit.html. Pascal J. Frey created this format to

replace the inadequacies of prior formats. I have found it necessary to add some key-

words to extend the format capabilities. This format is composed of a single (binary or

text) data file. Its structure is organized as a series of fields identified by keywords. The

blanks, newlines or carriage returns, and tabs are considered as item separators. A com-

ment line starts with the character # and ends at the end of the line. The comments are

placed exclusively between the fields. The mesh file must start with the descriptor:

MeshVersionFormatted 1
Dimension 3

The other fields supported by MEDIT are either required or facultative. The required

fields correspond to the geometry (i.e. the coordinates) and to the topology description

(i.e. the mesh entities). In the following tables, the term vi indicates a vertex number (i.e.

the ith vertex in the vertex list), ei is an edge number, ti is a triangle number, Ti is a tetra-

hedron number, and qi is a quadrilateral number. Notice that the vertices coordinates are

real numbers in single precision.

Table 5 Primitives in MESH Format

 118

Keyword Card. Syntax Range

Vertices np xi yi zi refi i:[1,np]

Edges ne v1
i v2

i refi i:[1,ne], vj
i:[1,np]

Triangles nt vj
i refi i:[1,nt], j:[1,3],

vj
i:[1,np]

Quadrilaterals nq vj
i refi i:[1,nq], j:[1,4],

vj
i:[1,np]

Tetrahedra ntet vj
i refi i:[1,ntet], j:[1,4],

vj
i:[1,np]

Hexaedra nh vj
i refi i:[1,nh], j:[1,8],

vj
i:[1,np]

The description of constrained entities or singularities follows. In particular, a corner

(keyword Corner) is a C0 continuity point (this type of item is necessarily a mesh ver-

tex). By analogy, a Ridge is an edge where there is a C0 continuity between the adja-

cent faces. The fields of type Requiredxx make it possible to specify any type of en-

tity that must be preserved by the meshing algorithm.

Table 6 Preservation Adjectives in MESH Format

 119

Keyword Card. Syntax Range

Corners nc vi i:[1,nc], vi:[1,np]

RequiredVertices nrv vi i:[1,nrv], vi:[1,np]

Ridges nr ei i:[1,nr]

RequiredEdges nre ei i:[1,nre]

As mentioned above, it is also possible to specify normals and tangents to the sur-

face. The normals (respectively tangents) are given as a list of vectors. The normal at a

vertex, keyword NormalAtVertices, is specified using the vertex number and the

index of the corresponding normal vector. The normal at a vertex of a triangle, Nor-

malAtTriangleVertices, corresponds to the combination of the triangle number,

the index of the vertex in the triangle and the index of the normal vector at this vertex.

The keyword NormalAtQuadrilateralVertices is handled similarly. The tan-

gent vectors are described in the same way.

Table 7 Optional Adjectives of Primitives in MESH Format

Keyword Card. Syntax Range

Normals nn xi yi zi i:[1,nn]

Tangents nnt xi yi zi i:[1,nnt]

NormalAtVertices nv vi ni i:[1,nv], vi:[1,np],

 120

ni:[1,nn]

NormalAtTriangleVertices ntv ti vi ni i:[1,ntv], ti:[1,nt],

vi:[1,np], ni:[1,nn]

NormalAtQuadrilateralVertices nqv qi vi ni i:[1,nqv], qi:[1,nq],

vi:[1,np], ni:[1,nn]

TangentAtEdges te ei vi ti i:[1,te], ei:[1,ne],

vi:[1,np], ti:[1,nnt]

*Colors ncc p ri gi bi

ai

i:[1,ncc], p:[3,4], ai only

for p=4

*ColorAtVertices ncv vi ci i:[1,ncv], vi:[1,np],

ci:[1,ncc]

*NeighborAtTriangleEdges nte t1
i f t2

i i:[1,nte], f:[1,3], tj
i:[1,nt]

*NeighborAtTetrahedronFaces ntf T1
i f T2

i i:[1,ntf], f:[1,4],

Tj
i:[1,ntet]

* Keywords added for this research.

Finally, the data structure must end with the keyword: End. The new color key-

words are handy for coloring the mesh. The neighbor keyword reduces the amount of

time it takes to traverse a mesh. Knowing the neighbor at each face of a tetrahedron can

 121

determine which tetrahedron to go when moving through a mesh. If there is no neighbor,

then the tetrahedron is on the outside.

7.3.4 PLY Format

The Polygon File Format (PLY) is another popular meshing format but only for

2D (surface) meshes. It is also known as the Stanford Triangle Format. It can be ASCII

or binary and contains almost all that is needed for triangulated meshes. The format is

originally from Stanford and is documented with examples and source code there

(http://graphics.stanford.edu/data/3Dscanrep). This research program has incorporated

the ability to read PLY files for the figure animation.

7.3.5 C3D Format

The Coordinate 3D (C3D) file format is only used for storing the raw motion cap-

ture data. It is a good format and is the oldest in the business. It originally came in 1986

from Dr. Andrew Danis but is now part of a non-profit organization at

http://www.c3d.org. The file format is a subset of a more general (ADTECH) format that

is binary and stores both parameter information and raw data. The data can be stored in

little-endian (Intel), big-endian (MIPS, PPC), and DEC binary formats for 16-bit integers

and 32-bit floats. Both analog and digital information can be stored along with their de-

scriptions and measurement units. All of the data that comes from Carnegie Melon

Graphics Lab is stored in C3D format.

7.4 User’s Guide to Program

The following sections describe the use of the application that was built for the re-

search. The application was designed using the Xcode 1.5 integrated development envi-

 122

ronment available for free from Apple and comes with the MacOSX 10.4 operating sys-

tem. There are 45270 lines of code with a total McCabe's Cyclomatic Complexity Num-

ber of 8112. The application follows the recommended Macintosh human interface and is

compatible with MacOSX 10.1 through 10.4.8 though only tested on 10.3 and 10.4. The

engine that drives the calculations is written entirely in standard portable C++ and the

graphics panes are written in OpenGL. The user interface is written in ObjectiveC that

compliment the NIB files for Interface Builder. Everything except the user interface is

portable. The code was compiled for the PowerPC G4 processor and was tested on a

PowerBook G4.

7.4.1 Menu
The File Menu provides the basic file saving and retrieving capabilities some of which

are available in the Options Pane as well. A picture of the File Menu open is in

Figure 28.

 123

Figure 28 File Menu GUI

Add Figure

The Add Figure menu item (optionally use �-1) allows the user to add a figure to

the graphics. A figure can be an Articulated Tetrahedral Mesh (ATM) file (as explained

in Chapter 7.3.2); a MESH formatted file (both tetrahedral and triangulated); and a PLY

formatted file. Only the ATM file can be used for the hierarchical analysis of the motion

capture data. When this menu item is picked, a standard Open dialog is presented for

choosing a file. When a file is chosen, the file is parsed and presented in the Animation

Pane. The Options Pane text for the figure is filled out with the path of the file and the

height of the figure is filled out.

