
Chapter 7 APPENDIX

7.1 Mathematical Proofs

7.1.1 Moments of Multivariate Normal
The probability analysis presented in this thesis relies on determining the mo-

ments of the multivariate normal probability distribution. A multivariate normal deviate

has the probability density function of

(258)

!

fN x;µ,"() =
1

2#()
N
"
e
$ 1
2
x$µ()

T
"
$1

x$µ()

for a deviate x defined by

(259)

!

x = x
1

x
2

L x
N()

T

and the distribution parameters of

(260)

!

µ = µ
1

µ
2

L µ
N()

T

(261)

!

" =

"
11

"
12

L "
1N

"
21

"
22

L "
2N

M M O M

"
N1

"
N 2

L "
NN

$

%
%
%
%

&

'

(
(
(
(

The moment generating function is

(262)

!

M
N
t;µ,"() = e

µ T
t+ 1

2
t
T
"t

where

(263)

!

t = t
1

t
2

L t
N()

T

The moments can be retrieved from the derivatives of the moment generating function by

 104

(264)

!

E xi
k
x j

l
xk
m
L() =

" k

"ti
k

" l

"t j
l

"m

"tk
m

LMN

t= 0

That leads to the moments of the elements of the vector x

(265)

!

E x
i() = µ

i

(266)

!

E xix j() = µiµ j + "ij

(267)

!

E xix j xk() = µiµ jµk + "ijµk + "ikµ j + " jkµi

(268)

!

E xix j xk xl() = µiµ jµkµl + "ij"kl + "ik"lj + "il" jk

+"ijµkµl + "ikµ jµl + "ilµ jµk + " jkµiµl + " jlµiµk + "klµiµ j

(269)

!

E xix j xk xl xm() = µiµ jµkµlµm

+"ij µkµlµm + "klµm + "kmµl + "lmµk()

+"ik µ jµlµm + " jlµm + " jmµl + "lmµ j()
+"il µ jµkµm + " jkµm + " jmµk + "kmµ j()
+"im µ jµkµl + " jkµl + " jlµk + "klµ j()
+" jkµiµlµm + " jlµiµkµm + " jmµiµkµl

+" jm"klµi + " jk"lmµi + " jl"mkµi

+"klµiµ jµm + "kmµiµ jµl + "lmµiµ jµk

 105

(270)

!

E xix j xk xl xmxn() = µiµ jµkµlµmµn

+"ij

µmµnµkµl + "mn"kl + "mk"nl + "kn"lm

+"klµmµn + "kmµlµn + "knµlµm + "lmµkµn

+"nlµkµm + "mnµkµl

$

%
%
%

&

'

(
(
(

+"ik

µ jµlµmµn + " jl"mn + " jm"nl + " jn"lm

+" jlµmµn + " jmµlµn + " jnµlµm + "lmµ jµn

+"nlµ jµm + "mnµ jµl

$

%
%
%

&

'

(
(
(

+"il

µ jµkµmµn + " jk"mn + " jm"kn + " jn"km

+" jkµmµn + " jmµkµn + " jnµkµm + "kmµ jµn

+"knµ jµm + "mnµ jµk

$

%
%
%

&

'

(
(
(

+"im

µ jµkµlµn + " jk"nl + " jl"kn + " jn"kl

+" jkµlµn + " jlµkµn + " jnµkµl + "klµ jµn

+"knµ jµl + "nlµ jµk

$

%
%
%

&

'

(
(
(

+"in

µ jµkµlµm + " jk"lm + " jl"km + " jm"kl

+" jkµlµm + " jlµkµm + " jmµkµl + "klµ jµm

+"kmµ jµl + "lmµ jµk

$

%
%
%

&

'

(
(
(

+µi

" jk µlµmµn + "lmµn + "
ln
µm + "mnµl()

+" jl µkµmµn + "kmµn + "knµm + "mnµk()

+" jm µkµlµn + "klµn + "knµl + "
ln
µk()

+" jn µkµlµm + "klµm + "kmµl + "lmµk()

+"klµ jµmµn + "kmµ jµlµn + "knµ jµlµm

+"kn"lmµ j + "kl"mnµ j + "km"nlµ j

+"lmµ jµkµn + "
ln
µ jµkµm + "mnµ jµkµl

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

If all indices are equal, the expectations simplify to

(271)

!

E x
i() = µ

i

(272)

!

E x
i

2() = µ
i

2 + "
ii

(273)

!

E x
i

3() = µ
i

3 + 3"
ii
µ
i

(274)

!

E x
i

4() = µ
i

4 + 6"
ii
µ
i

2 + 3"
ii

2

 106

(275)

!

E x
i

5() = µ
i

5 +10"
ii
µ
i

3 +15"
ii

2µ
i

(276)

!

E x
i

6() = µ
i

6 +15"
ii
µ
i

4 + 45"
ii

2µ
i

2 +15"
ii

3

The vector moments are

(277)

!

E x() = µ

(278)

!

E xx
T() = µµT + "

(279)

!

E x
T
x() = µTµ + Tr "()

(280)

!

E xx
T
x() = µµTµ + Tr "()µ + 2"µ

(281)

!

E xx
T
xx

T() = µµTµµT + 2"2 + "Tr "() + Tr "()µµT + 2µµT
"+ 2"µµT + "µTµ

(282)

!

E xx
T
ax

T() = µµT
aµT + "µT

a + "aµT + µaT"

(283)

!

E x
T
xx

T
x() = µTµµTµ + 2Tr "2() + Tr "()

2

+ 2Tr "()µTµ + 4µT
"µ

(284)

!

E xx
T
xx

T
x() = µµTµµTµ + 2Tr "()µµTµ + 4µµT

"µ + 4"µµTµ

+2Tr "2()µ + Tr "()
2

µ + 4Tr "()"µ + 8"2µ

(285)

!

E xx
T
xx

T
ax

T() = µµTµµT
aµT + "aTµµTµ + "Tr "()aTµ + Tr "()µµT

aµT

+2"aT"µ + "aµTµµT + 2"aµT
"+ "aµT

Tr "() + 2"µaTµµT

+2"µaT"+ 2""aTµ + 2""aµT + µµTµaT"+ 2µaTµµT
"

+2µaT""+ µaT"Tr "() + 2µaT"µµT

(286)

!

E xx
T
ab

T
xx

T() = µµT
ab

TµµT + "aT"b + "abT"+ "baT"+ "µT
ab

Tµ

+"abTµµT + "baTµµT + µµT
ba

T
"+ µµT

ab
T
"+ µbT"aµT

(287)

!

