
Coupling Ontologies with Graphics Content for
Knowledge Driven Visualization

Evangelos Kalogerakis1 Stavros Christodoulakis1 Nektarios Moumoutzis1

TUC/MUSIC - Technical University Of Crete 2

ABSTRACT

A great challenge in information visualization today is to provide
models and software that effectively integrate the graphics content
of scenes with domain-specific knowledge so that the users can
effectively query, interpret, personalize and manipulate the visual-
ized information [1]. Moreover, it is important that the intelligent
visualization applications are interoperable in the semantic web
environment and thus, require that the models and software sup-
porting them integrate state-of-the-art international standards for
knowledge representation, graphics and multimedia. In this paper,
we present a model, a methodology and a software framework for
the semantic web (Intelligent 3D Visualization Platform – I3DVP)
for the development of interoperable intelligent visualization ap-
plications that support the coupling of graphics and virtual reality
scenes with domain knowledge of different domains. The graphics
content and the semantics of the scenes are married into a consis-
tent and cohesive ontological model while at the same time knowl-
edge-based techniques for the querying, manipulation, and seman-
tic personalization of the scenes are introduced. We also provide
methods for knowledge driven information visualization and visu-
alization-aided decision making based on inference by reasoning.

CR Categories and Subject Descriptors: H.5.1 [Multimedia
Information Systems]: Artificial, augmented, and virtual realities;
I.3.6 [Computer Graphics - Methodology and Techniques]: Lan-
guages - Standards

Additional Keywords: ontologies, web graphics, semantic driven
visualization, intelligent virtual environments, domain knowledge

1 INTRODUCTION

In this paper, we present an interoperable framework for the inte-
gration of virtual reality scenes with semantic information and
methodologies and tools for the exploitation of this rich frame-
work for many highly desirable functionalities like semantic que-
rying, interaction, personalization and construction of scenes with
inference. The semantic enrichment of scenes can play an ex-
tremely important role in enabling the viewers to query, under-
stand and interact with the usually complex and incomprehensible
visualized information, in simple, intuitive and user-friendly ways
and allowing them to identify 3D objects or sets of them based on
their graphical and semantic properties and relationships with
other objects in the scene at a time. Interactive queries, such as
“what is this object which I clicked upon with my mouse?”, “what
is the functionality, the behavior, the role of the component repre-

sented by this object?” or “show all the components of the same
type or of the same hierarchical level of abstraction and hide all
the others from the scene” should be answered with the appropri-
ate visual and textual response. Such queries could allow users to
explore the external and inner parts of the models and understand
their behavioral and functional patterns, which usually carry map-
pings with processes and events of the real world. The mere visual
display of complex and large amounts of information is not suffi-
cient itself to answer such queries especially when viewers do not
possess sophisticated knowledge of the domain related to the visu-
alized information.
 Designers are also interested in generating, updating or delet-
ing graphics content from the scenes based on the semantics of the
visualized information. For example, user commands, like “apply
a half-transparent material to all the objects representing the con-
cept X (e.g. a window)” or “apply a transformation to all the ob-
jects representing the concept Y” or even “create a 3D object for
every instance of concept Z accordingly”, could significantly fa-
cilitate or even automate the manipulation of the graphics content
according to the specific domain knowledge coupled with the
scenes. These manipulation commands can also be personalized
with the help of user profiles. A simple example of personalization
of the scenes would be: “apply a specific background stored in the
user’s profile to the scene” or “apply this material taken by the
same user’s profile to every object representing the concept W”.
User profiles combined with domain knowledge could automati-
cally adapt the content of the scenes to designers’ preferences.
 The incorporation of semantics into 3D models and scenes can
greatly enhance the retrieval capabilities of search engines. Lately,
there has been significant research in this field [2], where users
enter keywords or 2D/3D sketches to find a target 3D object. A
search engine implementing semantic similarity methods [3] will
improve both the precision and the recall of the retrieval of 3D
models as was shown in many information retrieval multimedia
and natural language interface environments [10][11]. As the se-
mantics of the scene are closely bound to lexical data for natural
language parsing and interpretation, they could also be used for
language-based interactive manipulation of the scene [15].
 The approach of this paper is based on semantic web tech-
nologies. Ontologies provide us the theoretic and axiomatic basis
to underlying knowledge bases. The scenes are explicitly treated as
semantic network style knowledge bases where any operations on
them are modeled with a system of logic in a formal and uniform
manner. Based on this formalization, we describe the supporting
framework to perform reasoning by inference on the content and
the semantics of the scenes in order to perform knowledge driven
visualization and visualization-aided decision making.
 The paper is organized as follows: section 2 presents related
work and contributions. Section 3 presents our approach for the
development of upper-level graphics ontologies. Section 4 presents
our ontological model that defines general types of mappings be-
tween the content of the scenes and domain-specific ontologies so
that we natively achieve their systematic semantic enrichment.
Section 5 refers to the implementation supporting our model and
methodology. Section 6 describes knowledge-based techniques for
the construction, manipulation, personalization, querying of the

