
Chapter 7 APPENDIX 

7.1 Mathematical Proofs 

7.1.1 Moments of Multivariate Normal 
The probability analysis presented in this thesis relies on determining the mo-

ments of the multivariate normal probability distribution.  A multivariate normal deviate 

has the probability density function of 
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The moment generating function is 
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The moments can be retrieved from the derivatives of the moment generating function by 
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That leads to the moments of the elements of the vector x 
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If all indices are equal, the expectations simplify to 
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The vector moments are 

(277) 

! 

E x( ) = µ 

(278) 

! 

E xx
T( ) = µµT + " 

(279) 

! 

E x
T
x( ) = µTµ + Tr "( ) 

(280) 

! 

E xx
T
x( ) = µµTµ + Tr "( )µ + 2"µ  

(281) 

! 

E xx
T
xx

T( ) = µµTµµT + 2"2 + "Tr "( ) + Tr "( )µµT + 2µµT
"+ 2"µµT + "µTµ  

(282) 

! 

E xx
T
ax

T( ) = µµT
aµT + "µT

a + "aµT + µaT"   

(283) 

! 

E x
T
xx

T
x( ) = µTµµTµ + 2Tr "2( ) + Tr "( )

2

+ 2Tr "( )µTµ + 4µT
"µ  

(284) 

! 

E xx
T
xx

T
x( ) = µµTµµTµ + 2Tr "( )µµTµ + 4µµT

"µ + 4"µµTµ

+2Tr "2( )µ + Tr "( )
2

µ + 4Tr "( )"µ + 8"2µ
 

(285) 

! 

E xx
T
xx

T
ax

T( ) = µµTµµT
aµT + "aTµµTµ + "Tr "( )aTµ + Tr "( )µµT

aµT

+2"aT"µ + "aµTµµT + 2"aµT
"+ "aµT

Tr "( ) + 2"µaTµµT

+2"µaT"+ 2""aTµ + 2""aµT + µµTµaT"+ 2µaTµµT
"

+2µaT""+ µaT"Tr "( ) + 2µaT"µµT

 

(286) 

! 

E xx
T
ab

T
xx

T( ) = µµT
ab

TµµT + "aT"b + "abT"+ "baT"+ "µT
ab

Tµ

+"abTµµT + "baTµµT + µµT
ba

T
"+ µµT

ab
T
"+ µbT"aµT

 

(287) 

! 

E xx
T
Axx

T( ) = µµT
AµµT + "Tr A"( ) + "A"+ "AT

"+ "µT
Aµ

+"AµµT + "ATµµT + µµT
A
T
"+ µµT

A"+ Tr AT
"( )µµT

 



 107 

  

(288) 

! 

E xx
T
xx

T
xx

T( ) = µµTµµTµµT + "Tr "( )
2

+ 2"Tr "2( ) + 8"3 + 4"2Tr "( )

+4"µT
"µ + 8"µµT

"+ 4"2µTµ + 8"2µµT + 8µµT
"
2

+4µµT
"Tr "( ) + 4"Tr "( )µµT + 2Tr "2( )µµT + Tr "( )

2

µµT

+2"Tr "( )µTµ + 4"µµTµµT + 4µµTµµT
"+ 4µµT

"µµT

+2µµTµµT
Tr "( ) + "µTµµTµ

 

The vector covariances are calculated with the definition of 
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Now, we will consider when there are multiple measurements with the same covariance 
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The sample vector central moments are 
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Unbiased estimators of the vector central moments from N samples are 
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7.1.2 Positive-Semidefinite Sample Covariance 
A positive-semidefinite matrix A is defined as having the property hTAh ≥ 0 for 

an arbitrary vector h ≠ 0.  The sample covariance matrix is 
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which is always positive for an arbitrary set of values qi except for one non-trivial case.  

The exception is when the points are coplanar.  In the coplanar case, qi = 0 for all i when 

h is normal to the plane and therefore hTCh=0. 

7.2 Inertial Properties of a Tetrahedron 
This paper does not deal with inertia but in the process of doing this research, 

various physical models were created.  One model was the tetrahedral mesh along with 

its physical properties.  Inertia properties were not easy to calculate so this section was 

left in for the convenience of future simulation work.  Inertial properties can be quite dif-

ficult to calculate but can be exactly determined.  The moment of inertia and angular 

momentum is taken from standard analytical mechanics books as 
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The moment of inertia and angular momentum are very desirable traits to follow in any 

dynamic simulation.  They both involve integrating over the tetrahedral volume.  I have 

derived them below using parameterized coordinates.  A point inside the tetrahedron can 
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The differential volume is determined by the parameter space change formula 
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Each parameter ti varies from zero to one for inside the tetrahedron so the entire integral 

results in 
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where 

! 

ˆ w  is the angular velocity unit vector (i.e. the spin axis) and m is the mass of the 

entire tetrahedron.  The density of the tetrahedron is kept constant and thus the mass is 

brought out of the integrand as the density times the volume.  Performing the triple inte-

gral produces a double sum.  The integral turns into the double sum 
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Integrating the double sum and expanding the ai terms into vi terms produces the equation 
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Since both qij and aij are symmetric then Equation (367) reduces to ten terms. 