E xx
T
Axx

T() = µµT
AµµT + "Tr A"() + "A"+ "AT

"+ "µT
Aµ

+"AµµT + "ATµµT + µµT
A
T
"+ µµT

A"+ Tr AT
"()µµT

 107

(288)

!

E xx
T
xx

T
xx

T() = µµTµµTµµT + "Tr "()
2

+ 2"Tr "2() + 8"3 + 4"2Tr "()

+4"µT
"µ + 8"µµT

"+ 4"2µTµ + 8"2µµT + 8µµT
"
2

+4µµT
"Tr "() + 4"Tr "()µµT + 2Tr "2()µµT + Tr "()

2

µµT

+2"Tr "()µTµ + 4"µµTµµT + 4µµTµµT
"+ 4µµT

"µµT

+2µµTµµT
Tr "() + "µTµµTµ

The vector covariances are calculated with the definition of

(289)

!

Cov a,b() = E ab() " E a()E b()

to produce the following

(290)

!

Cov x,x
T() = "

(291)

!

Cov x
T
,x() = Tr "()

(292)

!

Cov x,x
T
x() = 2"µ

(293)

!

Cov xx
T
,x() = Tr "()µ + "µ

(294)

!

Cov x,x
T
xx

T() = 2"2 + "Tr "() + 2"µµT + "µTµ

(295)

!

Cov xx
T
,xx

T() = "2 + "Tr "() + Tr "()µµT + µµT
"+ "µµT + "µTµ

(296)

!

Cov xx
T
x,x

T() = 2"2 + "Tr "() + 2µµT
"+ "µTµ

(297)

!

Cov x,x
T
ax

T() = "µT
a + "aµT

(298)

!

Cov xx
T
,ax

T() = "µT
a + µaT"

(299)

!

Cov xx
T
a,x

T() = "µT
a + µaT"

(300)

!

Cov x
T
,xx

T
x() = 2Tr "2() + Tr "()

2
+ Tr "()µTµ + 2µT

"µ

(301)

!

Cov x
T
x,x

T
x() = 2Tr "2() + 4µT

"µ

(302)

!

Cov x
T
xx

T
,x() = 2Tr "2() + Tr "()

2
+ Tr "()µTµ + 2µT

"µ

 108

(303)

!

Cov x,x
T
xx

T
x() = 4"µµTµ + 4Tr "()"µ + 8"2µ

(304)

!

Cov xx
T
,xx

T
x() = Tr "() + 3"() µµT + Tr "()() + 2µµT

"+ 2Tr "2() + 6"2()µ

(305)

!

Cov xx
T
x,x

T
x() = 4µµT

"µ + 2"µµTµ + 2Tr "2()µ + 2Tr "()"µ + 8"2µ

(306)

!

Cov xx
T
xx

T
,x() = Tr "()µµTµ + 2µµT

"µ + "µµTµ

+2Tr "2()µ + Tr "()
2
µ + 3Tr "()"µ + 6"2µ

(307)

!

Cov x,x
T
xx

T
xx

T() = "Tr "()
2

+ 2"Tr "2() + 8"3 + 4"2Tr "()

+4"µT
"µ + 8"µµT

"+ 4"2µTµ + 8"2µµT

+4"Tr "()µµT + 2"Tr "()µTµ + 4"µµTµµT + "µTµµTµ

(308)

!

Cov xx
T
,xx

T
xx

T() = "Tr "()
2

+ 2"Tr "2() + 6"3 + 3"2Tr "()

+4"µT
"µ + 6"µµT

"+ 3"2µTµ + 6"2µµT + 6µµT
"
2

+4µµT
"Tr "() + 3"Tr "()µµT + 2Tr "2()µµT + Tr "()

2
µµT

+2"Tr "()µTµ + 3"µµTµµT + µµTµµT
"+ 2µµT

"µµT

+µµTµµT
Tr "() + "µTµµTµ

(309)

!

Cov xx
T
x,x

T
xx

T() = "Tr "()
2

+ 2"Tr "2() + 8"3 + 4"2Tr "()

+4"µT
"µ + 4"µµT

"+ 4"2µTµ + 8"2µµT + 8µµT
"
2

+2µµT
"Tr "() + 2"Tr "()µµT + 2Tr "2()µµT + 2"Tr "()µTµ

+2"µµTµµT + 2µµTµµT
"+ 4µµT

"µµT + "µTµµTµ

The vector central moments are

(310)

!

E x "µ() = 0

(311)

!

E x "µ() x "µ()
T() = #

(312)

!

Cov x "µ(), x "µ()
T() = #

(313)

!

E x "µ()
T

x "µ()() = Tr #()

(314)

!

Cov x "µ()
T

, x "µ()() = Tr #()

 109

(315)

!

E x "µ() x "µ()
T

x "µ()() = 0

(316)

!

E x "µ() x "µ()
T

x "µ() x "µ()
T() = 2#2 + #Tr #()

(317)

!

Cov x "µ() x "µ()
T

, x "µ() x "µ()
T() = #2 + #Tr #()

(318)

!

E x "µ()
T

x "µ() x "µ()
T

x "µ()() = 2Tr #2() + Tr #()
2

(319)

!

Cov x "µ()
T

x "µ(), x "µ()
T

x "µ()() = 2Tr #2()

(320)

!

E x "µ() x "µ()
T

x "µ() x "µ()
T

x "µ()() = 0

(321)

!

E x "µ() x "µ()
T

x "µ() x "µ()
T

x "µ() x "µ()
T() = 8#3 + 4#2Tr #()

+2#Tr #2() + #Tr #()
2

(322)

!

Cov x "µ() x "µ()
T

x "µ(), x "µ()
T

x "µ() x "µ()
T() = 8#3 + 4#2Tr #()

+2#Tr #2() + #Tr #()
2

(323)

!

E x "µ()
T

x "µ() x "µ()
T

x "µ() x "µ()
T

x "µ()() = 8Tr #3() + 6Tr #2()Tr #() + Tr #()
3

Now, we will consider when there are multiple measurements with the same covariance

but different mean. The kth measurement then has the properties of

(324)

!

E x
k() = µ

k
 and

(325)

!

Cov x
k
,x

k

T() = "

The vector expectations of the averages of N independent measurements are

(326)

!

E x () = µ

(327)

!

E x
k
x

T() = µ
k
µ T + 1

N
"

(328)

!

E x
k
x

l

T
x () = µ

k
µ

l

Tµ + 1

N
Tr "()µk

+ 1

N
"µ

l

 110

(329)

!