Get Data

 124

This menu item (optionally use �-2) will present a standard Open dialog to allow

the user to choose a C3D motion capture data file. The selected file will associate the

data with the currently active figure (see the Options Pane). Once chosen, the file is

parsed and connected lists of data frames are filled out.

Save Temp Correlation

This menu item allows the user to save a temporary correlation text file associated

with the C3D data file that was previously chosen. The text file can then be edited to al-

low a hierarchical correlation of the data markers with segments on the figure. The num-

ber of markers is stated on the first line (e.g. 41 WANDS). The marker set file name is

stated on the second line (e.g. MARKERSET vicon512.txt). Then comes a list of marker

correlations (e.g. Jim:RTHI = RTHI Right thigh). The left side of the equals sign is the

single word that the marker is labeled as in the data (e.g. Jim:RTHI). The right side has a

single word that corresponds to a marker in the above-mentioned marker set file followed

by a free-form description.

Get Correlation

This menu item (optionally use �-3) presents the user with an Open dialog to re-

trieve a correlation file. The file is parsed and the left side is looked up in the C3D data

and the right side is looked up in the marker set file. The marker set file determines

which segment to attach the marker and where on the segment. If the marker is not to be

used in the correlation, just put some uncorrelated name (e.g. Unknown) on the right

hand side.

 125

Get Motion

This menu item retrieves motion files that have been previous saved or manually

created. Motion files allow the user to create motion of an articulated figure based on a

Taylor expansion of any or all degrees of freedom.

Save Motion

This menu item will save the Taylor expansions that were created when the “Ana-

lyze” button is pressed in the Graphs Pane.

Save Data

This menu item will save the joint angles that were created when the “Analyze”

button is pressed in the Graphs Pane.

Animate

This menu item will start the animation.

Info

This menu item will enable some graphics hardware information to be displayed

on the Animation Pane.

Close

This menu item will close the window.

 126

7.4.2 Options Pane

The Options plane contains all of the figure, data, and animation options avail-

able. On the right are all of the files that are used in the current analysis. The “Marker

Set Dir” is the directory that all marker set files are located for the correlation. The “Fig-

ure” file is the currently active articulated model. The “Motion Data” file is the current

C3D being analyzed. The “Correlate Data” file is the correlation file that binds the data

with the hierarchical figure. The “replace” checkbox will replace the current figure with

the opened figure if it is on. Otherwise the opened file will be added to the scene. The

“ft->m” checkbox will convert the motion data from feet to meters if on. The “x2” but-

ton will multiply the sampling rate by two. The last two buttons are there for conven-

ience since the data does not always specify the correct units or sampling rate. Once the

data is read in, the height and sampling rate text can be edited to whatever size and the

internal data will be updated. The same goes for the Figure information. The height of

the figure can be edited.

 127

Figure 29 Options Pane GUI

Drawing Options

The many checkboxes allow the selection of various things to be drawn in the

Animation Pane. “Loop Animation” will make the animation repeat when the maximum

time of the data is reached. “Show Data Paths” will display the paths taken for each

marker in the data. The paths will be colored lighter if the marker has been correlated to

the figure. “Show Figures” will display all figures that have been read in. “Draw Floor”

will ... draw the floor?! The other checkboxes draw extra little goodies on the figure.

7.4.3 Animation Pane

This pane is where all of the action happens. Select this pane once all of the files

and options are set in the Options Pane. The time of the animation is displayed in the up-

per right in seconds. The Capture Screen button will take an exact snapshot of the

 128

OpenGL window and allow the user to save it as a TIFF file. The TIFF file is a 32-bit

ABGR8888 color file. The “Capture Movie” checkbox is similar except that it saves

many TIFF files at 0.1 second intervals for the entire loop. The “Follow Data” starts the

animation process that draws the moving figure and the skeleton in the data. There are

options for panning the scene around. If the Command key (�) is held down while the

mouse button is held down and the screen is dragged by the mouse, then the scene is

dragged up/down or left/right. If the Option key is held down with the mouse button, the

user can zoom in or out of the scene with the mouse. With just the mouse button and the

mouse dragging, the user can rotate the scene around the (0,0,0) point.

Figure 30 Animation Pane GUI

 129

7.4.4 Graphs Pane

This pane was added for analysis of joint angles was just a visualization aid for

research. The analyze button currently tries to determine the angles which are needed to

rotate in order to follow the current dataset. Once the analysis is done, a joint can be

picked from the pop-up. When the user slides the horizontal time bars left and right, a

new Taylor expansion will be generated for the time window. Taylor expansions help in

analyzing the predictive-ness of the angle paths.

Figure 31 Graphs Pane GUI

 130

7.5 Programmer’s Reference

7.5.1 Class Diagrams

The articulated figure designed for this research is for general-purpose articulated

modeling. The original attempt was to use it for physical based calculations. With the

advent of the Minimum Variance Method, the model has been resigned to a simple or-

ganizational tool for the hierarchical tree traversals. The entire implementation is ex-

plained here for future use. The C++ object model is set up in a hierarchical manner for

the articulated figure. An articulated figure (ArtFigure.cpp) is made of segments (Seg-

ment.cpp). A segment is a rigid body (RigidBody.cpp) that is linked to another by a

joint. The rigid body is a shape that can be translated and rotated, but not molded. The

rigid body is made of a mesh of tetrahedrons (TetrahedralMesh.cpp). The mesh is a face-

connected list of tetrahedrons. Only faces on the surface have no connected tetrahedrons

and are available for drawing. A tetrahedron (Tetrahedron.cpp) is a four sided figure

with four vertices assigned. Each side of the tetrahedron is a triangle (Triangle.cpp).

Since adjacent tetrahedrons share vertices, the tetrahedrons will contain only references

to its points. All of the points for the tetrahedral mesh will be stored in a linear array in-

side the TetrahedralMesh instance. This allows easy access to the points for quick trans-

lations and rotations without duplication of effort. Figure 32 is a UML Diagram describ-

ing the relationships between objects.

 131

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figure 32 UML Diagram of Articulated Figure

 132

7.6 C++ Implementations

This section contains the crucial implementations for the novel algorithms in this

thesis. It starts with the implementation of the UGDK, followed by IGDK. The next al-

gorithm involves the collecting of the raw data and turning them into relative positions.

The calculation of the rotation point follows.