The angular momentum is very similar with the integral 
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In this case, bij is not symmetric so all sixteen terms must be calculated.  A much simpler 

form of these equations occurs when a body has a coordinate system that is centered on 

its center of mass and is aligned to its principal axes.  This simplification will be ap-

proached in the next section.  The following matrix equations separate out the purely 

geometric quantity Q from the spinning quantity

! 

ˆ w . 
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(376) 
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The time complexity of Qtet is 30 multiplications + 54 additions.  For each of the above 

equations, the vectors are relative to the center of rotation.  To generalize, one must sub-

tract the center of rotation from the four vertex vectors. 

7.3 File Formats 

7.3.1 Marker Association Format 
This file is a simple text file that associates the marker identification string stored 

in a C3D file with a known marker label.  The known marker label is identified in a 

marker-set file that clearly associates it with a particular segment on the body.  This file 

allows for quick association of the data with a segment.  The only other alternative is to 

do grouping analysis for all of the data that is very time consuming.  The file contains the 

following format: 

46 WANDS 
 
MARKERSET vicon512.txt 
 
TestSubjectProdMS-V2:Root = unknown 
TestSubjectProdMS-V2:LFWT = LFWT 
TestSubjectProdMS-V2:RFWT = RFWT 
TestSubjectProdMS-V2:LBWT = LBWT 
TestSubjectProdMS-V2:RBWT = RBWT 
TestSubjectProdMS-V2:LKNE = LKNE 
TestSubjectProdMS-V2:LTHI = LTHI 
TestSubjectProdMS-V2:LANK = LANK 
TestSubjectProdMS-V2:LSHN = LLEG 
TestSubjectProdMS-V2:LHEE = LHEE 
… 
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7.3.2 Articulated Tetrahedral Model Format 
The Articulated Tetrahedral Model (ATM) file format was created in order to 

bring together the necessary information to produce a jointed figure.  It is a text format 

that references other the individual segments’ mesh files.  The text file has keywords fol-

lowed by values and sub-fields.  All words are separated by spaces.  The following are 

the list of available keywords: 

FIGURE myFigure 

This keyword defines the name of the entire figure. 

SEGMENTS 16 

The number of segments of the figure follows: 

MESH 0 chest.mesh 

mesh identifies the mesh file that follows the index value.  The file is identified as a tet-

rahedral or triangular mesh in the *.mesh format defined by the freeware MEDIT tool for 

editing meshes and explained in Chapter 7.3.3.  The filename is for a file that is located in 

the same folder as the ATM file. 

NAME Chest 

The name of the segment follows this keyword. 

MASS 30.0 // kg 

The mass of the segment follows this keyword. 

SCALE_XYZ 0.2 0.2 1.0 
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TRANSLATE_X 1.5 
TRANSLATE_Y 1.5 
TRANSLATE_Z 1.5 
TRANSLATE_XYZ 1.5 2.5 3.5 
ROTATE_X 35.2 
PARENT 4 // hips 

 

The index of the parent segment is defined here. 

JOINT Waist 
  3 0.994765 1.002953 1.084350 
DEGREES_OF_FREEDOM 1 0 
  VALUE 0.0 
  3 -0.257042 0.966392 -0.003915 
  FROM -93.199994 TO 29.000000 
 

The name of the joint that is proximal to this segment is defined here followed by 

joint parameters.  The center of rotation is defined immediately following the JOINT key-

word.  First a count of how many dimensions for the vector is specified (usually 3).  

Then, each coordinate, e.g. x y z.  After the joint position, its freedoms are defined.  DE-

GREES_OF_FREEDOM is followed by two integers.  The first is the count of rotational 

freedoms, and the second is the count of translational freedoms.  Then comes the list of 

freedom parameters for which there are three for each freedom.  The current value is de-

fined, then the freedom axis, then the freedom limits.  Rotational limits and values are in 

degrees and translational ones are in meters. 

CHILDREN 3 
  1 // Neck 
  2 // Upper Left Arm 
  3 // Upper Right Arm 
 



 118 

  

The list of child indices are defined here 

ENDMESH 

Mandatory ending of the segment information 

ENDFIGURE 

Mandatory ending of the figure information 

7.3.3 MESH Format 
The MESH format is the easiest format I have found for tetrahedral meshes.  It is 

the default format for the free Internet program MEDIT available from 

http://www.ann.jussieu.fr/~frey/logiciels/medit.html.  Pascal J. Frey created this format to 

replace the inadequacies of prior formats.  I have found it necessary to add some key-

words to extend the format capabilities.   This format is composed of a single (binary or 

text) data file.  Its structure is organized as a series of fields identified by keywords. The 

blanks, newlines or carriage returns, and tabs are considered as item separators.  A com-

ment line starts with the character # and ends at the end of the line.  The comments are 

placed exclusively between the fields.  The mesh file must start with the descriptor: 

MeshVersionFormatted 1 
Dimension 3 
 
The other fields supported by MEDIT are either required or facultative.  The required 

fields correspond to the geometry (i.e. the coordinates) and to the topology description 

(i.e. the mesh entities).  In the following tables, the term vi indicates a vertex number (i.e. 

the ith vertex in the vertex list), ei is an edge number, ti is a triangle number, Ti is a tetra-
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hedron number, and qi is a quadrilateral number.  Notice that the vertices coordinates are 

real numbers in single precision. 