E x
k
x

k

T
x () = µ

k
µ

k

T + "()µ + 1

N
Tr "()µk

+ 1

N
"µ

k

(330)

!

E x x
T
x () = µ µ T + 1

N
"()µ + 1

N
Tr "()µ + 1

N
"µ

(331)

!

E x
k
x

T
x () = µ

k
µ Tµ + 1

N
Tr "()() + 2

N
"µ

(332)

!

E x x
T

x
k() = µ µ T + 1

N
"()µk

+ 1

N
Tr "()µ + 1

N
"µ

(333)

!

E x x
k

T
x

k() = µ µ
k

Tµ
k

+ Tr "()() + 2

N
"µ

k

(334)

!

E x x
k

T
x

l() = µ µ
k

Tµ
l
+ 1

N
"µ

k
+ 1

N
"µ

l

The sample vector central moments are

(335)

!

E x
k
" x () = µ

k
"µ

(336)

!

E x
k
" x () x

l
" x ()

T() = µ
k
"µ () µ

l
"µ ()

T

" 1

N

(337)

!

E x
k
" x ()

T

x
l
" x ()() = µ

k
"µ ()

T

µ
l
"µ () " 1

N
Tr #()

(338)

!

E x
k
" x () x

l
" x ()

T

x
l
" x ()() = µ

k
"µ () µ

l
"µ ()

T

µ
l
"µ ()

+ N"1

N
Tr #() µ

k
"µ () " 2

N
µ

l
"µ ()

Unbiased estimators of the vector central moments from N samples are

(339)

!

C = 1

N"1
x

k
" x () x

k
" x ()

T

k=1

N

(340)

!

E C() =C
0

+ "

(341)

!

Cov Cij ,Cmn() = 1

N"1
#im#nj + #in# jm + #imC0nj + #inC0 jm + # jmC0in + # jnC0im()

(342)

!

D = 1

N"1
x

k
" x ()

T

x
k
" x ()

k=1

N

(343)

!

E D() = Tr C
0

+ "()

(344)

!

Cov D,D() = 1

N"1
Tr 2#

2 + 4C
0
#()

 111

(345)

!

S = 1

N"1
x

k
" x () x

k
" x ()

T

x
k
" x ()

k=1

N

(346)

!

E S() = S
0

(347)

!

Cov S,S
T() = 1

N"1
#
3 + #2C

0
+ #C

0
#+C

0
#
2 + F

0
#+ #F

0()

(348)

!

F = N

N"1()2
x

k
" x () x

k
" x ()

T

x
k
" x () x

k
" x ()

T

k=1

N

(349)

!

E F() = F
0

+ 2"2 + "Tr "()

(350)

!

G = N

N"1()2
x

k
" x ()

T

x
k
" x () x

k
" x ()

T

x
k
" x ()

k=1

N

(351)

!

E G() = Tr F
0() + 2Tr "2() + Tr "()

2

7.1.2 Positive-Semidefinite Sample Covariance
A positive-semidefinite matrix A is defined as having the property hTAh ≥ 0 for

an arbitrary vector h ≠ 0. The sample covariance matrix is

(352)

!

C = 1

N "1 x
i
" x () x

i
" x ()

T

i=1

N

Then applying an arbitrary vector h

(353)

!

h
T
Ch = 1

N "1 h
T

x
i
" x () x

i
" x ()

T

h

i=1

N

Now defining

!

qi " xi # x ()
T

h simplifies the sum to

(354)

!

h
T
Ch = 1

N "1 qi
2

i=1

N

 112

which is always positive for an arbitrary set of values qi except for one non-trivial case.

The exception is when the points are coplanar. In the coplanar case, qi = 0 for all i when

h is normal to the plane and therefore hTCh=0.

7.2 Inertial Properties of a Tetrahedron
This paper does not deal with inertia but in the process of doing this research,

various physical models were created. One model was the tetrahedral mesh along with

its physical properties. Inertia properties were not easy to calculate so this section was

left in for the convenience of future simulation work. Inertial properties can be quite dif-

ficult to calculate but can be exactly determined. The moment of inertia and angular

momentum is taken from standard analytical mechanics books as

(355)

!

I = ˆ w " r
2

dm#

(356)

!

L = r " w " r()dm#

where dm = ρ dV, the density times the differential volume.

The moment of inertia and angular momentum are very desirable traits to follow in any

dynamic simulation. They both involve integrating over the tetrahedral volume. I have

derived them below using parameterized coordinates. A point inside the tetrahedron can

be uniquely determined by

(357)

!

r = a
0

+ a
1

+ a
2

+ a
3
t
0()t1()t2

where

(358)

!

a
0

= v
2

(359)

!

a
1

= v
3
" v

2

 113

(360)

!

a
2

= v
0
" v

3

(361)

!

a
3

= v
1
" v

0

and

!

v
i
 are one of the tetrahedron vertices

The differential volume is determined by the parameter space change formula

(362)

!

dV =
"r

"t
2

#
"r

"t
1

$
"r

"t
0

%

&
'

(

)
* dt0dt1dt2

(363)

!

"r

"t
2

#
"r

"t
1

$
"r

"t
0

%

&
'

(

)
* 6t1t2

2
V
Tet

Each parameter ti varies from zero to one for inside the tetrahedron so the entire integral

results in

(364)

!

I = 6m ˆ w " r
2

t
1
t

2

2
dt

0
dt

1
dt

2

0

1

#
0

1

#
0

1

where

!

ˆ w is the angular velocity unit vector (i.e. the spin axis) and m is the mass of the

entire tetrahedron. The density of the tetrahedron is kept constant and thus the mass is

brought out of the integrand as the density times the volume. Performing the triple inte-

gral produces a double sum. The integral turns into the double sum

(365)

!

I = 6m ˆ w " ai() # ˆ w " a j() t
0

n
0 ij t

1

n
1ij t

2

n
2 ij dt

0
dt

1
dt

2

0

1

$
0

1

$
0

1

$
j= 0

3

%
i= 0

3

%

where

(366)

!

nkij =
i + k

3

"

"
$

% $
+

j + k

3

"

"
$

% $
+ k

Integrating the double sum and expanding the ai terms into vi terms produces the equation

 114

(367)

!

I = m qijaij
j= 0

3

"
i= 0

3

"

(368)

!

aij = ˆ w " vi() # ˆ w " v j()

(369)

!

qij =

1

20
j " i

1

10
j = i

$
%

&
%

Since both qij and aij are symmetric then Equation (367) reduces to ten terms.

The angular momentum is very similar with the integral

(370)

!

