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Knight, Jonathan Kipling (Ph.D., Computer Science) 

Rotation Points from Motion Capture Data Using a Closed Form Solution 

Thesis directed by Professor Sudhanshu Kumar Semwal 

Four new closed-form methods are present to find rotation points of a skeleton 

from motion capture data.  A generic skeleton can be directly extracted from noisy data 

with no previous knowledge of skeleton measurements.  The new methods are ten times 

faster than the next fastest and a hundred times faster than the most widely accepted 

method.  Two phases are used to produce an accurate skeleton of the captured data.  The 

first phase, fitting the skeleton, is robust even with noisy motion capture data.  The for-

mulae use an asymptotically unbiased version of the Generalized Delogne-Kása (GDKE) 

Hyperspherical Estimation (first estimator: UGDK).  The second estimator takes advan-

tage of multiple markers located at different distances from the rotation point (MGDK) 

thereby increasing accuracy.  The third estimator removes singularities to allow for cy-

lindrical joint motion (SGDK).  The fourth estimator incrementally improves an answer 

and has advantages of constant memory requirements suitable for firmware applications 

(IGDK).  The UGDK produces the answer faster than any previous algorithm and with 

the same efficiency with respect to the Cramér-Rao Lower Bound for fitting spheres and 

circles.  The UGDK method significantly reduces the amount of work needed for calcu-

lating rotation points by only requiring 26N flops for each joint.  The next fastest method, 

Linear Least-Squares requires 236N flops.  In-depth statistical analysis shows the UGDK 

method converges to the actual rotation point with an error of O(σ/√N) improving on the 

GDKE’s biased answer of O(σ).  The second phase is a real-time algorithm to draw the 
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skeleton at each time frame with as little as one point on a segment.  This speedy method, 

on the order of the number of segments, aids the realism of motion data animation by al-

lowing for the subtle nuances of each time frame to be displayed.  Flexibility of motion is 

displayed in detail as the figure follows the captured motion more closely.  With the re-

duced time complexity, multiple figures, even crowds can be animated.  In addition, cal-

culations can be reused for the same actor and marker-set allowing different data sets to 

be blended.  The main contributions in this dissertation are the new unbiased center for-

mulae; the full statistical analysis of this new formula; and the analysis of when the best 

measurement conditions are to initiate the formula.  The dissertation further establishes 

the application of these new formulae to motion capture to produce a real-time method of 

drawing skeletons of arbitrary articulated figures. 
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