Table 5 Primitives in MESH Format 

Keyword Card. Syntax Range 

Vertices  np xi yi zi refi i:[1,np] 

Edges  ne v1
i v2

i refi i:[1,ne], vj
i:[1,np] 

Triangles  nt vj
i refi  i:[1,nt], j:[1,3], 

vj
i:[1,np] 

Quadrilaterals  nq vj
i refi  i:[1,nq], j:[1,4], 

vj
i:[1,np] 

Tetrahedra  ntet vj
i refi  i:[1,ntet], j:[1,4], 

vj
i:[1,np] 

Hexaedra  nh vj
i refi  i:[1,nh], j:[1,8], 

vj
i:[1,np] 

 

The description of constrained entities or singularities follows.  In particular, a corner 

(keyword Corner) is a C0 continuity point (this type of item is necessarily a mesh ver-

tex).  By analogy, a Ridge is an edge where there is a C0 continuity between the adja-
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cent faces.  The fields of type Requiredxx make it possible to specify any type of en-

tity that must be preserved by the meshing algorithm. 

Table 6 Preservation Adjectives in MESH Format 

Keyword Card. Syntax Range 

Corners  nc vi i:[1,nc], vi:[1,np] 

RequiredVertices  nrv vi i:[1,nrv], vi:[1,np] 

Ridges  nr ei i:[1,nr] 

RequiredEdges  nre ei i:[1,nre] 

 
As mentioned above, it is also possible to specify normals and tangents to the sur-

face.  The normals (respectively tangents) are given as a list of vectors. The normal at a 

vertex, keyword NormalAtVertices, is specified using the vertex number and the 

index of the corresponding normal vector. The normal at a vertex of a triangle, Nor-

malAtTriangleVertices, corresponds to the combination of the triangle number, 

the index of the vertex in the triangle and the index of the normal vector at this vertex.  

The keyword NormalAtQuadrilateralVertices is handled similarly.  The tan-

gent vectors are described in the same way. 

Table 7 Optional Adjectives of Primitives in MESH Format 
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Keyword Card. Syntax Range 

Normals  nn xi yi zi i:[1,nn] 

Tangents  nnt xi yi zi i:[1,nnt] 

NormalAtVertices  nv vi ni i:[1,nv], vi:[1,np], 

ni:[1,nn]  

NormalAtTriangleVertices  ntv ti vi ni i:[1,ntv], ti:[1,nt], 

vi:[1,np], ni:[1,nn] 

NormalAtQuadrilateralVerti-

ces  

nqv qi vi ni i:[1,nqv], qi:[1,nq], 

vi:[1,np], ni:[1,nn] 

TangentAtEdges  te ei vi ti i:[1,te], ei:[1,ne], 

vi:[1,np], ti:[1,nnt] 

*Colors ncc p ri gi bi 

ai 

i:[1,ncc], p:[3,4], ai 

only for p=4 

*ColorAtVertices ncv vi ci i:[1,ncv], vi:[1,np], 

ci:[1,ncc] 

*NeighborAtTriangleEdges nte t1
i f t2

i i:[1,nte], f:[1,3], 

tj
i:[1,nt] 



 122 

  

*NeighborAtTetrahedronFaces ntf T1
i f T2

i i:[1,ntf], f:[1,4], 

Tj
i:[1,ntet] 

* Keywords added for this research. 

Finally, the data structure must end with the keyword: End.  The new color key-

words are handy for coloring the mesh.  The neighbor keyword reduces the amount of 

time it takes to traverse a mesh.  Knowing the neighbor at each face of a tetrahedron can 

determine which tetrahedron to go when moving through a mesh.  If there is no neighbor, 

then the tetrahedron is on the outside. 

7.3.4 PLY Format 
The Polygon File Format (PLY) is another popular meshing format but only for 

2D (surface) meshes.  It is also known as the Stanford Triangle Format.  It can be ASCII 

or binary and contains almost all that is needed for triangulated meshes.  The format is 

originally from Stanford and is documented with examples and source code there 

(http://graphics.stanford.edu/data/3Dscanrep).  This research program has incorporated 

the ability to read PLY files for the figure animation. 

7.3.5 C3D Format 
The Coordinate 3D (C3D) file format is only used for storing the raw motion cap-

ture data.  It is a good format and is the oldest in the business.  It originally came in 1986 

from Dr. Andrew Danis but is now part of a non-profit organization at 

http://www.c3d.org.  The file format is a subset of a more general (ADTECH) format that 

is binary and stores both parameter information and raw data.  The data can be stored in 
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little-endian (Intel), big-endian (MIPS, PPC), and DEC binary formats for 16-bit integers 

and 32-bit floats.  Both analog and digital information can be stored along with their de-

scriptions and measurement units.  All of the data that comes from Carnegie Melon 

Graphics Lab is stored in C3D format. 