1 email: {vkalog, stavros, nektar}@ced.tuc.gr
2 mail address: Technical University of Crete Campus,
 73100 Kounoupidiana, Crete, Greece

43

IEEE Virtual Reality 2006
March 25 - 29, Alexandria, Virginia, USA
1-4244-0224-7/06/$20.00 ©2006 IEEE

Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

scenes combining their integrated semantics. Finally, section 7
concludes and presents future work plans.

2 RELATED WORK AND CONTRIBUTIONS

Although several researchers advocate the attachment of keywords
to graphics scenes in order to represent non-visual semantics, very
few approaches exist in the literature that try to systematically
integrate complex semantics expressed in domain ontologies with
3D and virtual reality scenes. Often these approaches focus on
supporting a specific application and they do not provide a generic
standard-based platform for developing intelligent interoperable
applications in the web.
 The MUG platform [4] is a collaborative 3D environment for
authoring design semantics supporting knowledge-based computer
design in CAD applications. It uses the DAML language for ex-
pressing behavioral and functional properties of design compo-
nents using domain ontologies. The designers create conceptual
designs for new products with a set of primitive shapes or pre-
existing geometries and they annotate the designed objects with
their behavioral semantics in the specific design. The approach is
very useful for supporting the first stages of CAD design and
documentation, but it specifically aims at the design objective
without providing a generic platform with mechanisms to support
diverse applications.
 A storage, archival, and sketch-based query and retrieval sys-
tem for 3D objects has been developed in [5]. The project focused
on anthropology applications and developed an XML schema to
organize the semantics related to anthropology applications. It also
introduced segmentation and feature extraction algorithms for
extracting the specific semantic information for indexing and que-
rying purposes. This work is also mostly application specific.
 Recent researchers try to integrate 3D graphics with semantic
information to create generic platforms supporting intelligent vir-
tual reality and simulation environments. In [6], knowledge related
to rooms, groups, roles etc is encapsulated. In [7], intelligent
agents and autonomous avatars, which represent the users, are
incorporated into intelligent virtual environments. In [8], an exter-
nal file format for representing AI, graphics, physics and other
simulation related content is introduced. A very generic and ex-
pandable model for this line of research is presented in [9] and
[16] where a Functionally Extendable Semantic Network (FESN)
has been introduced to capture semantic knowledge as well as
physical simulation specific knowledge in a central knowledge
base supporting the design of intelligent virtual environments. In
addition, the problem of data synchronization between the differ-
ent graphics and physics databases has also been addressed in [17].
 For the development of platforms supporting interoperable
semantic web applications for 3D and virtual realty, the use of
standards as the basis of the platform development is very impor-
tant. In [18] and [19], a model to represent interactive digital ob-
jects with multiple visual representations and functionalities based
on MPEG-7/21 standards is presented. A generic methodology on
how to integrate domain knowledge expressed in ontologies with
MPEG-7 content descriptions is shown in [10].
 The research presented in this paper also aims at the develop-
ment of software frameworks (models and platforms) for the de-
velopment of interoperable virtual reality applications. We focus
on the general problem of associating 3D graphics and virtual
reality scenes with complex semantics knowledge expressed in
domain ontologies in a systematic, standard-based, software engi-
neering approach so that firstly, many diverse intelligent 3D and
virtual reality applications can be built with less effort on top of
this framework and secondly, the framework is based on standards
including graphics (like X3D/VRML), multimedia (like MPEG-