7.6.1 Unbiased Generalized Delogne-Kása Method

This snippet of C++ code implements the core of the Unbiased Generalized

Delogne-Kása Method. Some of the standard linear algebra operations are hidden inside

of the Vector and Matrix classes.

void VectorDataSet::init(const Vector * v,
 unsigned int n,
 double eps)
{
 unsigned int i;
 Vector d;
 double d2;

 if(n == 0)
 {
 cerr << "ERROR: VectorDataSet::init"
 << " no data to init set"
 << endl;
 return;
 }
 init(v->numElements);
 for(i=0; i<n; i++)
 {
 moment1 += v[i];
 }
 moment1 /= n;
 for(i=0; i<n; i++)
 {
 d = v[i]-moment1;
 covariance += d.SquareTranspose();
 d2 = d*d;
 moment3 += d*d2;
 moment2 += d2;
 }

 133

 moment2 /= n;
 if(n > 1)
 {
 covariance /= n-1;
 moment3 /= n-1;
 covariance -= eps*eps; // compensate for bias
 }
 else
 {
 covariance = 0.0;
 moment3 = 0.0;
 }
 Matrix decomp = covariance.CholeskyDecomposition();
 covarianceInverse = decomp.CholeskyInverse();
 center = moment1 + 0.5*decomp.CholeskyBacksubstitution(moment3);
 centerDiff = 1.0e20;
 difMoment1 = 1.0e20;
 radius = sqrt(((n-1.0)/n)moment2+(center-moment1)*(center-moment1));
 numData = n;
 numCenterData = 1;
 centerAvg = center;
}

7.6.2 Incrementally Improved Generalized Delogne-Kása

This code snippet adds a vector to the data set and improves the various values

that were previously calculated in Section 7.6.1.

void VectorDataSet::operator+=(const Vector& a)
{
 unsigned int i;
 Vector b,d;
 double d2,q1,qn1,q2,qp1;
 Matrix m;
 if(numData > 0)
 {
 difMoment1 += a - lastValue;
 }
 lastValue = a;
 q1 = (numData/(numData+1.0)); // < 1
 qn1 = (numData-1.0)/numData; // < 1
 q2 = (numData+2.0)/numData; // > 1
 qp1 = (numData+1.0)/numData; // > 1
 difMoment1 = (a-moment1)/(numData+1.0);
 moment1 += difMoment1; // average
 d = a-moment1;
 d2 = d*d
 b = covarianceInverse*d;
 moment2 += (qp1*d2 - moment2)/(numData+1.0);
 covarianceInverse += (covarianceInverse-(numData/((numData-

1.0)*q1+(d*b)))*b.SquareTranspose())/(numData-1.0);

 134

 covariance += (qp1*d.SquareTranspose() - covariance)/numData;
 centerDiff = (covarianceInverse*d)*(d*(a-center) -

0.5*(moment2+d2))/(numData+1.0);
 center += centerDiff;
 centerAvg += (center-centerAvg)/(numCenterData+1.0);
 moment3 += ((-2.0*covariance-moment2*qp1+d2*(qp1*q2))*d-

moment3)/numData;
 radius = sqrt(qn1*moment2+(center-moment1)*(center-moment1));

 for(i=0; i<dimension; i++)
 {
 if(a[i] < minimum[i])
 {
 minimum[i] = a[i];
 }
 if(a[i] > maximum[i])
 {
 maximum[i] = a[i];
 }
 }
 numData++;
 numCenterData++;
}

7.6.3 Collecting the Raw Data for Rotation Point

This function collects the raw data and creates an array of positions relative to the

parent segment. The inputs are the time window beginning and end. The outputs are the

collection of relative points and whether the function succeeded.

bool Segment::CollectRelativeDataPoints(Units::second t1,
 Units::second t2)
{
 unsigned int i,k,n=1,n1=n;
 double maxLen = 0;
 PositionVector dataCenter2;
 Matrix dataAxes2;
 Units::second t3 = 0,deltaT,lastTime;
 EventFrame::ElementType evl[1] = {NULL};
 Event * e[n];
 EventFrame events;
 unsigned int best = 0;
 Vector pi(3);

 // the parent must exist and have data
 if(numCorrelated == 0 ||
 parent == NULL)
 {
 return false;
 }
 // find the farthest data point
 for(i=0; i<correlatedFrame.numElements; i++)

 135

 {
 for(k=i+1; k<correlatedFrame.numElements; k++)
 {
 if(correlatedFrame.lengths[i][k] > maxLen)
 {
 best = i;
 maxLen = correlatedFrame.lengths[i][k];
 }
 }
 }
 evl[0] = correlatedFrame[best];
 if(evl[0] == NULL)
 {
 return false;
 }
 events.setEvents(evl,n);
 deltaT = events.minTimeBetweenEvents;
 if(t1 < events.minTime)
 {
 t1 = events.minTime;
 }
 if(t2 > events.maxTime)
 {
 t2 = events.maxTime;
 }
 t3 = t1 - deltaT; // so first frame is retrieved
 pathToFollow.RemoveAll();
 while(events.NextAbsoluteStableFrame(n1,e,t3) && (t3 <= t2))
 {
 if(!parent->GetSameDataAxes(t3, dataAxes2, dataCenter2))
 {
 // bad frame, continue to next
 continue;
 }
 for(i=0; i<n; i++)
 {
 if(e[i] != NULL)
 {
 pi = (e[i]->position - dataCenter2)*dataAxes2;
 pathToFollow.InsertEvent(pi,
 e[i]->time,
 e[i]->accuracy,
 e[i]->time_accuracy);
 }
 }
 }
 return true;
}

 136

7.6.4 Rotation Point Calculation of Segment

This function takes the collection of relative data points and calculates the relative

rotation point in the data. It also calculates the best fit planar normal of the data which is

needed for marker sets of one marker on a segment. It returns the relative rotation point.

PositionVector Segment::GetDataRotationPoint()
{
 Event * e = NULL;
 unsigned int j;
 Vector p(3),pi(3),p3(3),mean(3),pip(3),pir(3);
 Vector b,r;
 Matrix A(3,3),P2(3,3),a,Ainv;
 //Vector::ElementType p2=0.0,q,L=0.0;
 double err(0);
 static const int N = 100000;
 int n;
 VectorDataSet dataSet;
 Vector vs[N];

 kalmanFilterFailed = true;
 if(CollectRelativeDataPoints())
 {
 n = 0;
 e = pathToFollow.beginning;
 while(e && n < N)
 {
 vs[n] = e->position;
 e = e->next;
 n++;
 }
 dataSet.init(vs,n,pathToFollow.beginning->accuracy);
 while(e && !dataSet.sphereHasConverged(0.01))
 {
 dataSet += e->position;
 e = e->next;
 n++;
 }
 if(n > 0)
 {
 j = n;
 r = dataSet.center;
 double cn = dataSet.covariance.ConditionNumber();
 Vector v = dataSet.covariance.NullSpace(1.000001/cn).Column(0);
 relativeDataParentOneDOFaxis = v;
 Vector r1 = r + v*((p-r)*v);

 if(cn > 10000.0) // project onto plane
 {
 r = r1;
 }
 }

 137

 }
 return PositionVector(r);
}

7.6.5 Constants Calculation of Hierarchical Articulated Data

This function calculates the constants necessary to draw the skeleton at any time

frame. There are no inputs except for the available raw data. The outputs are the con-

stants that are set for each segment. This function must be called from the root segment

or the hierarchy will break.