7.4 User’s Guide to Program 
The following sections describe the use of the application that was built for the re-

search.  The application was designed using the Xcode 1.5 integrated development envi-

ronment available for free from Apple and comes with the MacOSX 10.4 operating sys-

tem.  There are 45270 lines of code with a total McCabe's Cyclomatic Complexity Num-

ber of 8112. The application follows the recommended Macintosh human interface and is 

compatible with MacOSX 10.1 through 10.4.8 though only tested on 10.3 and 10.4.  The 

engine that drives the calculations is written entirely in standard portable C++ and the 

graphics panes are written in OpenGL.  The user interface is written in ObjectiveC that 

compliment the NIB files for Interface Builder.  Everything except the user interface is 

portable.  The code was compiled for the PowerPC G4 processor and was tested on a 

PowerBook G4. 

7.4.1 Menu 
The File Menu provides the basic file saving and retrieving capabilities some of which 

are available in the Options Pane as well.  A picture of the File Menu open is in  

Figure 27. 
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Figure 27 File Menu GUI 

Add Figure 

The Add Figure menu item (optionally use -1) allows the user to add a figure to 

the graphics.  A figure can be an Articulated Tetrahedral Mesh (ATM) file (as explained 

in Chapter 7.3.2); a MESH formatted file (both tetrahedral and triangulated); and a PLY 

formatted file.  Only the ATM file can be used for the hierarchical analysis of the motion 

capture data.  When this menu item is picked, a standard Open dialog is presented for 

choosing a file.  When a file is chosen, the file is parsed and presented in the Animation 

Pane.  The Options Pane text for the figure is filled out with the path of the file and the 

height of the figure is filled out. 

Get Data 
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This menu item (optionally use -2) will present a standard Open dialog to allow 

the user to choose a C3D motion capture data file.  The selected file will associate the 

data with the currently active figure (see the Options Pane).  Once chosen, the file is 

parsed and connected lists of data frames are filled out. 

Save Temp Correlation 

This menu item allows the user to save a temporary correlation text file associated 

with the C3D data file that was previously chosen.  The text file can then be edited to al-

low a hierarchical correlation of the data markers with segments on the figure.  The num-

ber of markers is stated on the first line (e.g. 41 WANDS).  The marker set file name is 

stated on the second line (e.g. MARKERSET vicon512.txt).  Then comes a list of marker 

correlations (e.g. Jim:RTHI = RTHI Right thigh).  The left side of the equals sign is the 

single word that the marker is labeled as in the data (e.g. Jim:RTHI).  The right side has a 

single word that corresponds to a marker in the above-mentioned marker set file followed 

by a free-form description. 

Get Correlation 

This menu item (optionally use -3) presents the user with an Open dialog to re-

trieve a correlation file.  The file is parsed and the left side is looked up in the C3D data 

and the right side is looked up in the marker set file.  The marker set file determines 

which segment to attach the marker and where on the segment.  If the marker is not to be 

used in the correlation, just put some uncorrelated name (e.g. Unknown) on the right 

hand side. 
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Get Motion 

This menu item retrieves motion files that have been previous saved or manually 

created.  Motion files allow the user to create motion of an articulated figure based on a 

Taylor expansion of any or all degrees of freedom. 

Save Motion 

This menu item will save the Taylor expansions that were created when the “Ana-

lyze” button is pressed in the Graphs Pane. 

Save Data 

This menu item will save the joint angles that were created when the “Analyze” 

button is pressed in the Graphs Pane. 

Animate 

This menu item will start the animation. 

Info 

This menu item will enable some graphics hardware information to be displayed 

on the Animation Pane. 

Close 

This menu item will close the window. 
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7.4.2 Options Pane 
The Options plane contains all of the figure, data, and animation options avail-

able.  On the right are all of the files that are used in the current analysis.  The “Marker 

Set Dir” is the directory that all marker set files are located for the correlation.  The “Fig-

ure” file is the currently active articulated model.  The “Motion Data” file is the current 

C3D being analyzed.  The “Correlate Data” file is the correlation file that binds the data 

with the hierarchical figure.  The “replace” checkbox will replace the current figure with 

the opened figure if it is on.  Otherwise the opened file will be added to the scene.  The 

“ft->m” checkbox will convert the motion data from feet to meters if on.  The “x2” but-

ton will multiply the sampling rate by two.  The last two buttons are there for conven-

ience since the data does not always specify the correct units or sampling rate.  Once the 

data is read in, the height and sampling rate text can be edited to whatever size and the 

internal data will be updated.  The same goes for the Figure information.   The height of 

the figure can be edited. 
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Figure 28 Options Pane GUI 

Drawing Options 

The many checkboxes allow the selection of various things to be drawn in the 

Animation Pane.  “Loop Animation” will make the animation repeat when the maximum 

time of the data is reached.  “Show Data Paths” will display the paths taken for each 

marker in the data.  The paths will be colored lighter if the marker has been correlated to 

the figure.  “Show Figures” will display all figures that have been read in.  “Draw Floor” 

will ... draw the floor?!  The other checkboxes draw extra little goodies on the figure. 