L = 6m r " w " r()t1t2
2
dt
0
dt
1
dt
2

0

1

#
0

1

#
0

1

#

(371)

!

L = m qijbij
j= 0

3

"
i= 0

3

"

(372)

!

bij = vi " w " v j()

In this case, bij is not symmetric so all sixteen terms must be calculated. A much simpler

form of these equations occurs when a body has a coordinate system that is centered on

its center of mass and is aligned to its principal axes. This simplification will be ap-

proached in the next section. The following matrix equations separate out the purely

geometric quantity Q from the spinning quantity

!

ˆ w .

(373)

!

I
tet

= m
tet

ˆ w
T
Q c() ˆ w

(374)

!

L
tet

= m
tet
Q c()w

(375)

!

Q
tet
c() =Q c

m
" c() +

1

20
Q v

i
" c

m()
i= 0

3

 115

(376)

!

Q "() = "T" # ""T =

"2 # x 2 #xy #xz

#yx "2 # y 2 #yz

#zx #zy "2 # z2

$

%

&
&
&

'

(

)
)
)

The time complexity of Qtet is 30 multiplications + 54 additions. For each of the above

equations, the vectors are relative to the center of rotation. To generalize, one must sub-

tract the center of rotation from the four vertex vectors.

7.3 File Formats

7.3.1 Marker Association Format
This file is a simple text file that associates the marker identification string stored

in a C3D file with a known marker label. The known marker label is identified in a

marker-set file that clearly associates it with a particular segment on the body. This file

allows for quick association of the data with a segment. The only other alternative is to

do grouping analysis for all of the data that is very time consuming. The file contains the

following format:

46 WANDS

MARKERSET vicon512.txt

TestSubjectProdMS-V2:Root = unknown
TestSubjectProdMS-V2:LFWT = LFWT
TestSubjectProdMS-V2:RFWT = RFWT
TestSubjectProdMS-V2:LBWT = LBWT
TestSubjectProdMS-V2:RBWT = RBWT
TestSubjectProdMS-V2:LKNE = LKNE
TestSubjectProdMS-V2:LTHI = LTHI
TestSubjectProdMS-V2:LANK = LANK
TestSubjectProdMS-V2:LSHN = LLEG
TestSubjectProdMS-V2:LHEE = LHEE
…

 116

7.3.2 Articulated Tetrahedral Model Format
The Articulated Tetrahedral Model (ATM) file format was created in order to

bring together the necessary information to produce a jointed figure. It is a text format

that references other the individual segments’ mesh files. The text file has keywords fol-

lowed by values and sub-fields. All words are separated by spaces. The following are

the list of available keywords:

FIGURE myFigure

This keyword defines the name of the entire figure.

SEGMENTS 16

The number of segments of the figure follows:

MESH 0 chest.mesh

mesh identifies the mesh file that follows the index value. The file is identified as a tet-

rahedral or triangular mesh in the *.mesh format defined by the freeware MEDIT tool for

editing meshes and explained in Chapter 7.3.3. The filename is for a file that is located in

the same folder as the ATM file.

NAME Chest

The name of the segment follows this keyword.

MASS 30.0 // kg

The mass of the segment follows this keyword.

SCALE_XYZ 0.2 0.2 1.0

 117

TRANSLATE_X 1.5
TRANSLATE_Y 1.5
TRANSLATE_Z 1.5
TRANSLATE_XYZ 1.5 2.5 3.5
ROTATE_X 35.2
PARENT 4 // hips

The index of the parent segment is defined here.

JOINT Waist
 3 0.994765 1.002953 1.084350
DEGREES_OF_FREEDOM 1 0
 VALUE 0.0
 3 -0.257042 0.966392 -0.003915
 FROM -93.199994 TO 29.000000

The name of the joint that is proximal to this segment is defined here followed by

joint parameters. The center of rotation is defined immediately following the JOINT key-

word. First a count of how many dimensions for the vector is specified (usually 3).

Then, each coordinate, e.g. x y z. After the joint position, its freedoms are defined. DE-

GREES_OF_FREEDOM is followed by two integers. The first is the count of rotational

freedoms, and the second is the count of translational freedoms. Then comes the list of

freedom parameters for which there are three for each freedom. The current value is de-

fined, then the freedom axis, then the freedom limits. Rotational limits and values are in

degrees and translational ones are in meters.

CHILDREN 3
 1 // Neck
 2 // Upper Left Arm
 3 // Upper Right Arm

 118

The list of child indices are defined here

ENDMESH

Mandatory ending of the segment information

ENDFIGURE

Mandatory ending of the figure information

7.3.3 MESH Format
The MESH format is the easiest format I have found for tetrahedral meshes. It is

the default format for the free Internet program MEDIT available from

http://www.ann.jussieu.fr/~frey/logiciels/medit.html. Pascal J. Frey created this format to

replace the inadequacies of prior formats. I have found it necessary to add some key-

words to extend the format capabilities. This format is composed of a single (binary or

text) data file. Its structure is organized as a series of fields identified by keywords. The

blanks, newlines or carriage returns, and tabs are considered as item separators. A com-

ment line starts with the character # and ends at the end of the line. The comments are

placed exclusively between the fields. The mesh file must start with the descriptor:

MeshVersionFormatted 1
Dimension 3

The other fields supported by MEDIT are either required or facultative. The required

fields correspond to the geometry (i.e. the coordinates) and to the topology description

(i.e. the mesh entities). In the following tables, the term vi indicates a vertex number (i.e.

the ith vertex in the vertex list), ei is an edge number, ti is a triangle number, Ti is a tetra-

 119

hedron number, and qi is a quadrilateral number. Notice that the vertices coordinates are

real numbers in single precision.

Table 5 Primitives in MESH Format

Keyword Card. Syntax Range

Vertices np xi yi zi refi i:[1,np]

Edges ne v1
i v2

i refi i:[1,ne], vj
i:[1,np]

Triangles nt vj
i refi i:[1,nt], j:[1,3],

vj
i:[1,np]

Quadrilaterals nq vj
i refi i:[1,nq], j:[1,4],

vj
i:[1,np]

Tetrahedra ntet vj
i refi i:[1,ntet], j:[1,4],

vj
i:[1,np]

Hexaedra nh vj
i refi i:[1,nh], j:[1,8],

vj
i:[1,np]

The description of constrained entities or singularities follows. In particular, a corner

(keyword Corner) is a C0 continuity point (this type of item is necessarily a mesh ver-

tex). By analogy, a Ridge is an edge where there is a C0 continuity between the adja-

 120

cent faces. The fields of type Requiredxx make it possible to specify any type of en-

tity that must be preserved by the meshing algorithm.