void Segment::SetDataRelativeStuff() // call from root
{
 Matrix dataAxes = Matrix::Identity(3);
 PositionVector dataCenter,rot,c,v;
 unsigned int i;
 Units::second t = 0;
 Event * e[numCorrelated];

 unsigned int n = 0,n1=numCorrelated;
 if(correlatedFrame.NextFrame(n1,e,t))
 {
 c = 0.0;
 for(i=0; i<numCorrelated; i++)
 {
 if(e[i] != NULL)
 {
 c += e[i]->position;
 n++;
 }
 }
 if(n > 0)
 {
 c /= n;
 }
 }
 if(parent)
 {
 // calculate rotation point from available data
 relativeDataParentRotationPoint = GetDataRotationPoint();
 if(parent->numCorrelated == 0) // set previous segment's
 {
 parent->relativeDataParentRotationPoint =
 relativeDataParentRotationPoint;
 }
 t = 0.0;
 if(parent->GetDataAxes(t,dataAxes,dataCenter))
 {
 rot = dataCenter + dataAxes*relativeDataParentRotationPoint;

 138

 v = dataAxes*relativeDataParentOneDOFaxis;
 relativeDataJointAxesZero =
 dataAxes.Transpose()*Matrix::Identity(3);
 }
 else
 {
 cerr << "No parent data axes for " << name << endl;
 rot = PositionVector(0.0,0.0,0.0);
 relativeDataJointAxesZero = Matrix::Identity(3);
 }
 t = 0.0;
 // set segment's relative stuff to markers
 if(GetDataAxes(t,dataAxes,dataCenter))
 {
 relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataRotationPoint = (rot - dataCenter)*dataAxes;
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataOneDOFaxis = dataAxes.Transpose()*v;
 }
 else
 {
 cerr << "No self data axes for " << name << endl;
 }
 }
 else // root
 {
 // no rotation point so just get the centroid of data
 t = 0.0;
 if(!GetDataAxes(t,dataAxes,dataCenter))
 {
 cerr << "Damn, root really needs >= 3 correlated markers"
 << endl;
 }
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataRotationPoint = relativeDataCentroid;
 relativeDataOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentRotationPoint = PositionVector(0.0,0.0,0.0);
 relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataJointAxesZero=dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3);
 }
 //cout << "DataGrouping " << CheckDataGrouping() << endl;
 for(i=0; i<numChildren; i++)
 {
 children[i]->SetDataRelativeStuff(); // recursive
 }
}

 139

7.6.6 Calculation of fixed axes of data

This function calculates the center and the three axes for a segment based upon

the previously calculated constants and the current raw data. The input t is the time at

which to extract the data. The function outputs the axes in the form of a 3x3 matrix and

the center in absolute coordinates if successful. If not successful, the function returns

false.

bool Segment::GetDataAxes(Units::second& t,
 Matrix& dataAxes,
 PositionVector& dataCenter) const
{
 Event * e[3] = {NULL,NULL,NULL};
 Units::second oldT = t;

 // a segment without axes, use parent's
 if(parent && axesFrame.numElements == 0)
 {
 if(!parent->GetDataAxes(t, dataAxes, dataCenter)) // recursive
 {
 return false;
 }
 }
 // root and all segments with many points gets in here
 else if(axesFrame.numElements == 3)
 {
 unsigned int n = 3;
 if(!axesFrame.NextAbsoluteFrame(n,e,t))
 {
 if(t < axesFrame.maxTime)
 {
 cerr << "Missing events for " << jointName
 << " t " << t << endl;
 }
 return false;
 }
 dataCenter = e[0]->position;
 dataAxes = Matrix::Axes(dataCenter,e[1]->position,e[2]->position);
 }
 else if(!parent) // segment must have parent beyond this point
 {
 return false;
 }
 else if(axesFrame.numElements == 2) // need parent's stuff set
 {
 unsigned int n = 2;
 Matrix pDataAxes;
 PositionVector pDataCenter;
 if(!axesFrame.NextAbsoluteFrame(n,e,t))

 140

 {
 return false;
 }
 // recursive
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter))
 {
 return false;
 }
 dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint;
 dataAxes = Matrix::Axes(dataCenter,e[0]->position,e[1]->position);
 }
 else if(axesFrame.numElements == 1) // need parent's stuff set
 {
 unsigned int n = 1;
 Matrix pDataAxes;
 PositionVector pDataCenter,r2;

 if(!axesFrame.NextAbsoluteFrame(n,e,t))
 {
 return false;
 }
 // recursive
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter))
 {
 return false;
 }
 dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint;
 r2 = dataCenter + pDataAxes*relativeDataParentOneDOFaxis;
 dataAxes = Matrix::Axes(dataCenter,r2,e[0]->position);
 }
 else
 {
 return false;
 }
 return true;
}

7.6.7 Drawing Rotation Points with Constants of Motion

This function is called after the rotation points have been calculated and the hier-

archical skeleton has been defined. It retrieves the current raw 3D positional data and

calculates where the rotation points and axes are supposed to be based on the previous

analysis. The radius input is for drawing a sphere around the current raw data. The t in-

put is the time at which the data is retrieved. There are no results except those that are

drawn on the OpenGL window.

 141

void Segment::DrawNearestEvents(double radius,
 Units::second t)
{
 unsigned int i;
 Matrix dataAxes,dataAxes0,dataAxes1;
 PositionVector dataCenter,dataCenter0,dataCenter1,rot,rot1,pos,ep;

 if(t<lastTime)
 {
 count = 0;
 }
 lastTime = t;

 Color::Green.glColor();
 correlatedFrame.Draw(radius*0.5,t); // draw dots for data
 if(parent && parent->GetDataAxes(t, dataAxes0, dataCenter0))
 {
 rot = dataCenter0 + dataAxes0*relativeDataParentRotationPoint;
 }
 else if(parent != NULL)
 {
 return;
 }
 t -= 0.01;
 if(GetDataAxes(t, dataAxes, dataCenter))
 {
 if(parent == NULL)
 {
 rot = dataCenter + dataAxes*relativeDataCentroid;
 }
 }
 else
 {
 return;
 }
 Color::White.glColor();
 glBegin(GL_LINES);
 for(i=0; i<numChildren; i++)
 {
 if(children[i]->numCorrelated ||
 children[i]->numChildren > 0)
 {
 rot.glVertex();
 rot1 = datacenter + dataAxes*children[i]->
 relativeDataParentRotationPoint;
 rot1.glVertex();
 }
 }
 if(numCorrelated > 0 &&
 numChildren == 0)
 {
 rot.glVertex();
 (dataCenter + dataAxes*relativeDataCentroid).glVertex();
 }
 glEnd();
 if(numChildren == 0) // end effector
 {

 142

 correlatedFrame.DrawLines(t);
 }
 count++;
}

Chapter 8 BIBLIOGRAPHY

[1] AAMAS. ACUMEN: Amplifying Control and Understanding of Multiple ENtities,
Bologna, Italy, July 15-19 2002. ACM 1-58113-480-0/02/0007.