7/21) and ontology representation (like OWL) so that the applica-
tions for scene design and management are interoperable in the
semantic web environment. More specifically, in our methodol-
ogy, we first raise the description of the graphics content up to the
ontologies layer of the Semantic Web, albeit we ontologically
describe the content of the scenes by using the W3C Ontology
Web Language - OWL (http://www.w3.org/2004/OWL). OWL
has become the standard mark-up language to represent an area of
knowledge with its semantics allowing intelligent applications
(agents) to perform automated reasoning on the web. In order to
achieve the ontological description of the scenes, we capture all
the necessary primitives concerning not only the design of shapes
in graphics applications but also all the necessary concepts which
are commonly used to build virtual reality scenes (such as trans-
formations, animation, navigation etc) without replacing existing
graphics standards and languages or the content of low level
graphics databases. The result is the construction of OWL ontolo-
gies playing the role of abstract visualization libraries that can be
accessed and imported by graphics designers to describe their
scenes and communicate their content across the web. We also
provide an OWL model for integrating domain knowledge about
the scenes and their objects using domain ontologies where their
graphical and conceptual meaning clearly remains distinct. Then,
we show how this uniform environment can be used to provide a
comprehensive set of mechanisms for knowledge-based querying,
set-oriented retrieval, interaction, browsing, manipulation (e.g.
insert, delete, update objects or sets of objects), semantic personal-
ization and automatic construction of the scenes with inference.
Our model and methodology are generic; they fully integrate stan-
dards for 3D graphics and semantics and are applicable to diverse
knowledge domains of virtual reality applications. The I3DVP
platform we have developed incorporates all this functionality.

3 UPPER LEVEL GRAPHICS ONTOLOGIES

The key objective of our approach is to couple the 3D content of
the scenes with their domain specific semantic descriptions into a
cohesive ontological model in a uniform manner. The first step to
achieve this goal is to create an ontological description of the
scene capturing the well-accepted primitives and concepts that are
commonly used to build 3D models and scenes by the graphics
and virtual reality communities. These upper level ontologies play
the role of abstract visualization libraries being modeling-oriented
rather than presentation-oriented, i.e. they focus on the essential
nature of 3D models and their animation ignoring the low-level
details of creating and presenting graphics in them [12]. More
intuitively, they target on “how to describe geometry objects with
their transformations and their animation in the scene rather than
what their geometry is”. The graphics ontologies also capture
common user interaction and scene navigation primitives. The
graphics ontologies are expressed with the latest W3C standard
Ontology Web Language of the Semantic Web, which provides
plethora of description logics that can be exploited in order to pro-
vide a complete and enriched representation of graphics and vir-
tual reality concepts and primitives. In this section, we present our
first approaches to build upper level ontologies – abstract visuali-
zation libraries for graphics and virtual reality communities.
 Our first OWL-based 3D graphics ontology, called Ontol-
ogyX3D, is merely based on the well-accepted VRML and its
considered successor X3D standard [13]. In order to build the on-
tology, we have mapped the X3D node elements representing
graphics and virtual reality concepts into OWL classes. The OWL
classes provide an abstraction mechanism for grouping the graph-
ics resources, defined within the X3D schema, for geometry and
appearance of objects, scene navigation, lights, environmental