Table 6 Preservation Adjectives in MESH Format

Keyword Card. Syntax Range

Corners nc vi i:[1,nc], vi:[1,np]

RequiredVertices nrv vi i:[1,nrv], vi:[1,np]

Ridges nr ei i:[1,nr]

RequiredEdges nre ei i:[1,nre]

As mentioned above, it is also possible to specify normals and tangents to the sur-

face. The normals (respectively tangents) are given as a list of vectors. The normal at a

vertex, keyword NormalAtVertices, is specified using the vertex number and the

index of the corresponding normal vector. The normal at a vertex of a triangle, Nor-

malAtTriangleVertices, corresponds to the combination of the triangle number,

the index of the vertex in the triangle and the index of the normal vector at this vertex.

The keyword NormalAtQuadrilateralVertices is handled similarly. The tan-

gent vectors are described in the same way.

Table 7 Optional Adjectives of Primitives in MESH Format

 121

Keyword Card. Syntax Range

Normals nn xi yi zi i:[1,nn]

Tangents nnt xi yi zi i:[1,nnt]

NormalAtVertices nv vi ni i:[1,nv], vi:[1,np],

ni:[1,nn]

NormalAtTriangleVertices ntv ti vi ni i:[1,ntv], ti:[1,nt],

vi:[1,np], ni:[1,nn]

NormalAtQuadrilateralVerti-

ces

nqv qi vi ni i:[1,nqv], qi:[1,nq],

vi:[1,np], ni:[1,nn]

TangentAtEdges te ei vi ti i:[1,te], ei:[1,ne],

vi:[1,np], ti:[1,nnt]

*Colors ncc p ri gi bi

ai

i:[1,ncc], p:[3,4], ai

only for p=4

*ColorAtVertices ncv vi ci i:[1,ncv], vi:[1,np],

ci:[1,ncc]

*NeighborAtTriangleEdges nte t1
i f t2

i i:[1,nte], f:[1,3],

tj
i:[1,nt]

 122

*NeighborAtTetrahedronFaces ntf T1
i f T2

i i:[1,ntf], f:[1,4],

Tj
i:[1,ntet]

* Keywords added for this research.

Finally, the data structure must end with the keyword: End. The new color key-

words are handy for coloring the mesh. The neighbor keyword reduces the amount of

time it takes to traverse a mesh. Knowing the neighbor at each face of a tetrahedron can

determine which tetrahedron to go when moving through a mesh. If there is no neighbor,

then the tetrahedron is on the outside.

7.3.4 PLY Format
The Polygon File Format (PLY) is another popular meshing format but only for

2D (surface) meshes. It is also known as the Stanford Triangle Format. It can be ASCII

or binary and contains almost all that is needed for triangulated meshes. The format is

originally from Stanford and is documented with examples and source code there

(http://graphics.stanford.edu/data/3Dscanrep). This research program has incorporated

the ability to read PLY files for the figure animation.

7.3.5 C3D Format
The Coordinate 3D (C3D) file format is only used for storing the raw motion cap-

ture data. It is a good format and is the oldest in the business. It originally came in 1986

from Dr. Andrew Danis but is now part of a non-profit organization at

http://www.c3d.org. The file format is a subset of a more general (ADTECH) format that

is binary and stores both parameter information and raw data. The data can be stored in

 123

little-endian (Intel), big-endian (MIPS, PPC), and DEC binary formats for 16-bit integers

and 32-bit floats. Both analog and digital information can be stored along with their de-

scriptions and measurement units. All of the data that comes from Carnegie Melon

Graphics Lab is stored in C3D format.

7.4 User’s Guide to Program
The following sections describe the use of the application that was built for the re-

search. The application was designed using the Xcode 1.5 integrated development envi-

ronment available for free from Apple and comes with the MacOSX 10.4 operating sys-

tem. There are 45270 lines of code with a total McCabe's Cyclomatic Complexity Num-

ber of 8112. The application follows the recommended Macintosh human interface and is

compatible with MacOSX 10.1 through 10.4.8 though only tested on 10.3 and 10.4. The

engine that drives the calculations is written entirely in standard portable C++ and the

graphics panes are written in OpenGL. The user interface is written in ObjectiveC that

compliment the NIB files for Interface Builder. Everything except the user interface is

portable. The code was compiled for the PowerPC G4 processor and was tested on a

PowerBook G4.

7.4.1 Menu
The File Menu provides the basic file saving and retrieving capabilities some of which

are available in the Options Pane as well. A picture of the File Menu open is in

Figure 27.

 124

Figure 27 File Menu GUI

Add Figure

The Add Figure menu item (optionally use -1) allows the user to add a figure to

the graphics. A figure can be an Articulated Tetrahedral Mesh (ATM) file (as explained

in Chapter 7.3.2); a MESH formatted file (both tetrahedral and triangulated); and a PLY

formatted file. Only the ATM file can be used for the hierarchical analysis of the motion

capture data. When this menu item is picked, a standard Open dialog is presented for

choosing a file. When a file is chosen, the file is parsed and presented in the Animation

Pane. The Options Pane text for the figure is filled out with the path of the file and the

height of the figure is filled out.

Get Data

 125

This menu item (optionally use -2) will present a standard Open dialog to allow

the user to choose a C3D motion capture data file. The selected file will associate the

data with the currently active figure (see the Options Pane). Once chosen, the file is

parsed and connected lists of data frames are filled out.

Save Temp Correlation

This menu item allows the user to save a temporary correlation text file associated

with the C3D data file that was previously chosen. The text file can then be edited to al-

low a hierarchical correlation of the data markers with segments on the figure. The num-

ber of markers is stated on the first line (e.g. 41 WANDS). The marker set file name is

stated on the second line (e.g. MARKERSET vicon512.txt). Then comes a list of marker

correlations (e.g. Jim:RTHI = RTHI Right thigh). The left side of the equals sign is the

single word that the marker is labeled as in the data (e.g. Jim:RTHI). The right side has a

single word that corresponds to a marker in the above-mentioned marker set file followed

by a free-form description.

Get Correlation

This menu item (optionally use -3) presents the user with an Open dialog to re-

trieve a correlation file. The file is parsed and the left side is looked up in the C3D data

and the right side is looked up in the marker set file. The marker set file determines

which segment to attach the marker and where on the segment. If the marker is not to be

used in the correlation, just put some uncorrelated name (e.g. Unknown) on the right

hand side.