[2] J.K. Aggarwal, Q. Cai, and W. Liao, “Nonrigid motion analysis: articulated and elas-
tic motion” Computer Vision and Image Understanding 70, no. 2 (May 1998) : 142-
56.

[3] J. M. Allbeck and N. I. Badler. Avatars á la snow crash. Computer Animation, pages
19–24, June 1998.

[4] J. M. Allbeck and N. I. Badler. Consistent communication with control. Workshop on
Non-Verbal and Verbal Communicative Acts to Achieve Contextual Embodied
Agents, Autonomous Agents, 2001.

[5] J. M. Allbeck and N. I. Badler. Toward representing agent behaviors modified by per-
sonality and emotion. Embodied Conversational Agents at AAMAS’02, July 15-19
2002.

[6] K. Ashida, S.-J. Lee, J. M. Allbeck, H. Sun, N. I. Badler, and D. Metaxas. Pedestri-
ans: Creating agent behaviors through statistical analysis of observation data. Proc.
Computer Animation, 2001.

[7] J. Assa, Y. Caspi, D. Cohen-Or, “Action Synopsis : Pose selection and illustration”
ACM Transaction on Graphics (SigGraph 2005) 24(3) (July 2005) : 667-676.

[8] C. Babski and D. Thalmann. Real-time animation and motion capture in web human
director. VRML, 2000.

[9] N. Badler, J. Allbeck, L. Zhao, and M. Byun. Representing and parameterizing agent
behaviors. January 4 2002.

[10] N. Badler, M. Costa, L. Zhao, and D. Chi. To gesture or not to gesture: What is the
question? In Proceedings of Computer Graphics International, pages 3–9, Geneva,
Switzerland, June 2000. IEEE CS.

[11] N. I. Badler. Dance Technology: Current Applications and Future Trends, chapter A
Computational Alternative to Effort Notation, pages 23–44. National Dance Associa-
tion, va edition, 1989.

[12] N. I. Badler, K. H. Manoochehri, and D. Baraff. Multi-dimensional input techniques
and articulated figure positioning by multiple constraints. Workshop on Interactive 3D
Graphics, pages 151–169, October 23 1986.

[13] N. I. Badler. Animation 2000++. IEEE Computer Graphics and Applications, pages
28–29, January/February 2000.

[14] N. I. Badler and J. M. Allbeck. Deformable Avatars, chapter Towards Behavioral
Consistency in Animated Agents, pages 191–205. Kluwer Academic Publishers, 2001.

[15] P. Baerlocher and R. Boulic. Task-priority formulations for the kinematic control of
highly redundant articulated structures. IROS, 1998.

 144

[16] S. Bandi and D. Thalmann. A configuration space approach for efficient animation
of human figures. NRAM, 1997.

[17] M. Berman and D. Culpin. The statistical behaviour of some least squares estimators
of the centre and radius of a circle. Journal of the Royal Statistical Society. Series B
(Methodological), 48(2):183–196, 1986.

[18] R. Bindiganavale, W. Shuler, J. M. Allbeck, N. I. Badler, A. K. Joshi, and
M. Palmer. Dynamically altering agent behaviors using natural language instructions.
Autonomous Agents, pages 293–300, June 2000.

[19] A. Bloomfield, Y. Deng, J. Wampler, P. Rondot, D. Harth, M. McManus, and N. I.
Badler. A taxonomy and comparison of haptic actions for disassembly tasks. Proceed-
ings of the IEEE Virtual Reality Conference, pages 225–231, March 2003.

[20] B. Bodenheimer, C. Rose, S. Rosenthal, and J. Pella. The process of motion capture:
Dealing with the data. In D. Thalmann and M. van de Panne, editors, Eurographics
Animation and Simulation, pages 3–18, Wien, Sept 1997. Springer-Verlag.

[21] B. Bodenheimer, C. Rose, S. Rosenthal, J. Pella, “The Process of Motion Capture:
Dealing with the Data” Eurographics CAS (Sept. 1997): 3-18

[22] D.A. Bolt, “Two Stage Control for High Degree of Freedom Articulated Figures”
Ph.D. thesis for Computer Science, University of Colorado in Colorado Springs,
(2000).

[23] R. Boulic, P. Fua, L. Herda, M. Silaghi, J.-S. Monzani, L. Nedel, and D. Thalmann.
An anatomic human body for motion capture. In EMMSEC, pages 1–7, Bordeaux,
France, September 1998.

[24] R. Boulic, Z. Huang, N. Magnenat-Thalmann, and D. Thalmann. Goal oriented de-
sign and correction of articulated figure motion with the track system. 1994.

[25] R. Boulic and R. Mas. Hierarchical kinematic behaviors for complex articulated fig-
ures. 1997.

[26] R. Boulic, R. Mas, and D. Thalmann. Position control of the center of mass for ar-
ticulated figures in multiple support. 1995.

[27] R. Boulic, R. Mas, and D. Thalmann. Interactive identification of the center of mass
reachable space for an articulated manipulator. 1997.

[28] R. Boulic and D. Thalmann. Combined direct and inverse kinematic control for ar-
ticulated figure motion editing. CGF, 1992.

[29] R. Boulic and D. Thalmann. Complex character positioning based on a compatible
flow model of multiple supports. IEEE Transactions on Visualization and Computer
Graphics, 3(3), July–September 1997.

[30] L. Bretzner and T. Lindeberg. Qualitative multiscale feature hierarchies for object
tracking. Journal of Visual Communication and Image Representation, 11:115–129,
2000.

[31] M. Burr, A. Cheng, R. Coleman and D. Souvaine. “Transformations and Algorithms
for Least Sum of Squares Hypersphere Fitting.” 16th Canadian Conference on Compu-

 145

tational Geometry, 2004, pp 104-107.

 [32] J. Chai, J. Hodgins “Performance Animation from Low Dimensional Control-
Signals” ACM Transaction on Graphics (SigGraph 2005) 24(3) (July 1005) : 686-
696.