44
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

effects, sound, interpolators (for linear animation), sensors, events,
humanoid animation and geography. Then we used the OWL de-
scription logics that enable the definition of class hierarchies and
object properties relating the OWL classes in order to create a
complete and valid ontological description of scene graphs like
those defined with VRML and X3D. We present a straightforward
example illustrating a small part of the ontology concerning the
concept of Shape in figure 1.
 Designers can import the defined OWL classes and generate
instances of them, called OWL individuals, that represent facts
about the whole content of the scenes they intend to create. The
users can choose to describe e.g. the existence of a Shape in the
scene without specifying its exact graphical representation (by
instantiating only the superclass) (level 1, most general descrip-
tion) but, if they wish, they can also specify the exact type of ge-
ometry to be imposed on the existence of this object (level 2 de-
scription). Then, optionally, they can also define multiple different
external datasets from heterogeneous resources to be coupled with
the attributes of the geometry of the object (level 3 description) or
finally, they can explicitly define these attributes (level 4, most
detailed and constrained description). The references to external
heterogeneous resources can represent vertices and indices of po-
lygonal objects, texture coordinates, control vertices, weights and
knot vectors of NURBS curves and surfaces etc. This last exten-
sion becomes extremely important as we would like our model to
be independent from specific low level graphical representations,
avoid to communicate large datasets across the web and load all or
parts of them on-demand in browsers and visualization engines
when needed. The references to external datasets are encapsulated
into special OWL classes that declaratively describe their location
(local or remote files, external XML node attributes, columns in
tables of a relational database or finally web services), their input
parameters (which can be data types properties of other existing
individuals) and finally the coupled data type property of the re-
lated individual e.g. representing the coordinates of the vertices
and the indexes of the polygons of a mesh.
 The set of the OWL individuals with the corresponding data
type and object properties eventually describe the scene graph with
all the possible combinations of the positions of nodes in it. We
note that the individuals can also be generated with knowledge-
based methods that we will present in section 6. Figure 2 illustrates
a characteristic example. The OWL files are triple-based graphs
with nodes representing classes, individuals or simple data types
(e.g. integers, strings, double-precision numbers etc) and with
edges representing object and data type properties. We use OWL
graphs to give multi-level descriptions of scene graphs while at the

Figure 2: A triple-based OWL graph describing a scene graph

same time we can directly map the involved classes and individu-
als with their properties to other classes and individuals of other
domain specific ontologies in order to achieve the native semantic
enrichment of the scenes (as we will show in section 4).
 The description of a scene with OWL offers several other im-
portant advantages. First of all, we are able to express semantic
interrelationships between nodes that cannot directly be expressed
in the strict hierarchical model of VRML/X3D. For example, we
can describe the notion of a shared object belonging to multiple
groups (where the USE attribute defined in VRML and X3D is not
applicable or results in the generation of independent objects [14]).
In general, the ontological description of scenes allows us to de-
scribe meaningful and valid semantic many-to-many relations in
scenes where children nodes are allowed to share more than one
parent nodes in the scene graph in order to define shared appear-
ances (like Material1 in figure 2), shared objects in grouping
nodes, shared transformations, colors, coordinates, normals, shared
joins and segments (for humanoid animation) and finally shared
semantic metadata. Moreover, we can enrich the above relations
with OWL description logics; e.g. the object property “onCom-
mands”, defining a parent-child relationship between nodes in the
scene graph, is a transitive property. This results in the automated
inference that if command (node) A (a geometry object, a trans-
formation etc) is semantically child of B and B is semantically
child of C then A is considered as child of C. We also define the
inverse property of “onCommands” which is the “parentCom-
mands” (and is transitive, too). A practical example of application
for this type of inference is that if a user query requests to find all

