Rotation Points From

Motion Capture Data Using a Closed Form Solution

by

JONATHAN KIPLING KNIGHT

M.A. Applied Mathematics, Cal. State Fullerton, 1995

B.S. Physics, Cal Poly, San Luis Obispo, 1987

A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2008

First and foremost I would like to acknowledge my wife Kiki for her patience during this research. I would also like to thank Gene Johnson for his support during the ups and downs of my life during this major event in my life. He kept telling me to continue. I would also like to thank my advisor Dr. Semwal for allowing me the freedom and guidance to pursue the ideas laid down in this paper.

© Copyright by Jonathan Kipling Knight 2007-2008, All Rights Reserved

This thesis for the Philosophical Doctor degree by

Jonathan Kipling Knight

has been approved for the

Department of Computer Science

by

Sudhanshu Kumar Semwal, Chair

Robert Carlson

C. Edward Chow

Jugal Kalita

Charles M. Shub

Date

Knight, Jonathan Kipling (Ph.D., Computer Science)

Rotation Points from Motion Capture Data Using a Closed Form Solution

Thesis directed by Professor Sudhanshu Kumar Semwal

Four new closed-form methods are present to find rotation points of a skeleton from motion capture data. A generic skeleton can be directly extracted from noisy data with no previous knowledge of skeleton measurements. The new methods are ten times faster than the next fastest and a hundred times faster than the most widely accepted method. Two phases are used to produce an accurate skeleton of the captured data. The first phase, fitting the skeleton, is robust even with noisy motion capture data. The formulae use an asymptotically unbiased version of the Generalized Delogne-Kása (GDKE) Hyperspherical Estimation (first estimator: UGDK). The second estimator takes advantage of multiple markers located at different distances from the rotation point (MGDK) thereby increasing accuracy. The third estimator removes singularities to allow for cylindrical joint motion (SGDK). The fourth estimator incrementally improves an answer and has advantages of constant memory requirements suitable for firmware applications (IGDK). The UGDK produces the answer faster than any previous algorithm and with the same efficiency with respect to the Cramér-Rao Lower Bound for fitting spheres and circles. The UGDK method significantly reduces the amount of work needed for calculating rotation points by only requiring 26N flops for each joint. The next fastest method, Linear Least-Squares requires 236N flops. In-depth statistical analysis shows the UGDK method converges to the actual rotation point with an error of $O(\sigma/\sqrt{N})$ improving on the GDKE's biased answer of $O(\sigma)$. The second phase is a real-time algorithm to draw the

skeleton at each time frame with as little as one point on a segment. This speedy method, on the order of the number of segments, aids the realism of motion data animation by allowing for the subtle nuances of each time frame to be displayed. Flexibility of motion is displayed in detail as the figure follows the captured motion more closely. With the reduced time complexity, multiple figures, even crowds can be animated. In addition, calculations can be reused for the same actor and marker-set allowing different data sets to be blended. The main contributions in this dissertation are the new unbiased center formulae; the full statistical analysis of this new formula; and the analysis of when the best measurement conditions are to initiate the formula. The dissertation further establishes the application of these new formulae to motion capture to produce a real-time method of drawing skeletons of arbitrary articulated figures.

CONTENTS

Chapter 1 INTRODUCTION	1
1.1 Articulated Figure Animation	4
1.2 Motion Capture Systems	7
1.3 Symbols and Conventions	9
Chapter 2 STATEMENT OF THE PROBLEM	11
2.1 Why are skeleton calculations required?	11
2.2 Problems encountered	12
2.2.1 Inaccuracies	12
2.2.2 Non-standard Files	13
2.2.3 Missing Data	13
Chapter 3 SURVEY	14
3.1 Skeleton Extraction	14
3.2 Sphere Estimates	14
3.3 Inverse Kinematics	17
3.4 Kinetics	18
Chapter 4 PREVIOUS SOLUTIONS	19
4.1 Spherical Curve-fitting Approaches	19
4.1.1 Monte-Carlo Experiment	19
4.1.2 Cramér-Rao Lower Bound	23
4.1.3 Non-linear Maximum-Likelihood Estimator	34
4.1.4 Linear Least-Squares Solution	38
4.1.5 Generalized Delogne-Kása Estimator	41