 126

Get Motion

This menu item retrieves motion files that have been previous saved or manually

created. Motion files allow the user to create motion of an articulated figure based on a

Taylor expansion of any or all degrees of freedom.

Save Motion

This menu item will save the Taylor expansions that were created when the “Ana-

lyze” button is pressed in the Graphs Pane.

Save Data

This menu item will save the joint angles that were created when the “Analyze”

button is pressed in the Graphs Pane.

Animate

This menu item will start the animation.

Info

This menu item will enable some graphics hardware information to be displayed

on the Animation Pane.

Close

This menu item will close the window.

 127

7.4.2 Options Pane
The Options plane contains all of the figure, data, and animation options avail-

able. On the right are all of the files that are used in the current analysis. The “Marker

Set Dir” is the directory that all marker set files are located for the correlation. The “Fig-

ure” file is the currently active articulated model. The “Motion Data” file is the current

C3D being analyzed. The “Correlate Data” file is the correlation file that binds the data

with the hierarchical figure. The “replace” checkbox will replace the current figure with

the opened figure if it is on. Otherwise the opened file will be added to the scene. The

“ft->m” checkbox will convert the motion data from feet to meters if on. The “x2” but-

ton will multiply the sampling rate by two. The last two buttons are there for conven-

ience since the data does not always specify the correct units or sampling rate. Once the

data is read in, the height and sampling rate text can be edited to whatever size and the

internal data will be updated. The same goes for the Figure information. The height of

the figure can be edited.

 128

Figure 28 Options Pane GUI

Drawing Options

The many checkboxes allow the selection of various things to be drawn in the

Animation Pane. “Loop Animation” will make the animation repeat when the maximum

time of the data is reached. “Show Data Paths” will display the paths taken for each

marker in the data. The paths will be colored lighter if the marker has been correlated to

the figure. “Show Figures” will display all figures that have been read in. “Draw Floor”

will ... draw the floor?! The other checkboxes draw extra little goodies on the figure.

7.4.3 Animation Pane
This pane is where all of the action happens. Select this pane once all of the files

and options are set in the Options Pane. The time of the animation is displayed in the up-

per right in seconds. The Capture Screen button will take an exact snapshot of the

 129

OpenGL window and allow the user to save it as a TIFF file. The TIFF file is a 32-bit

ABGR8888 color file. The “Capture Movie” checkbox is similar except that it saves

many TIFF files at 0.1 second intervals for the entire loop. The “Follow Data” starts the

animation process that draws the moving figure and the skeleton in the data. There are

options for panning the scene around. If the Command key () is held down while the

mouse button is held down and the screen is dragged by the mouse, then the scene is

dragged up/down or left/right. If the Option key is held down with the mouse button, the

user can zoom in or out of the scene with the mouse. With just the mouse button and the

mouse dragging, the user can rotate the scene around the (0,0,0) point.

Figure 29 Animation Pane GUI

 130

7.4.4 Graphs Pane
This pane was added for analysis of joint angles was just a visualization aid for

research. The analyze button currently tries to determine the angles which are needed to

rotate in order to follow the current dataset. Once the analysis is done, a joint can be

picked from the pop-up. When the user slides the horizontal time bars left and right, a

new Taylor expansion will be generated for the time window. Taylor expansions help in

analyzing the predictive-ness of the angle paths.

Figure 30 Graphs Pane GUI

 131

7.5 Programmer’s Reference

7.5.1 Class Diagrams
The articulated figure designed for this research is for general-purpose articulated

modeling. The original attempt was to use it for physical based calculations. With the

advent of the Minimum Variance Method, the model has been resigned to a simple orga-

nizational tool for the hierarchical tree traversals. The entire implementation is explained

here for future use. The C++ object model is set up in a hierarchical manner for the ar-

ticulated figure. An articulated figure (ArtFigure.cpp) is made of segments (Seg-

ment.cpp). A segment is a rigid body (RigidBody.cpp) that is linked to another by a

joint. The rigid body is a shape that can be translated and rotated, but not molded. The

rigid body is made of a mesh of tetrahedrons (TetrahedralMesh.cpp). The mesh is a face-

connected list of tetrahedrons. Only faces on the surface have no connected tetrahedrons

and are available for drawing. A tetrahedron (Tetrahedron.cpp) is a four sided figure

with four vertices assigned. Each side of the tetrahedron is a triangle (Triangle.cpp).

Since adjacent tetrahedrons share vertices, the tetrahedrons will contain only references

to its points. All of the points for the tetrahedral mesh will be stored in a linear array in-

side the TetrahedralMesh instance. This allows easy access to the points for quick trans-

lations and rotations without duplication of effort. Figure 31 is a UML Diagram describ-

ing the relationships between objects.

 132

Figure 31 UML Diagram of Articulated Figure

 133

7.6 C++ Implementations
This section contains the crucial implementations for the novel algorithms in this

thesis. It starts with the implementation of the UGDK, followed by IGDK. The next al-

gorithm involves the collecting of the raw data and turning them into relative positions.

The calculation of the rotation point follows.

7.6.1 Unbiased Generalized Delogne-Kása Method
This snippet of C++ code implements the core of the Unbiased Generalized De-

logne-Kása Method. Some of the standard linear algebra operations are hidden inside of

the Vector and Matrix classes.

void VectorDataSet::init(const Vector * v,
 unsigned int n,
 double eps)
{
 unsigned int i;
 Vector d;
 double d2;

 if(n == 0)
 {
 cerr << "ERROR: VectorDataSet::init"
 << " no data to init set"
 << endl;
 return;
 }
 init(v->numElements);
 for(i=0; i<n; i++)
 {
 moment1 += v[i];
 }
 moment1 /= n;
 for(i=0; i<n; i++)
 {
 d = v[i]-moment1;

 134

 covariance += d.SquareTranspose();
 d2 = d*d;
 moment3 += d*d2;
 moment2 += d2;
 }
 moment2 /= n;
 if(n > 1)
 {
 covariance /= n-1;
 moment3 /= n-1;
 covariance -= eps*eps; // compensate for bias
 }
 else
 {
 covariance = 0.0;
 moment3 = 0.0;
 }
 Matrix decomp = covariance.CholeskyDecomposition();
 covarianceInverse = decomp.CholeskyInverse();
 center = moment1 + 0.5*decomp.CholeskyBacksubstitution(moment3);
 centerDiff = 1.0e20;
 difMoment1 = 1.0e20;
 radius = sqrt(((n-1.0)/n)moment2+(center-moment1)*(center-moment1));
 numData = n;
 numCenterData = 1;
 centerAvg = center;
}