Figure 1: Graphical representation of part of the Shape in OntologyX3D

45
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

the objects in a group or all the distinct transformations applied to
a shape independently of the other intermediate nodes in the
group, an OWL reasoner will have no problem in directly finding
the right answer (thus, there is no need to implement any complex
algorithms to traverse the nodes in the OWL graph).
 We have also decided to extend the graphics ontologies be-
yond the scope of OntologyX3D in order to support the description
of advanced modeling and animation concepts defined in the li-
braries of modern graphics tools such as Alias’ Maya that could be
used by more demanding designers. These additional ontologies
support the description of the following object-centered operations
a) create surfaces from curves e.g. revolve, extrude, loft curves etc,
b) create new surfaces from existing ones e.g. align, attach, inter-
sect, stitch, trim, boolean operations on surfaces etc, c) manipulate
surfaces by altering their components e.g. move their control verti-
ces, insert/delete their knots etc, d) create new curves from exist-
ing ones e.g. align, detach, close curves etc, e) manipulate curves
by changing their control vertices, knot vectors, weights etc, f)
create polygonal objects from existing ones by applying merging,
separating, boolean operations etc, g) manipulate polygonal ob-
jects by altering their components e.g. move the polygon vertices
or edges, merge, delete, append polygonal facets h) more camera
functions such as dolly, roll, track etc, i) some advanced animation
concepts such as animation with driven keys, blending transitions
between different animations, non-linear animation etc and finally,
j) special 2D and 3D surface and volume shaders and textures.
 An example of how designers could describe a 3D model us-
ing the modeling primitives defined in the extensions of the graph-
ics ontologies is depicted in figure 3. The figure shows an OWL
graph that describes a loft operation on five curves that make up a
3D object:

Figure 3: An OWL graph describing a scene with a 3D cup

 Finally, we stress that OWL provides us with internal mecha-
nisms to ensure the validity of the content of the scenes. This is
achieved not only by the class and property definitions of the on-
tologies but also by value restrictions (that put constraints on the
range of data and object type properties when applied to particular
class descriptions) and cardinality constraints (that put constraints
on the number of values a property can take e.g. an instance of loft
class should take at least two curves as input – a min cardinality of
two is applied to the onCurves property of the loft class).

4 INCORPORATING DOMAIN KNOWLEDGE INTO THE SCENES

The ontological description of the 3D content in scenes allows
their uniform native (OWL-based) semantic enrichment with do-
main knowledge by creating mappings between the graphics ob-
jects created using the graphics ontologies and any other specific
domain ontologies shared by communities in the World Wide

Web. These mappings ensure that the graphical representation and
the conceptual meaning of the objects remain distinct. The onto-
logical mappings are easy and simple to define as their nature is
close to the human perspective of describing objects and processes
of the real world. For example, when we perceive an object, we
cognitively map it with a concept or another object we know well.
Alternatively, if we are not sure about the nature of the perceived
object, we map it with a similar concept (or concepts) that partially
describe it or with other objects that look like it. Alternatively, we
can say that the object is part of larger known concept hierarchy
(taxonomy). The “nature” of these mappings should carefully be
examined to acquire model behavioral and functional meaning.
 We have defined fifteen primitive types of semantic mappings
between concepts, roles and individuals of the graphics ontologies
and other domain ontologies in OWL. These primitive types can
be used by the designers for the efficient integration of semantic
knowledge with the 3D content. Most of them correspond to rela-
tions defined in the “SemanticBaseSemanticBaseRelation” de-
scription scheme of the MPEG-7 standard, which describes seman-
tic relations between semantic entities [21]. We have provided
OWL representations of these semantic relations and extended
them to specifically support the mappings between the graphics
ontologies we provide and the ones of the knowledge domain. The
following definitions are the general semantic relationships sup-
ported in our model:
1. “represents” mappings: an individual from the graphics ontolo-
gies represents a specific domain concept e.g. a NURBS curve
represents the outer membrane of a cell.
2. “equivalence” mappings: a graphics class, an individual or a
property is mapped to a concept, role or individual of the specific
domain ontology e.g. every NURBS curve represents a membrane
or a polygon mesh (instance of the IndexedFaceSet) represents a
component in a specific cell.
3. “similarity” mappings: a graphics class, an individual or a prop-
erty is similar (but not equivalent) to a specific domain concept,
role or individual. The similarity has also a weight with values in
the range (0, 1).
4. “disjointness” mappings: a graphics class, an individual or a
property is incompatible with a specific domain concept, role or
individual e.g. a specific polygon mesh is definitely not a cell
component.
5. “is part of” mappings: a graphics individual or a class is part of
a specific domain concept or individual e.g. an interpolator (ani-
mation) of a polygon mesh is part of a cell biological function.
6. “has parts” mappings: is the inverse mapping of the above one
e.g. a polygon mesh has parts of a cell nucleus.
7. “oppositeTo” mappings: a graphics individual or a class has a
function represents the opposite in meaning to a specific domain
concept.
8. “refines” mappings: a graphics individual or a class adds detail
to the meaning of a specific domain concept.
9. “isRefinedBy” mappings: is the inverse mapping of “refines”.
10. “generalizationOf” mappings: a graphics individual or a class
is a kind of generalization in the meaning of a specific domain
concept.
11. “specializationOf” mappings: a graphics individual or a class is
a kind of specialization in the meaning of a specific domain con-
cept (inverse mapping of “generalizationOf”).
12. “hasFunction” mappings: a graphics individual or a class has a
function represented by a specific domain concept.
13. “hasBehaviour” mappings: a graphics individual or a class has
a behavior represented by a specific domain concept.
14. “domain relationship” mappings: a property of a graphics class
also belongs to the domain of a specific domain concept e.g. the
diffuseColor of the material class also belongs to the domain of the
class melanin (representing its color characteristics).