[33] L. Y. Chang, N. S. Pollard, “Constrained least-squares optimization for robust esti-
mation of center of rotation”, Journal of Biomechanics, (accepted 7 May 2006)

[34] N. Chernov and C. Lesort. “Least squares fitting of circles”. Journal of Mathemati-
cal Imaging and Vision, 23:239–252, 2005.

[35] D. Chi, M. Costa, L. Zhao, and N. I. Badler. Emote model for effort and shape. Pro-
ceedings of SIGGRAPH, 2000.

[36] K. Choi, S. Park, H. Ko. Processing motion capture data to achieve positional accu-
racy. Graphical Models and Image Processing, 61(5):260–273, September 1999.

[37] K. Choi and H. Ko. On-line motion retargetting. Journal of Visualization and Com-
puter Animation, 11(5):223–235, June 2000.

[38] M.-H. Choi and J. F. Cremer. Interative manipulation of articulated objects with ge-
ometry awareness. Proceedings of the IEEE International Conference on Robotics &
Automation, pages 592–598, May 1999.

[39] S. Chopra-Khullar and N. I. Badler. Where to look? automating attending behaviors
of virtual human characters. 1999.

[40] C. A. Corral and C. S. Lindquist. On implementing Kása’s circle fit procedure. IEEE
Transactions on Instrumentation and Measurement, 47(3):789–795, June 1998.

[41] P. Delogne. “Computer Optimization of Deschamps’ Method and Error Cancellation
in Reflectometry,” Proceedings of the IMEKO Symposium on Microwave Measure-
ments, Budapest, Hungary, May 1972, pp. 117-129.

[42] Q. Delamarre and O. Faugeras. 3D Articulated Models and Multiview Tracking with
Physical Forces. Computer Vision and Image Understanding, 81:328–357, 2001.

[43] E-Factory. Jack human modeling and simulation - Virtual people, virtual places,
real solutions.

[44] R. M. Ehrig, W. R. Taylor, G. N. Duda, M. O. Heller, “A survey of formal methods
for determining the centre of rotation of ball joints”, Journal of Biomechanics (ac-
cepted 3 October 2005)

[45] P.J. Frey “MEDIT: An interactive mesh visualization software” Rapport technique
n°0253, December 3, 2001, 41 pages.

[46] P. Fua, R. Plänkers, and D. Thalmann. From synthesis to analysis: Fitting human
animation models to image data. CGI, 1999.

[47] W. Gander, G.H. Golub, R. Strebel. “Least-Squares Fitting of Circles and Ellipses”.
BIT Numerical Mathematics 34, Springer 1994, pp 558-578.

[48] C. R. Henderson. Estimation of variance and covariance components. Biometrics,
9(2):226–252, June 1953.

 146

[49] L. Herda, P. Fua, R. Plänkers, R. Boulic, and D. Thalmann. Using skeleton-based
tracking to increase the reliability of optical motion capture. HMS, 2001.

[50] L. Herda, P. Fua, R. Plankers, R Boulic, D. Thalmann, “Skeleton-based motion cap-
ture for robust reconstruction of Human Motion”, Computer Graphics Lab (LIG)
EPFL:Lausane, Switzerland (2000).

[51] R.J. Holt, T.S. Huang, and A.N. Netravali, R.J. Qian, “Determining articulated mo-
tion from perspective views: a decomposition approach” Pattern Recognition: 30, no.
9, (1997): 1435.

[52] S. Jung and K. Wohn. Tracking and motion estimation of the articulated object: a
hierarchical Kalman filter approach. Real-Time Imaging, 3:415–432, 1997.

[53] T. Jung. An algorithm with logarithmic time complexity for interactive simulation of
hierarchically articulated bodies using a distributed-memory architecture. Real-Time
Imaging, 4:81–96, 1998.

[54] P. E. Jupp and J. T. Kent. Fitting smooth paths to spherical data. Applied Statistics,
36(1):34–46, 1987.

[55] K. Kanatani. “Cramér-Rao lower bounds for curve fitting.” Graphical Models and
Image Processing, 60(2):93–99, March 1998.

[56] K. Kanatani. “Ellipse Fitting with Hyperaccuracy.” IEICE Transactions on Informa-
tion and Systems, E89-D (10): 2653-2660, October 2006.

[57] I. Kása. A circle fitting procedure and its error analysis. IEEE Transactions on In-
strumentation and Measurement, 25:8–14, March 1976.

[58] C. Kervrann and F. Heitz. A hierarchical markov modeling approach for the segmen-
tation and tracking of deformable shapes. Graphical Models and Image Processing,
60(3):173–195, May 1998.

[59] P. Kiriazov and H. Ko. On control design in simulation of human motion. 1998.

[60] A. G. Kirk, J. F. O’Brien, and D. A. Forsyth. Skeletal parameter estimation from op-
tical motion capture data. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2005.

[61] A. G. Kirk and O. Arikan. Real-time ambient occlusion for dynamic character skins.
2007.

[62] J. K. Knight. Probability density function determination from ordered statistics.
Masters thesis, California State University, Fullerton, August 1995.

[63] J. K. Knight and S. K. Semwal, Fast Skeleton Estimation from Motion Capture Data
using Generalized Delogne-Kása method. In 15th International Conference in Central
Europe on Computer Graphics Visualization and Computer Vision. Full Papers Pro-
ceedings of WSCG, ISBN 978-80-86943-01-5, Feb 2007.

[64] H. Ko, J. Cremer, “VRLOCO: Real-Time Human Locomotion from Positional Input
Stream” Presence 5(4) (1996): 367-380.

[65] H. Ko and N. I. Badler. Animating human locomotion in real-time using inverse dy-
namics, balance and comfort control. IEEE Computer Graphics and Applications,

 147

16(2):50–59, March 1996.

[66] L. Kovar, M. Gleicher, F. Pighin, “Motion Graphs” Proceedings of SIGGRAPH
2002: 473-482.

[67] H. K. Kwangjin Choi, Sanghyun Park. Processing motion capture data to achieve
positional accuracy. Graphical Models and Image Processing, 61(5):260–273, Sep-
tember 1999.

[68] S. P. Lee, J. B. Badler, and N. I. Badler. Eyes alive. Proceedings of ACM SIG-
GRAPH, 21(3):637–644, July 2002.

[69] J. Lee, S.Y. Shin, “A Hierarchical Approach to Interactive Motion Editing for Hu-
man-like Figures” Proceedings of SIGGRAPH 1999.

[70] J. Lee, J. Chai, P.S.A Reitsma, “Interactive Control of Avatars Animated with Hu-
man Motion Data” Proceedings of SIGGRAPH 2002: 491-500.

[71] C.K. Liu, Z. Popović, “Synpaper of Complex Dynamic Character Motion from Sim-
ple Animation” Proceedings of SIGGRAPH 2002: 408-416.