4.2 Skeleton Approaches	63
Chapter 5 NEW SOLUTIONS	65
5.1 Unbiased Generalized Delogne-Kása Estimator	65
5.1.1 Derivation	65
5.1.2 Statistical Properties	67
5.2 Cylindrical Joint Solution	76
5.3 Multiple Marker Solution	77
5.4 Incrementally Improved Solution	79
5.5 Hierarchical Skeleton Solution	82
5.5.1 Arbitrary Figure	82
5.5.2 Predefined Marker Association	87
Chapter 6 RESULTS	91
6.1 Case Study of CMU Data 60-08	91
6.2 Case Study of Eric Camper Data	95
6.3 Comparison	96
6.4 Speed	98
6.5 Conclusion	100
6.6 Important Contributions	100
6.7 Further Research	102
Chapter 7 APPENDIX	103
7.1 Mathematical Proofs	103
7.1.1 Moments of Multivariate Normal	103

vii

7.1.2	Positive-Semidefinite Sample Covariance	111
7.2 Ine	ertial Properties of a Tetrahedron	112
7.3 Fil	e Formats	115
7.3.1	Marker Association Format	115
7.3.2	Articulated Tetrahedral Model Format	116
7.3.3	MESH Format	118
7.3.4	PLY Format	122
7.3.5	C3D Format	122
7.4 Us	er's Guide to Program	123
7.4.1	Menu	123
7.4.2	Options Pane	127
7.4.3	Animation Pane	128
7.4.4	Graphs Pane	130
7.5 Pro	ogrammer's Reference	131
7.5.1	Class Diagrams	131
7.6 C+	+ Implementations	133
7.6.1	Unbiased Generalized Delogne-Kása Method	133
7.6.2	Incrementally Improved Generalized Delogne-Kása	134
7.6.3	Collecting the Raw Data for Rotation Point	135
7.6.4	Rotation Point Calculation of Segment	137
7.6.5	Constants Calculation of Hierarchical Articulated Data	138
7.6.6	Calculation of fixed axes of data	140
7.6.7	Drawing Rotation Points with Constants of Motion	142
Chapter 8	BIBLIOGRAPHY	145
Chapter 9	INDEX	153

viii

TABLES

Table 1 Marker Associations	87
Table 2 Table of Means of Rotation Points	92
Table 3 Table of Standard Deviations of Rotation Points	93
Table 4 Comparison of Center Estimators	97
Table 5 Primitives in MESH Format	119
Table 6 Preservation Adjectives in MESH Format	120
Table 7 Optional Adjectives of Primitives in MESH Format	120

FIGURES

Figure 1 Markers on Actor	2
Figure 2 Human Articulated Shoulder	5
Figure 3 Human Elbow	6
Figure 4 Video Capture Analysis Software (SIMI°MotionCapture 3D) ¹	8
Figure 5 Vicon BodyBuilder Software	9
Figure 6 Constrained Measurements on Circle	20
Figure 7 Relative Error Comparison	22
Figure 8 Eigenvectors of CRLB for Circle	28
Figure 9 Eigenvalues of CRLB for Circle	29
Figure 10 Eigenvectors of CRLB for Sphere	32
Figure 11 Eigenvalues of CRLB for Sphere	33
Figure 12 MLE Compared to CRLB	36
Figure 13 MLE Error Versus Sphere Coverage	37
Figure 14 LLS Compared to CRLB	39
Figure 15 GDKE Compared to CRLB	44
Figure 16 GDKE Error Ellipse	49
Figure 17 UGDK Error Ellipse	69
Figure 18 Sample Size Dependency of Deviation	70
Figure 19 One hundred samples comparison of MLE (green), UGDK (red), GDKE (blue)	71
Figure 20 UGDK Compared to CRLB	71
Figure 21 Circle with Constrained Data	73
Figure 22 MGDK example	79
Figure 23 Inverse Power Law for Rotation Point Calculation	95
Figure 24 Eric Camper Skeleton	96
Figure 25 Timing of Algorithms	98
Figure 26 Timing Comparison to GDKE	99
Figure 27 File Menu GUI	124

Figure 28 Options Pane GUI	128
Figure 29 Animation Pane GUI	129
Figure 30 Graphs Pane GUI	130
Figure 31 UML Diagram of Articulated Figure	132