46
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

15. “coupling attribute” mappings between data type properties of
individuals e.g. the scaleX of a transformation applied to an indi-
vidual (representing a cell) is related to the size property of the cell
with an equation. These mappings can also be defined between
data type properties of the graphics ontologies e.g. Transforma-
tion1.rotationX = 2 * Transformation2.translationY.
 The above mappings relate classes, properties and individuals
of ontologies, which may be very different in what they exactly
describe. Thus, our model supports generality; domain knowledge
expressed with ontologies in different domains and applications
can uniformly be represented and integrated with 3D knowledge
representations. In figure 4, we present a simple example of map-
pings between a scene and concepts from the Gene Ontology
(www.geneontology.org), a biological domain ontology about
biological processes, cellular components and molecular functions.
 It is clear, that it is impossible to express arbitrary mappings
directly with OWL object properties relating the involved classes.
We overcome these difficulties using an intermediate ontology that
defines the classes that represent each of the above mappings. We
introduce fifteen OWL classes that have object properties relating
them to the classes, the properties and the instances of the involved
ontologies. For example, we introduce the object property
“fromClass” having as range the built-in class “rdf:Class” (mean-
ing that the property values can be one of the ids of the classes
from the graphics ontologies). In the same manner, we introduce
the “toClass” property referencing the ids of the classes from the
other domain specific ontologies. In the last type of mappings, we
describe the equation relating the involved properties with a
MathML expression which is an W3C standard XML-based lan-
guage describing mathematical notations (www.w3.org/Math/).

5 THE I3DVP PLATFORM

The I3DVP platform proves the viability of our approach to com-
bine the knowledge-based and visualization technologies we de-
scribe in this paper. It is based on a distributed client-server archi-
tecture, which is depicted in figure 5. The tools we used to imple-
ment the architecture were Java (Java Development Kit 1.5 ver-
sion), the Protégé API (version 3.1) and the J-Algernon inference
engine (version 5.0.1). For the purposes of the I3DVP platform,

we have developed a special file format (called I3DVPproto for-
mat) which can be used to define the individuals from the graphics
ontologies and those of specific domain ontologies to be created
and the semantic mappings between them. We also permit the
definition of multiple sets of individuals (called visualization sets)
that belong to more than one scene simultaneously (e.g. we can
create two scenes – one with animation of an object and another
without its animation). We can also define references to external
datasets to be imported by the visualization engine. The format of
these I3DVPproto files can be considered as a visualization &
semantic language, which describes the generation of 3D scenes
with their specific domain semantics.
 The I3DVP platform offers another possibility for users to
dynamically describe the scenes with a high level programming
language such as Java based on the graphics ontologies. When the