7.4.3 Animation Pane 
This pane is where all of the action happens.  Select this pane once all of the files 

and options are set in the Options Pane.  The time of the animation is displayed in the up-

per right in seconds.  The Capture Screen button will take an exact snapshot of the 
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OpenGL window and allow the user to save it as a TIFF file.  The TIFF file is a 32-bit 

ABGR8888 color file.  The “Capture Movie” checkbox is similar except that it saves 

many TIFF files at 0.1 second intervals for the entire loop.  The “Follow Data” starts the 

animation process that draws the moving figure and the skeleton in the data.  There are 

options for panning the scene around.  If the Command key ( ) is held down while the 

mouse button is held down and the screen is dragged by the mouse, then the scene is 

dragged up/down or left/right.  If the Option key is held down with the mouse button, the 

user can zoom in or out of the scene with the mouse.  With just the mouse button and the 

mouse dragging, the user can rotate the scene around the (0,0,0) point. 

 

Figure 29 Animation Pane GUI 
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7.4.4 Graphs Pane 
This pane was added for analysis of joint angles was just a visualization aid for 

research.  The analyze button currently tries to determine the angles which are needed to 

rotate in order to follow the current dataset.  Once the analysis is done, a joint can be 

picked from the pop-up.  When the user slides the horizontal time bars left and right, a 

new Taylor expansion will be generated for the time window.  Taylor expansions help in 

analyzing the predictive-ness of the angle paths. 

 

Figure 30 Graphs Pane GUI 
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7.5 Programmer’s Reference 

7.5.1 Class Diagrams 
The articulated figure designed for this research is for general-purpose articulated 

modeling.  The original attempt was to use it for physical based calculations.  With the 

advent of the Minimum Variance Method, the model has been resigned to a simple orga-

nizational tool for the hierarchical tree traversals.  The entire implementation is explained 

here for future use.  The C++ object model is set up in a hierarchical manner for the ar-

ticulated figure.  An articulated figure (ArtFigure.cpp) is made of segments (Seg-

ment.cpp).  A segment is a rigid body (RigidBody.cpp) that is linked to another by a 

joint.  The rigid body is a shape that can be translated and rotated, but not molded.  The 

rigid body is made of a mesh of tetrahedrons (TetrahedralMesh.cpp).  The mesh is a face-

connected list of tetrahedrons.  Only faces on the surface have no connected tetrahedrons 

and are available for drawing.  A tetrahedron (Tetrahedron.cpp) is a four sided figure 

with four vertices assigned.  Each side of the tetrahedron is a triangle (Triangle.cpp).  

Since adjacent tetrahedrons share vertices, the tetrahedrons will contain only references 

to its points.  All of the points for the tetrahedral mesh will be stored in a linear array in-

side the TetrahedralMesh instance.  This allows easy access to the points for quick trans-

lations and rotations without duplication of effort. Figure 31 is a UML Diagram describ-

ing the relationships between objects. 
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Figure 31 UML Diagram of Articulated Figure 
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7.6 C++ Implementations 
This section contains the crucial implementations for the novel algorithms in this 

thesis.  It starts with the implementation of the UGDK, followed by IGDK.  The next al-

gorithm involves the collecting of the raw data and turning them into relative positions.  

The calculation of the rotation point follows. 

7.6.1 Unbiased Generalized Delogne-Kása Method 
This snippet of C++ code implements the core of the Unbiased Generalized De-

logne-Kása Method.  Some of the standard linear algebra operations are hidden inside of 

the Vector and Matrix classes. 

void VectorDataSet::init( const Vector * v, 
                          unsigned int n, 
                          double eps ) 
{ 
  unsigned int i; 
  Vector d; 
  double d2; 
 
  if( n == 0 ) 
  { 
    cerr << "ERROR: VectorDataSet::init" 
         << " no data to init set" 
         << endl; 
    return; 
  } 
  init( v->numElements ); 
  for( i=0; i<n; i++ ) 
  { 
    moment1 += v[i]; 
  } 
  moment1 /= n; 
  for( i=0; i<n; i++ ) 
  { 
    d = v[i]-moment1; 
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    covariance += d.SquareTranspose(); 
    d2 = d*d; 
    moment3 += d*d2; 
    moment2 += d2; 
  } 
  moment2 /= n; 
  if( n > 1 ) 
  { 
    covariance /= n-1; 
    moment3 /= n-1; 
    covariance -= eps*eps; // compensate for bias 
  } 
  else 
  { 
    covariance = 0.0; 
    moment3 = 0.0; 
  } 
  Matrix decomp = covariance.CholeskyDecomposition(); 
  covarianceInverse = decomp.CholeskyInverse(); 
  center = moment1 + 0.5*decomp.CholeskyBacksubstitution(moment3); 
  centerDiff = 1.0e20; 
  difMoment1 = 1.0e20; 
  radius = sqrt(((n-1.0)/n)moment2+(center-moment1)*(center-moment1)); 
  numData = n; 
  numCenterData = 1; 
  centerAvg = center; 
} 