[72] Z. Lui, S. Gortler, M. Cohen, “Hierarchical Spacetime Control” Computer Graphics
(SIGGRAPH 1994 Proceedings).

[73] G. Lukács, A.D. Marshall, R.R. Martin, “Geometric Least-Squares Fitting of
Spheres, Cylinders, Cones, and Tori” RECCAD Deliverable Documents 2 and 3 Co-
pernicus Project No. 1068 Reports on basic geometry and geometric model creation,
etc. Edited by Dr. R. R. Martin and Dr. T. Varady Report GML 1997/5, Computer and
Automation Institute, Hungarian Academy of Sciences, Budapest, 1997.

[74] N. Magnenat-Thalmann and D. Thalmann. Motion control of synthetic actors: An
integrated view of human animation. MCAAF, 1989.

[75] F. Marina, E. Stella, A. Branca, N. Veneziani, and A. Distante. Specialized hardware
for real-time navigation. Real-Time Imaging, 7:97–108, 2001.

[76] E. G. Miller. A new class of entropy estimators for multi-dimensional densities. In-
ternational Conference on Acoustics, Speech, and Signal Processing, 2003.

[77] T. Molet, R. Boulic, and D. Thalmann. A real time anatomical converter for human
motion capture. EGCAS, 1996.

[78] J.-S. Monzani, P. Baerlocher, R. Boulic, and D. Thalmann. Using an intermediate
skeleton and inverse kinematics for motion retargeting. Eurographics, 19(3), 2000.

[79] A. Moreno, J. Umerez, and J. Ibañez. Cognition and life: The autonomy of cogni-
tion. pages 107–129, 1997.

[80] Motion Lab Systems, Inc. “C3D Format User Guide”, PDF document at
http://www.motion-labs.com, Motion Lab Systems, Baton Rouge, LA, (2003) (98
pages)

[81] M. Muller, T. Roder, M. Clausen, “Efficient Content-Based Retrieval of motion cap-
ture Data” ACM Transaction on Graphics (SigGraph 2005) 24(3) (July 2005) : 677-
685.

 148

[82] Y. Nievergelt. Perturbation analysis for circles, spheres, and generalized hyper-
spheres fitted to data by geometric total least-squares. Mathematics of Computation,
73(245):169–180, August 2003.

[83] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins. Graphical modeling and animation
of ductile fracture. SIGGRAPH Computer Graphics Proceedings, Annual Conference
Series, 2002.

[84] J. F. O’Brien, R. E. Bodenheimer Jr., G. J. Brostow, and J. K. Hodgins. Automatic
Joint Parameter Estimation from Magnetic Motion Capture Data, pages 53–60, Mont-
real, Quebec, Canada, May 15-17 2000. Graphics Interface.

[85] J. F. O’Brien, P. R. Cook, and G. Essl. Synthesizing sounds from physically based
motion. SIGGRAPH Computer Graphics Proceedings, Annual Conference Series,
2001.

[86] J. F. O’Brien and J. K. Hodgins. Graphical modeling and animation of brittle frac-
ture. Computer Graphics Proceedings, Annual Conference Series, 1999.

[87] J. F. O’Brien and J. K. Hodgins. Animating fracture. Communications of the ACM,
43(7), July 2000.

[88] J. F. O’Brien, C. Shen, and C. M. Gatchalian. Synthesizing sounds from rigid-body
simulations. ACM SIGGRAPH Symposium on Computer Animation, 2002.

[89] G.E. Plassman, “A Survey of Singular Value Decomposition Methods and Perform-
ance Comparison of Some Available Serial Codes” NASA CR-2005-213500, July
2005.

[90] N.S. Pollard, P.S.A. Reitsma, “Animation of Humanlike Characters: Dynamic Mo-
tion Filtering with a Physically Plausible Contact Model” Yale Workshop on Adaptive
and Learning Systems (2001).

[91] Z. Popović, A. Witkin, “Physically Based Motion Transformation” Computer
Graphics Proceedings, Annual Conference Series, 1999.

[92] I. Potucek. Automatic image stabilization for omni-directional systems.

[93] V. Pratt. Direct least-squares fitting of algebraic surfaces. Computer Graphics,
21(4):145–152, July 1987.

[94] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, “Numerical Recipes in
C: The Art of Scientific Computing” 2nd.ed., Cambridge University Press: 1992.

[95] S. Robinson, “Fitting Spheres by the Method of Least Squares” Communications of
the ACM, Volume 4, No. 11; November 1967, p. 491.

[96] P. L. Rosin. Further five point ellipse fitting. Graphics Models and Image Process-
ing, 61:245–259, 1999.

[97] A. Safonova, J. K. Hodgins, N. S. Pollard. “Synthesizing Physically Realistic Hu-
man Motion in Low-Dimensional, Behavior-Specific Spaces”. ACM Transactions on
Graphics, Vol. 23 No. 3, pp. 514-521, Aug 2004.

[98] S. Semwal, M.J. Parker, “An Animation System for Biomechanical Analysis of Leg
Motion and Predicting Injuries during Cycling” Real-Time Imaging: 5 (1999): 109-

 149

123.

[99] S.K. Semwal, R. Hightower, S. Stansfield, “Closed Form and Geometric Algorithms
for Real-Time Control of an Avatar” IEEE Proceedings of VRAIS 1996.

[100] C.M. Shakarji “Least-Squares Fitting Algorithms of the NIST Algorithm Testing
System” J. of Research of the National Institute of Standards and Technology: 103,
No. 6 (1998): 633.

[101] A. Simonovits Econometrica, Vol. 43, No. 3 (May, 1975), pp. 493-498

[102] J. Shi, N. I. Badler, and M. B. Greenwald. Joining a real-time simulation: Parallel
finite-state machines and hierarchical action level methods for mitigating lag time.
2000.

[103] M.-C. Silaghi, R. Plänkers, R. Boulic, P. Fua, and D. Thalmann. Local and global
skeleton fitting techniques for optical motion capture. In N. Magnenat-Thalmann and
D. Thalmann, editors, Modelling and Motion Capture Techniques for Virtual Envi-
ronments, volume 1537 of Lecture Notes in Artificial Intelligence, pages 26–40, Ber-
lin, Nov 1998. Proceedings of CAPTECH, Springer.

[104] M.-C. Silaghi, R. Plänkers, R. Boulic, P. Fua, and D. Thalmann. Local and global
skeleton fitting techniques for optical motion capture. Captech, 1998.

[105] H. Späth. Least-square fitting with spheres. Journal of Optimization Theory and
Applications, 96(1):191–199, January 1998.

[106] A. Strandlie, J. Wroldsen, R. Frühwirth and B. Lillekjendlie. Track Fitting on the
Riemann Sphere. International Conference on Computing in High Energy and Nuclear
Physics, Padova, Italy; February, 2000.