7.6.2 Incrementally Improved Generalized Delogne-Kása
This code snippet adds a vector to the data set and improves the various values

that were previously calculated in Section 7.6.1.

void VectorDataSet::operator+=(const Vector& a)
{
 unsigned int i;
 Vector b,d;
 double d2,q1,qn1,q2,qp1;
 Matrix m;
 if(numData > 0)
 {
 difMoment1 += a - lastValue;
 }
 lastValue = a;

 135

 q1 = (numData/(numData+1.0)); // < 1
 qn1 = (numData-1.0)/numData; // < 1
 q2 = (numData+2.0)/numData; // > 1
 qp1 = (numData+1.0)/numData; // > 1
 difMoment1 = (a-moment1)/(numData+1.0);
 moment1 += difMoment1; // average
 d = a-moment1;
 d2 = d*d
 b = covarianceInverse*d;
 moment2 += (qp1*d2 - moment2)/(numData+1.0);
 covarianceInverse += (covarianceInverse-(numData/((numData-

1.0)*q1+(d*b)))*b.SquareTranspose())/(numData-1.0);
 covariance += (qp1*d.SquareTranspose() - covariance)/numData;
 centerDiff = (covarianceInverse*d)*(d*(a-center) -

0.5*(moment2+d2))/(numData+1.0);
 center += centerDiff;
 centerAvg += (center-centerAvg)/(numCenterData+1.0);
 moment3 += ((-2.0*covariance-moment2*qp1+d2*(qp1*q2))*d-

moment3)/numData;
 radius = sqrt(qn1*moment2+(center-moment1)*(center-moment1));

 for(i=0; i<dimension; i++)
 {
 if(a[i] < minimum[i])
 {
 minimum[i] = a[i];
 }
 if(a[i] > maximum[i])
 {
 maximum[i] = a[i];
 }
 }
 numData++;
 numCenterData++;
}

7.6.3 Collecting the Raw Data for Rotation Point
This function collects the raw data and creates an array of positions relative to the

parent segment. The inputs are the time window beginning and end. The outputs are the

collection of relative points and whether the function succeeded.

bool Segment::CollectRelativeDataPoints(Units::second t1,
 Units::second t2)
{

 136

 unsigned int i,k,n=1,n1=n;
 double maxLen = 0;
 PositionVector dataCenter2;
 Matrix dataAxes2;
 Units::second t3 = 0,deltaT,lastTime;
 EventFrame::ElementType evl[1] = {NULL};
 Event * e[n];
 EventFrame events;
 unsigned int best = 0;
 Vector pi(3);

 // the parent must exist and have data
 if(numCorrelated == 0 ||
 parent == NULL)
 {
 return false;
 }
 // find the farthest data point
 for(i=0; i<correlatedFrame.numElements; i++)
 {
 for(k=i+1; k<correlatedFrame.numElements; k++)
 {
 if(correlatedFrame.lengths[i][k] > maxLen)
 {
 best = i;
 maxLen = correlatedFrame.lengths[i][k];
 }
 }
 }
 evl[0] = correlatedFrame[best];
 if(evl[0] == NULL)
 {
 return false;
 }
 events.setEvents(evl,n);
 deltaT = events.minTimeBetweenEvents;
 if(t1 < events.minTime)
 {
 t1 = events.minTime;
 }
 if(t2 > events.maxTime)
 {
 t2 = events.maxTime;
 }
 t3 = t1 - deltaT; // so first frame is retrieved
 pathToFollow.RemoveAll();
 while(events.NextAbsoluteStableFrame(n1,e,t3) && (t3 <= t2))
 {

 137

 if(!parent->GetSameDataAxes(t3, dataAxes2, dataCenter2))
 {
 // bad frame, continue to next
 continue;
 }
 for(i=0; i<n; i++)
 {
 if(e[i] != NULL)
 {
 pi = (e[i]->position - dataCenter2)*dataAxes2;
 pathToFollow.InsertEvent(pi,
 e[i]->time,
 e[i]->accuracy,
 e[i]->time_accuracy);
 }
 }
 }
 return true;
}

7.6.4 Rotation Point Calculation of Segment
This function takes the collection of relative data points and calculates the relative

rotation point in the data. It also calculates the best fit planar normal of the data which is

needed for marker sets of one marker on a segment. It returns the relative rotation point.

PositionVector Segment::GetDataRotationPoint()
{
 Event * e = NULL;
 unsigned int j;
 Vector p(3),pi(3),p3(3),mean(3),pip(3),pir(3);
 Vector b,r;
 Matrix A(3,3),P2(3,3),a,Ainv;
 //Vector::ElementType p2=0.0,q,L=0.0;
 double err(0);
 static const int N = 100000;
 int n;
 VectorDataSet dataSet;
 Vector vs[N];

 kalmanFilterFailed = true;
 if(CollectRelativeDataPoints())
 {
 n = 0;

 138

 e = pathToFollow.beginning;
 while(e && n < N)
 {
 vs[n] = e->position;
 e = e->next;
 n++;
 }
 dataSet.init(vs,n,pathToFollow.beginning->accuracy);
 while(e && !dataSet.sphereHasConverged(0.01))
 {
 dataSet += e->position;
 e = e->next;
 n++;
 }
 if(n > 0)
 {
 j = n;
 r = dataSet.center;
 double cn = dataSet.covariance.ConditionNumber();
 Vector v = dataSet.covariance.NullSpace(1.000001/cn).Column(0);
 relativeDataParentOneDOFaxis = v;
 Vector r1 = r + v*((p-r)*v);

 if(cn > 10000.0) // project onto plane
 {
 r = r1;
 }
 }
 }
 return PositionVector(r);
}

7.6.5 Constants Calculation of Hierarchical Articulated Data
This function calculates the constants necessary to draw the skeleton at any time

frame. There are no inputs except for the available raw data. The outputs are the con-

stants that are set for each segment. This function must be called from the root segment

or the hierarchy will break.

void Segment::SetDataRelativeStuff() // call from root
{
 Matrix dataAxes = Matrix::Identity(3);
 PositionVector dataCenter,rot,c,v;