 

7.6.2 Incrementally Improved Generalized Delogne-Kása 
This code snippet adds a vector to the data set and improves the various values 

that were previously calculated in Section 7.6.1. 

void VectorDataSet::operator+=( const Vector& a ) 
{ 
  unsigned int i; 
  Vector b,d; 
  double d2,q1,qn1,q2,qp1; 
  Matrix m; 
  if( numData > 0 ) 
  { 
    difMoment1 += a - lastValue; 
  } 
  lastValue = a; 
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  q1 = (numData/(numData+1.0)); // < 1 
  qn1 = (numData-1.0)/numData;  // < 1 
  q2 = (numData+2.0)/numData;   // > 1 
  qp1 = (numData+1.0)/numData;  // > 1 
  difMoment1 = (a-moment1)/(numData+1.0); 
  moment1 += difMoment1; // average 
  d = a-moment1; 
  d2 = d*d 
  b = covarianceInverse*d; 
  moment2 += (qp1*d2 - moment2)/(numData+1.0); 
  covarianceInverse += (covarianceInverse-(numData/((numData-

1.0)*q1+(d*b)))*b.SquareTranspose())/(numData-1.0); 
  covariance += (qp1*d.SquareTranspose() - covariance)/numData; 
  centerDiff = (covarianceInverse*d)*(d*(a-center) - 

0.5*(moment2+d2))/(numData+1.0); 
  center += centerDiff; 
  centerAvg += (center-centerAvg)/(numCenterData+1.0); 
  moment3 += ((-2.0*covariance-moment2*qp1+d2*(qp1*q2))*d-

moment3)/numData; 
  radius = sqrt(qn1*moment2+(center-moment1)*(center-moment1)); 
     
  for( i=0; i<dimension; i++ ) 
  { 
    if( a[i] < minimum[i] ) 
    { 
      minimum[i] = a[i]; 
    } 
    if( a[i] > maximum[i] ) 
    { 
      maximum[i] = a[i]; 
    } 
  } 
  numData++; 
  numCenterData++; 
} 

7.6.3 Collecting the Raw Data for Rotation Point 
This function collects the raw data and creates an array of positions relative to the 

parent segment.  The inputs are the time window beginning and end.  The outputs are the 

collection of relative points and whether the function succeeded. 

bool Segment::CollectRelativeDataPoints( Units::second t1, 
                                         Units::second t2 ) 
{ 
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  unsigned int i,k,n=1,n1=n; 
  double maxLen = 0; 
  PositionVector dataCenter2; 
  Matrix dataAxes2; 
  Units::second t3 = 0,deltaT,lastTime; 
  EventFrame::ElementType evl[1] = {NULL}; 
  Event * e[n]; 
  EventFrame events; 
  unsigned int best = 0; 
  Vector pi(3); 
     
  // the parent must exist and have data 
  if( numCorrelated == 0 || 
      parent == NULL ) 
  { 
    return false; 
  } 
  // find the farthest data point 
  for( i=0; i<correlatedFrame.numElements; i++ ) 
  { 
    for( k=i+1; k<correlatedFrame.numElements; k++ ) 
    { 
      if( correlatedFrame.lengths[i][k] > maxLen ) 
      { 
        best = i; 
        maxLen = correlatedFrame.lengths[i][k]; 
      } 
    } 
  } 
  evl[0] = correlatedFrame[best]; 
  if( evl[0] == NULL ) 
  { 
    return false; 
  } 
  events.setEvents(evl,n); 
  deltaT = events.minTimeBetweenEvents; 
  if( t1 < events.minTime ) 
  { 
    t1 = events.minTime; 
  } 
  if( t2 > events.maxTime ) 
  { 
    t2 = events.maxTime; 
  } 
  t3 = t1 - deltaT; // so first frame is retrieved 
  pathToFollow.RemoveAll(); 
  while( events.NextAbsoluteStableFrame(n1,e,t3) && (t3 <= t2) ) 
  { 
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    if( !parent->GetSameDataAxes( t3, dataAxes2, dataCenter2 ) ) 
    { 
      // bad frame, continue to next 
      continue; 
    } 
    for( i=0; i<n; i++ ) 
    { 
      if( e[i] != NULL ) 
      { 
        pi = (e[i]->position - dataCenter2)*dataAxes2; 
        pathToFollow.InsertEvent(pi, 
                                 e[i]->time, 
                                 e[i]->accuracy, 
                                 e[i]->time_accuracy); 
      } 
    } 
  } 
  return true; 
} 
 

7.6.4 Rotation Point Calculation of Segment 
This function takes the collection of relative data points and calculates the relative 

rotation point in the data.  It also calculates the best fit planar normal of the data which is 

needed for marker sets of one marker on a segment.  It returns the relative rotation point. 

