Fast Skeleton Estimation from Motion Capture Data using Generalized Delogne-Kåsa

WSCG'07
Jonathan Kipling Knight
1 Feb 2007

Synopsis

- Purpose
- Motion Capture
- Skeleton Formation
- Closed Form Solution
- Conclusion

Purpose

- Draw an articulated framework of solid segments connected by joints.
- Fastest possible solution from motion capture data

Motion Capture

- Magnetic Trackers
- Position and Orientation
- Marker Reflectors
- Position if in view
- Figure Tracking
- Computer vision and image analysis

Motion Capture Session

CMU 05-05

1 Feb 2007

Producing a Skeleton

- Single Time Frame
- Produce position, size and orientation of each segment
- Markers are fixed 3D positions on segment
- Orientation is included with magnetic trackers
- Draw lines between rotation points

Time Slice

1 Feb 2007
JKK

Inverse Kinematics

- What joint angles are needed to get to next position and orientation?
- Good for filling in large frame gaps
- Sometimes more than one answer

Inverse Kinematics Example

CMU 05-05

Closed Form Solution

- Find centers of rotation for each segment
- Each frame independently drawn
- No iterations
- Quick solution

Segment Tree

- Root segment usually hips
- Leaf segments hands, head and feet
- No loops

1 Feb 2007

Solve Sphere at Each Joint

- One marker on child produces sphere around joint relative to parent
- Must know orientation of parent
- 1-3 markers needed or
- Magnetic trackers

Three Point Orientation

- Three Orthogonal Axes

$$
\begin{gathered}
\hat{x}=\frac{\vec{p}_{2}-\vec{p}_{1}}{\left|\vec{p}_{2}-\vec{p}_{1}\right|} \\
\hat{z}=\frac{\left(\vec{p}_{3}-\vec{p}_{1}\right) \times \hat{x}}{\left|\left(\vec{p}_{3}-\vec{p}_{1}\right) \times \hat{x}\right|} \\
\hat{y}=\hat{z} \times \hat{x}
\end{gathered}
$$

Two Point Orientation

- Three Orthogonal Axes
- Substitute center of rotation

$$
\begin{gathered}
\hat{x}=\frac{\vec{p}_{1}-\vec{c}}{\left|\vec{p}_{1}-\vec{c}\right|} \\
\hat{z}=\frac{\left(\vec{p}_{2}-\vec{c}\right) \times \hat{x}}{\left|\left(\vec{p}_{2}-\vec{c}\right) \times \hat{x}\right|} \\
\hat{y}=\hat{z} \times \hat{x}
\end{gathered}
$$

One Point Orientation

- Three Orthogonal Axes
- Substitute center of rotation and constant axis

$$
\begin{gathered}
\hat{x}=\hat{n} \\
\hat{z}=\frac{\left(\vec{p}_{1}-\vec{c}\right) \times \hat{x}}{\left|\left(\vec{p}_{1}-\vec{c}\right) \times \hat{x}\right|} \\
\hat{y}=\hat{z} \times \hat{x}
\end{gathered}
$$

Extra Information

- Center of Rotation is available from previously calculated segment
- Constant Axis is available for segments with near cylindrical motion.

Center of Sphere

- Generalized Delogne-Kåsa Method for points on a hypersphere x_{i}

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{c}}=\bar{x}+\frac{1}{2} \mathbf{C}^{-1} \mathbf{S} \\
& \mathbf{C}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T} \quad \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& \mathbf{S}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}\left(x_{i}-\bar{x}\right)
\end{aligned}
$$

Constant Axis

- Test by condition number or determinant of C

$$
|\mathbf{C}| \approx 0
$$

- Null vector is axis of cylinder motion
- Center of circle

$$
\mathbf{C} \hat{n}=0
$$

$$
\vec{c}^{\prime}=\vec{c}+\hat{n} \hat{n}^{T}(\bar{x}-\vec{c})
$$

GDK Properties

- Closed form solution for any dimension
- Fastest known 26N
- Cholesky inverse of $3 x 3$ matrix
- Biased when partial coverage of sphere
- As accurate as data $O(\sigma)$

Marker Requirements

- 3 Markers on root segment of tree
- 1-3 Markers on all other segments
- Segments with 1 Marker should have one degree of freedom (e.g.knee,elbow)

Break Dance

1 Feb 2007

Salsa Dance

1 Feb 2007
JKK

Conclusion

- GDK is fastest available sphere solution 26N
- As accurate as data $O(\sigma)$
- 1-3 Marker requirements per segment
- Provides skeleton to attach solid shape

Future Research

- Unbiased version of GDK
- Full analysis of statistical nature
- Condition for acceptable data

Acknowledgments

- The data used in this project was obtained from mocaps.cs.cmu.edu. The database was created with funding from NSF EIA-0196217.