[107] S. Tak and H. Ko. Example Guided Inverse Kinematics. Proceedings of the Inter-
national Conference on Computer Graphics and Imaging, pages 19–23, 2000.

[108] S.M. Thomas and Y.T. Chan. “Cramer-Rao Lower Bounds for Estimation of a Cir-
cular Arc Center and Its’ Radius”. CVGIP: Graphics Model and Image Processing,
Vol. 57, No. 6, pages 527-532, 1995.

 [109] D. Tolani, A. Goswami, N.I. Badler, “Real-Time Inverse Kinematics Techniques
for Anthropomorphic Limbs” Graphical Models: 62 (2000): 353-388.

[110] D. Umbach and K. N. Jones. A few methods for fitting circles to data. IEEE Trans-
actions on Instrumentation and Measurement, 52(6):1881–1885, December 2003.

[111] M. van de Panne, “From Footprints to Animation” Computer Graphics Forum: 16,
no. 4 (1997): 211-223.

[112] G. A. Watson. Least squares fitting of circles and ellipses to measured data. BIT,
39(1):176–191, 1999.

[113] Y. Wei, S. Xia, D. Zhu. “A Robust Method for Analyzing the Physical Correctness
of Motion Capture Data”. VRST: pp. 338–341, Nov 1-3, 2006, Cyprus.

[114] G. Welch and G. Bishop. An introduction to the Kalman filter. 2004.

[115] D. J. Wiley and J. K. Hahn. “Interpolation synthesis of articulated figure motion.”

 150

IEEE Computer Graphics and Applications, 17(6):39–45, November/December 1997.

[116] L. de Witte. “Least Squares Fitting of a Great Circle Through Points on a Sphere.”
Communications of the ACM, Volume 3, No. 11, November 1960, pp. 611-613.

[117] L. Yang, F. Albregtsen, and T. Taxt. “Fast computation of three-dimensional geo-
metric moments using a discrete divergence theorem and a generalization to higher
dimensions.” Graphical Models and Image Processing, 59(2):97–108, March 1997.

[118] J. Znamenáček and M. Valášek. An efficient implementation of the recursive ap-
proach to flexible multibody dynamics. Multibody System Dynamics, 2(3):227–251,
1998.

[119] E. E. Zelniker and I. V. L. Clarkson. A Generalisation of the Delogne-Kása Method
for Fitting Hyperspheres. Pacific Grove, California, November 2004. Thirty-Eighth
Asiomar Conference on Signals, Systems and Computers.

[120] E. E. Zelniker and I. V. L. Clarkson. A Statistical Analysis Least-Squares Circle-
Centre Estimation. In 2003 IEEE International Symposium on Signal Processing and
Information Technology, December 2003, Darmstadt, Germany, pp 114-117

[121] V.B. Zordan, A. Majkowaska, B. Chiu, M. Fast, “Dynamic Response for the Mo-
tion Capture Animation” ACM Transaction on Graphics (SigGraph 2005) 24(3) (July
2005) : 686-701.

[122] V.B. Zordan, N. C. Van Der Horst, “Mapping Optical Motion Capture Data to
Skeletal Motion Using a Physical Model” Eurographics/SIGGRAPH Symposium on
Computer Animation (2003) : 245-250.

Chapter 9 INDEX
A

angular momentum.................................112, 114
a-priori knowledge49, 87
articulated figure ...xiii, xv, xvi, 1, 2, 3, 4, 7, 126,

131
articulated motion...1
asymptotic ..74, 75
asymptotically unbiased65, 70, 97, 100

B

Badler ...17
biased............................ 44, 46, 47, 50, 51, 65, 97
Bodenheim ...17

C

C3D .. 115, 122, 125, 127
center estimator35, 42, 43, 45, 46, 47, 48, 67, 68,

82
center of rotationxvii, 84, 115, 117
CMU Graphics Labxiv, 91, 123
complexity..5, 115
coordinate system............. 82, 83, 84, 85, 91, 114
Cramér-Rao Lower Bound23
Cyclomatic Complexity..................................123
cylindrical joint ..76

D

Danis ..122
degrees of freedom.................................1, 4, 126
Delognexviii, 21, 41, 133
digital cameras..7

E

eigenvalue ..55, 72, 73
expectation 46, 47, 48, 50, 51, 52, 54, 55, 56, 59,

67, 68, 72

F

flops..40, 44, 81
Forward kinematics ..6
Forward kinetics...6
Frey ..118

G

Generalized Delogne-Kåsa Estimator xviii, 21
genetic algorithms .. xiii
gradient...42, 43

H

hierarchical 124, 125, 127, 131, 142
human shoulder ..4
humerus ..4, 5

hypersphere 44, 45, 61, 66, 73, 74, 80, 100
hysteresis ..12

I

incremental improvement81
Inverse kinematics ..7, 17
Inverse kinetics...6

K

Kåsa.. xviii, 21, 41, 133
Kirk...12
Knight...17

L

least-squares fit..xvi, 3
Leontief46, 55, 67, 70, 72
Levenberg-Marquardt.................................35, 37
linear least-squaresxvi, 3, 38, 63

M

Maximum-Likelihood Estimatorxvi, 3, 21, 34
measurement covariance ...46, 50, 54, 66, 67, 68,

69, 72
MEDIT ...116, 118
MESH.............................116, 118, 119, 120, 124
moment of inertia ...112
Monte-Carlo19, 35, 43, 70
Movie ...129
multivariate normal20, 50, 51, 103

N

Newton-Euler differential equationxiv, 1
NIST...34
non-linear fitting..xvi, 3

O

O’Brien...14, 63
OpenGL..123, 129, 143
orientation..xvi, 3, 63

P

physics..................................... xiii, xiv, 1, 6, 100
Polygon File Format122
Positional errors..12
positive-semidefinite111

R

radius estimator41, 42, 47, 48, 66, 68
recurrence ...80

S

sample covariance .43, 45, 46, 50, 51, 55, 65, 67,
72, 73, 76, 80, 111

 152

sample mean...46
scapula..4
segment .. xiii, 1
Singular Value Decomposition.............39, 40, 63
skeleton xviii, 6, 11, 12, 63, 82, 86, 95, 100, 129,

138, 142
spectral radius.......................................55, 70, 72
Stanford Triangle Format122

T

tetrahedral mesh ...116
tetrahedron...................... 112, 113, 119, 122, 131
third central moment 43, 46, 47, 56, 57, 59
TIFF ...129
translational freedom......................................4, 5
triangular mesh...116

U

UML...131

V

Vicon Peak ...8, 9
video ...7, 8

W

Wiley ..17

Z

Zelniker ..41, 45
Znamenáček..18