PositionVector Segment::GetDataRotationPoint() 
{ 
  Event * e = NULL; 
  unsigned int j; 
  Vector p(3),pi(3),p3(3),mean(3),pip(3),pir(3); 
  Vector b,r; 
  Matrix A(3,3),P2(3,3),a,Ainv; 
  //Vector::ElementType p2=0.0,q,L=0.0; 
  double err(0); 
  static const int N = 100000; 
  int n; 
  VectorDataSet dataSet; 
  Vector vs[N]; 
     
  kalmanFilterFailed = true; 
  if( CollectRelativeDataPoints() ) 
  { 
    n = 0; 
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    e = pathToFollow.beginning; 
    while( e && n < N ) 
    { 
      vs[n] = e->position; 
      e = e->next; 
      n++; 
    } 
    dataSet.init(vs,n,pathToFollow.beginning->accuracy); 
    while( e && !dataSet.sphereHasConverged(0.01) ) 
    { 
      dataSet += e->position; 
      e = e->next; 
      n++; 
    } 
    if( n > 0 ) 
    { 
      j = n; 
      r = dataSet.center; 
      double cn = dataSet.covariance.ConditionNumber(); 
      Vector v = dataSet.covariance.NullSpace(1.000001/cn).Column(0); 
      relativeDataParentOneDOFaxis = v; 
      Vector r1 = r + v*((p-r)*v); 
       
      if( cn > 10000.0 ) // project onto plane 
      { 
         r = r1; 
      } 
    } 
  } 
  return PositionVector(r); 
} 
 

7.6.5 Constants Calculation of Hierarchical Articulated Data 
This function calculates the constants necessary to draw the skeleton at any time 

frame.  There are no inputs except for the available raw data.  The outputs are the con-

stants that are set for each segment.  This function must be called from the root segment 

or the hierarchy will break. 

void Segment::SetDataRelativeStuff() // call from root 
{ 
  Matrix dataAxes = Matrix::Identity(3); 
  PositionVector dataCenter,rot,c,v; 
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  unsigned int i; 
  Units::second t = 0; 
  Event * e[numCorrelated]; 
     
  unsigned int n = 0,n1=numCorrelated; 
  if( correlatedFrame.NextFrame(n1,e,t) ) 
  { 
    c = 0.0; 
    for( i=0; i<numCorrelated; i++ ) 
    { 
      if( e[i] != NULL ) 
      { 
        c += e[i]->position; 
        n++; 
      } 
    } 
    if( n > 0 ) 
    { 
      c /= n; 
    } 
  } 
  if( parent ) 
  { 
    // calculate rotation point from available data 
    relativeDataParentRotationPoint = GetDataRotationPoint(); 
    if( parent->numCorrelated == 0 ) // set previous segment's 
    { 
      parent->relativeDataParentRotationPoint = 
              relativeDataParentRotationPoint; 
    } 
    t = 0.0; 
    if( parent->GetDataAxes(t,dataAxes,dataCenter) ) 
    { 
      rot = dataCenter + dataAxes*relativeDataParentRotationPoint; 
      v = dataAxes*relativeDataParentOneDOFaxis; 
      relativeDataJointAxesZero = 
                  dataAxes.Transpose()*Matrix::Identity(3); 
    } 
    else 
    { 
      cerr << "No parent data axes for " << name << endl; 
      rot = PositionVector(0.0,0.0,0.0); 
      relativeDataJointAxesZero = Matrix::Identity(3); 
    } 
    t = 0.0; 
    // set segment's relative stuff to markers 
    if( GetDataAxes(t,dataAxes,dataCenter) ) 
    { 
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      relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3); 
      relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3); 
      relativeDataRotationPoint = (rot - dataCenter)*dataAxes; 
      relativeDataCentroid = (c - dataCenter)*dataAxes; 
      relativeDataOneDOFaxis = dataAxes.Transpose()*v; 
    } 
    else 
    { 
      cerr << "No self data axes for " << name << endl; 
    } 
  } 
  else // root 
  { 
    // no rotation point so just get the centroid of data 
    t = 0.0; 
    if( !GetDataAxes(t,dataAxes,dataCenter) ) 
    { 
      cerr << "Damn, root really needs >= 3 correlated markers" 
           << endl; 
    } 
    relativeDataCentroid = (c - dataCenter)*dataAxes; 
    relativeDataRotationPoint = relativeDataCentroid; 
    relativeDataOneDOFaxis = DirectionVector(1.0,0.0,0.0); 
    relativeDataParentOneDOFaxis = DirectionVector(1.0,0.0,0.0); 
    relativeDataParentRotationPoint = PositionVector(0.0,0.0,0.0); 
    relativeDataJointAxes = dataAxes.Transpose()*Matrix::Identity(3); 
    relativeDataJointAxesZero=dataAxes.Transpose()*Matrix::Identity(3); 
    relativeDataBodyAxes = dataAxes.Transpose()*Matrix::Identity(3); 
  } 
  //cout << "DataGrouping " << CheckDataGrouping() << endl; 
  for( i=0; i<numChildren; i++ ) 
  { 
    children[i]->SetDataRelativeStuff(); // recursive 
  } 
} 
 
 