 139

 unsigned int i;
 Units::second t = 0;
 Event * e[numCorrelated];

 unsigned int n = 0,n1=numCorrelated;
 if(correlatedFrame.NextFrame(n1,e,t))
 {
 c = 0.0;
 for(i=0; i<numCorrelated; i++)
 {
 if(e[i] != NULL)
 {
 c += e[i]->position;
 n++;
 }
 }
 if(n > 0)
 {
 c /= n;
 }
 }
 if(parent)
 {
 // calculate rotation point from available data
 relativeDataParentRotationPoint = GetDataRotationPoint();
 if(parent->numCorrelated == 0) // set previous segment's
 {
 parent->relativeDataParentRotationPoint =
 relativeDataParentRotationPoint;
 }
 t = 0.0;
 if(parent->GetDataAxes(t,dataAxes,dataCenter))
 {
 rot = dataCenter + dataAxes*relativeDataParentRotationPoint;
 v = dataAxes*relativeDataParentOneDOFaxis;
 relativeDataJointAxesZero =
 dataAxes.Transpose()*Matrix::Identity(3);
 }
 else
 {
 cerr << "No parent data axes for " << name << endl;
 rot = PositionVector(0.0,0.0,0.0);
 relativeDataJointAxesZero = Matrix::Identity(3);
 }
 t = 0.0;
 // set segment's relative stuff to markers
 if(GetDataAxes(t,dataAxes,dataCenter))
 {

 140

 relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataRotationPoint = (rot - dataCenter)*dataAxes;
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataOneDOFaxis = dataAxes.Transpose()*v;
 }
 else
 {
 cerr << "No self data axes for " << name << endl;
 }
 }
 else // root
 {
 // no rotation point so just get the centroid of data
 t = 0.0;
 if(!GetDataAxes(t,dataAxes,dataCenter))
 {
 cerr << "Damn, root really needs >= 3 correlated markers"
 << endl;
 }
 relativeDataCentroid = (c - dataCenter)*dataAxes;
 relativeDataRotationPoint = relativeDataCentroid;
 relativeDataOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentOneDOFaxis = DirectionVector(1.0,0.0,0.0);
 relativeDataParentRotationPoint = PositionVector(0.0,0.0,0.0);
 relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataJointAxesZero=dataAxes.Transpose()*Matrix::Identity(3);
 relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3);
 }
 //cout << "DataGrouping " << CheckDataGrouping() << endl;
 for(i=0; i<numChildren; i++)
 {
 children[i]->SetDataRelativeStuff(); // recursive
 }
}

7.6.6 Calculation of fixed axes of data
This function calculates the center and the three axes for a segment based upon

the previously calculated constants and the current raw data. The input t is the time at

which to extract the data. The function outputs the axes in the form of a 3x3 matrix and

 141

the center in absolute coordinates if successful. If not successful, the function returns

false.

bool Segment::GetDataAxes(Units::second& t,
 Matrix& dataAxes,
 PositionVector& dataCenter) const
{
 Event * e[3] = {NULL,NULL,NULL};
 Units::second oldT = t;

 // a segment without axes, use parent's
 if(parent && axesFrame.numElements == 0)
 {
 if(!parent->GetDataAxes(t, dataAxes, dataCenter)) // recursive
 {
 return false;
 }
 }
 // root and all segments with many points gets in here
 else if(axesFrame.numElements == 3)
 {
 unsigned int n = 3;
 if(!axesFrame.NextAbsoluteFrame(n,e,t))
 {
 if(t < axesFrame.maxTime)
 {
 cerr << "Missing events for " << jointName
 << " t " << t << endl;
 }
 return false;
 }
 dataCenter = e[0]->position;
 dataAxes = Matrix::Axes(dataCenter,e[1]->position,e[2]->position);
 }
 else if(!parent) // segment must have parent beyond this point
 {
 return false;
 }
 else if(axesFrame.numElements == 2) // need parent's stuff set
 {
 unsigned int n = 2;
 Matrix pDataAxes;
 PositionVector pDataCenter;
 if(!axesFrame.NextAbsoluteFrame(n,e,t))
 {
 return false;

 142

 }
 // recursive
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter))
 {
 return false;
 }
 dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint;
 dataAxes = Matrix::Axes(dataCenter,e[0]->position,e[1]->position);
 }
 else if(axesFrame.numElements == 1) // need parent's stuff set
 {
 unsigned int n = 1;
 Matrix pDataAxes;
 PositionVector pDataCenter,r2;

 if(!axesFrame.NextAbsoluteFrame(n,e,t))
 {
 return false;
 }
 // recursive
 if(!parent->GetSameDataAxes(t, pDataAxes, pDataCenter))
 {
 return false;
 }
 dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint;
 r2 = dataCenter + pDataAxes*relativeDataParentOneDOFaxis;
 dataAxes = Matrix::Axes(dataCenter,r2,e[0]->position);
 }
 else
 {
 return false;
 }
 return true;
}

7.6.7 Drawing Rotation Points with Constants of Motion
This function is called after the rotation points have been calculated and the hier-

archical skeleton has been defined. It retrieves the current raw 3D positional data and

calculates where the rotation points and axes are supposed to be based on the previous

analysis. The radius input is for drawing a sphere around the current raw data. The t in-

 143

put is the time at which the data is retrieved. There are no results except those that are

drawn on the OpenGL window.

void Segment::DrawNearestEvents(double radius,
 Units::second t)
{
 unsigned int i;
 Matrix dataAxes,dataAxes0,dataAxes1;
 PositionVector dataCenter,dataCenter0,dataCenter1,rot,rot1,pos,ep;

 if(t<lastTime)
 {
 count = 0;
 }
 lastTime = t;

 Color::Green.glColor();
 correlatedFrame.Draw(radius*0.5,t); // draw dots for data
 if(parent && parent->GetDataAxes(t, dataAxes0, dataCenter0))
 {
 rot = dataCenter0 + dataAxes0*relativeDataParentRotationPoint;
 }
 else if(parent != NULL)
 {
 return;
 }
 t -= 0.01;
 if(GetDataAxes(t, dataAxes, dataCenter))
 {
 if(parent == NULL)
 {
 rot = dataCenter + dataAxes*relativeDataCentroid;
 }
 }
 else
 {
 return;
 }
 Color::White.glColor();
 glBegin(GL_LINES);
 for(i=0; i<numChildren; i++)
 {
 if(children[i]->numCorrelated ||
 children[i]->numChildren > 0)
 {
 rot.glVertex();

 144

 rot1 = datacenter + dataAxes*children[i]->
 relativeDataParentRotationPoint;
 rot1.glVertex();
 }
 }
 if(numCorrelated > 0 &&
 numChildren == 0)
 {
 rot.glVertex();
 (dataCenter + dataAxes*relativeDataCentroid).glVertex();
 }
 glEnd();
 if(numChildren == 0) // end effector
 {
 correlatedFrame.DrawLines(t);
 }
 count++;
}

