

Figure 1: Imprint-set (S1,S2,S3) for point S. $S 1, S 2$, and $S 3$ are 2D points on the respective camera-images.

Procedure DataCollection

1. Mark a 12×12 grid pattern on a whiteboard. Physical grid-cells are 5 cm by 5 cm
2. Set up three cameras so that the grid pattern is visible in all the three cameras
3. Capture the three camera-images and store them
4. Repeat step 3 seven more times, after moving the white-board with the grid pattern seven more times
end DataCollection

Figure 2: Preprocessing: Data Collection Algorithm for scanning a 55 cm by 55 cm by 70 cm active-space.

Procedure CreateActiveSpaceIndexing

1. For a set of left, center, and right camera images collected in step 3 of the DataCollection Algorithm
do
2. Identify all the 12×12 grid-intersection points
3. Store the pixel-location of the grid-points along with their 3D-points on the white-board end do
4. Repeat step 1-3, for all the eight sets of three camera-images.
end CreateActiveSpaceIndexing
Figure 3: (Preprocessing) Creation of the Active Space Indexing data structure.

Procedure FindingA2DIndex (S)
// returns the 2D Index (p, q) given a point S on
// the slice
// Let $x=S x, y=S y$
If (x, y) is within the Slice

1. Find two consecutive vertical grid lines p and $p+1$ so that x is between p and $p+1$
2. Find two consecutive horizontal grid-lines q and $q+1$ so that y is between q and $q+1$
3. return (p, q)
endif
// otherwise S is not within the Slice return (not inside the Slice)
end FindingA2DIndex
Figure 4: Returns the 2DIndex or cell which contains the given point S

Procedure Find_S(S1, S2, S3)
// Given the imprint Set (S1,S2, S3)
// find the 3D location S

1. Use S1 for the left image, S2 for the center camera-image, and S3 for the right-camera image
do
2. Find indices I1, I2, and I3 for all the eight slices. I1, I2, and I3 are the grid-cells containing $S 1, \mathrm{~S} 2$, and S 3 . Note that I1, I2, and I3 refer to the projected cell locations for the white board locations. Therefore, there are eight such possibilities. For some white board placements, $11=12=I 3$ and the area would be zero. Basically we are looking for two consecutive whiteboard slices between which we expect the point S to lie. If there are several white-board locations with zero area, then we select the first with zero area. If such a situation does not exist then conclude that ($\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$) do not correspond, otherwise perform steps 3-4 below.
3. Using the two consecutive slices in the active space, find the 3D location of point S1 on these two slices. This will define a line L1. Similarly obtain lines L2 and L3 using S2 and S3, respectively.
4. Find the minimum distances between the three pairs of lines (L1, L2), (L2, L3), (L1, L3). Take the average of the three distances. If this average is greater than the "closeness" criteria, conclude that (S1,S2,S3) do not correspod, else calculate the nearest points on these lines. That would define the location of point S in 3D. Return point S.
end Find_S

Figure 5: Algorithm: Find S provides estimation of point S. If S1, S2, S3 are corresponding closely then precise estimates are obtained.

Procedure SpatialMarking

1. For every pixel in all the camera images do
2 Identify Significant points by considering the (r, g, b) of the 8 neigboring pixels, and using thresholding. Some cases when the center pixel is identified as significant point are given below:

Note: Mirror cases will also classify the pixel as significant
3. If a pixel is identified as significant then

For all the 8 slices do
4. Find the 2D Index, and add this pixel as candidate for being a significant pair for that 2D-cell indicated by the 2Dindex on a slice. Note that the 2D Index and the slice, in fact define a grid-voxel. And we have a $12 \times 12 \times 8$ 3D-grid of voxels in our implementation. end for
end if
end for
Figure 6: Identifying significant points and Marking them in the 3D grid Voxels.

Procedure SpatialFiltering

1. For all the $12 \times 12 \times 8$ 3D grid voxels do
// Let p1, p2, p3 be pixels identified as significant
// (by the SpatialMarking process) from camera 1, 2, 3
2. for $i=1$ to $p 1$
3. \quad S1 $=$ ith pixel in this grid-voxel from camera 1
4. for $j=1$ to p2
5. $\quad S 2=$ jth pixel in this grid-voxel from camera 2
6. for $k=1$ to p3
7. $\quad \mathrm{S} 3=\mathrm{kth}$ pixel in this grid-voxel from camera 3
8. thisPoint3D = Find_S (S1,S2,S3) // See Figure 3
9. display (thisPoint3D)
endfor k
endfor j
endfor i
endfor

Figure 7: Generating Corresponding-pairs and 3D points

Figure 8: Whiteboard used for Data collection and three views

Figure 9: The projection points on all the three cameras for all whiteboard
slice positions

Figure 10: When the same 3Dpoint is specified on all the three camera images (a-c), its precise location (d) can be estimated

Figure 11: Corresponding pairs are specified using all the three camera images (only one of the three image is shown). The Find_S algorithm is used to obtain the 3D location for every corresponding pair, as shown in (b-c).

(a)

(b)

(d)

Figure 12: Corresponding points are specified in all the three camera images (only one of them is shown in Figure a). The 3D points estimated by the active space indexing algorithm are shown in Figures b-d.

Figure 13: Displaying significant points on a slice using small rectangles. Thresholding is used.

Figure 14: Generating corresponding pairs using spatial filtering

Figure 15: Generating corresponding pairs using spatial filtering

Figure 16: All the corresponding pairs from the eight slices are shown. Each rectangle represents the 3D location of a corresponding pair.