7.6.6 Calculation of fixed axes of data 
This function calculates the center and the three axes for a segment based upon 

the previously calculated constants and the current raw data.  The input t is the time at 

which to extract the data.  The function outputs the axes in the form of a 3x3 matrix and 
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the center in absolute coordinates if successful.  If not successful, the function returns 

false. 

bool Segment::GetDataAxes( Units::second& t, 
                           Matrix& dataAxes, 
                           PositionVector& dataCenter ) const 
{ 
  Event * e[3] = {NULL,NULL,NULL}; 
  Units::second oldT = t; 
     
  // a segment without axes, use parent's 
  if( parent && axesFrame.numElements == 0 ) 
  { 
    if( !parent->GetDataAxes( t, dataAxes, dataCenter ) ) // recursive 
    { 
      return false; 
    } 
  } 
  // root and all segments with many points gets in here 
  else if( axesFrame.numElements == 3 ) 
  { 
    unsigned int n = 3; 
    if( !axesFrame.NextAbsoluteFrame(n,e,t) ) 
    { 
      if( t < axesFrame.maxTime ) 
      { 
        cerr << "Missing events for " << jointName 
             << " t " << t << endl; 
      } 
      return false; 
    } 
    dataCenter = e[0]->position; 
    dataAxes = Matrix::Axes(dataCenter,e[1]->position,e[2]->position); 
  } 
  else if( !parent ) // segment must have parent beyond this point 
  { 
    return false; 
  } 
  else if( axesFrame.numElements == 2 ) // need parent's stuff set 
  { 
    unsigned int n = 2; 
    Matrix pDataAxes; 
    PositionVector pDataCenter; 
    if( !axesFrame.NextAbsoluteFrame(n,e,t) ) 
    { 
      return false; 
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    } 
    // recursive 
    if( !parent->GetSameDataAxes( t, pDataAxes, pDataCenter ) ) 
    { 
      return false; 
    } 
    dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint; 
    dataAxes = Matrix::Axes(dataCenter,e[0]->position,e[1]->position); 
  } 
  else if( axesFrame.numElements == 1 ) // need parent's stuff set 
  { 
    unsigned int n = 1; 
    Matrix pDataAxes; 
    PositionVector pDataCenter,r2; 
         
    if( !axesFrame.NextAbsoluteFrame(n,e,t) ) 
    { 
      return false; 
    } 
    // recursive 
    if( !parent->GetSameDataAxes( t, pDataAxes, pDataCenter ) ) 
    { 
      return false; 
    } 
    dataCenter = pDataCenter+pDataAxes*relativeDataParentRotationPoint; 
    r2 = dataCenter + pDataAxes*relativeDataParentOneDOFaxis; 
    dataAxes = Matrix::Axes(dataCenter,r2,e[0]->position); 
  } 
  else 
  { 
    return false; 
  } 
  return true; 
} 
 

7.6.7 Drawing Rotation Points with Constants of Motion 
This function is called after the rotation points have been calculated and the hier-

archical skeleton has been defined.  It retrieves the current raw 3D positional data and 

calculates where the rotation points and axes are supposed to be based on the previous 

analysis.  The radius input is for drawing a sphere around the current raw data.  The t in-
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put is the time at which the data is retrieved.  There are no results except those that are 

drawn on the OpenGL window. 

void Segment::DrawNearestEvents( double radius, 
                                 Units::second t ) 
{ 
  unsigned int i; 
  Matrix dataAxes,dataAxes0,dataAxes1; 
  PositionVector dataCenter,dataCenter0,dataCenter1,rot,rot1,pos,ep; 
     
  if( t<lastTime ) 
  { 
    count = 0; 
  } 
  lastTime = t; 
     
  Color::Green.glColor(); 
  correlatedFrame.Draw(radius*0.5,t); // draw dots for data 
  if( parent && parent->GetDataAxes( t, dataAxes0, dataCenter0 ) ) 
  { 
    rot = dataCenter0 + dataAxes0*relativeDataParentRotationPoint;    
  } 
  else if( parent != NULL ) 
  { 
    return; 
  } 
  t -= 0.01; 
  if( GetDataAxes( t, dataAxes, dataCenter ) ) 
  { 
    if( parent == NULL ) 
    { 
      rot = dataCenter + dataAxes*relativeDataCentroid; 
    } 
  } 
  else 
  { 
    return; 
  } 
  Color::White.glColor(); 
  glBegin(GL_LINES); 
  for( i=0; i<numChildren; i++ ) 
  { 
    if( children[i]->numCorrelated || 
        children[i]->numChildren > 0 ) 
    { 
      rot.glVertex(); 
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      rot1 = datacenter + dataAxes*children[i]-> 
                                   relativeDataParentRotationPoint; 
      rot1.glVertex(); 
    } 
  } 
  if( numCorrelated > 0 && 
      numChildren == 0 ) 
  { 
    rot.glVertex(); 
    (dataCenter + dataAxes*relativeDataCentroid).glVertex(); 
  } 
  glEnd(); 
  if( numChildren == 0 ) // end effector 
  { 
    correlatedFrame.DrawLines(t); 
  } 
  count++; 
} 
 