Figure 4: Example of incorporation of domain knowledge (Gene
Ontology) into a scene showing the components of a cell

Figure 5: Architecture of the I3DVP system

47
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

I3DVP interpreter is executed in “ontologyToJava mode”, it pro-
duces Java code packed in a package called I3DVPJava, which can
be imported by the designers. In figure 6 we present an example of
Java programming to describe a scene based on the graphics on-
tologies. The I3DVP interpreter API parses and reads the
I3DVPproto files, imports the graphics and domain specific on-
tologies and dynamically invokes the user defined Java classes (if
specified) to produce the OWL individuals describing the content
of the scenes. Finally, the interpreter processes any references to
external resources so that they can properly be processed by the
visualization engines. The produced OWL files (I3DVP intermedi-
ate code) are accessed by the client visualization engines that are
responsible for rendering the scene with OpenGL. The visualiza-
tion engine accesses the middleware services that import any large
datasets from external resources if specified. The users interact
with the scene through the I3DVP GUI interface and send their
manipulation and querying requests to the I3DVP reasoner in the
server. The server, with the help of an inference engine (Algernon)
makes all the necessary changes to the OWL individuals of the
scenes and sends update events to the visualization engine.

Figure 6: constructing a scene with the I3DVPJava package

 The user visualization engine is also capable to create the hier-
archical X3D scene graph automatically so that designers do not
need to create it independently. This is achieved in two passes.
During the first pass, for every OWL individual, we appropriately
create new scene graph nodes. For example, for every individual
representing a fact about a geometry object, we create a Shape
node and a geometry object node under it. We also use a hash table
to store the id (unique name) of the OWL individual and an id (a
pointer) for the corresponding parent node we created. External
datasets, defined with individuals of the OWL classes responsible
for referencing external resources of low level graphical represen-
tations (e.g. in different graphics databases), are also imported in
this step accordingly. During the second pass, for every object
property in the OWL graph, we create the corresponding parent-
child relationships between the involved nodes (generated during
the first pass) in the scene graph. The hash table is used to effi-
ciently find the parent nodes of the scene graph in constant time
corresponding to the individuals referenced by object properties
e.g. for every object property of type “hasMaterial” between a
geometry object and a material, we put the appearance node for the
material under the corresponding shape node. Of course, when we
detect that an OWL individual is referenced by more than one
object properties (indicating e.g. a shared material, transformation
etc), we appropriately generate copies of the corresponding nodes
in the scene graph ensuring its integrity and validity.

6 KNOWLEDGE DRIVEN VISUALIZATION – PERFORMING
REASONING ON THE CONTENT OF THE SCENES

In this section we present implementation details of our platform,
as well as the use of the system for knowledge driven 3D visuali-

zation functions in advanced applications taking advantage of
knowledge-based technologies. The ontological description of
scenes offers us a strategic advantage beyond their semantic en-
richment. Ontologies provide us with the model theoretic and
axiomatic basis underlying network structured knowledge bases
(KB) where reasoning by inference can be performed on their
content. This is possible as we have the reasonably compact syntax
of OWL with well defined semantics for knowledge representation
giving us sufficient expressive power to represent knowledge.
Making inference can be very useful for a variety of reasons: a)
create new content or update the scenes based on their existing
content or their incorporated domain knowledge, b) query the
scene combining both their content and their domain knowledge
and synchronize possible redundant data between them c) person-
alize the scenes by formalizing users’ preferences about their con-
tent and d) create the scene entirely based on the semantic in-
stances of a specific domain (semantic driven visualization).
 OWL does not provide reasoning capabilities by itself. What
we additionally need is a KB Management System (KBMS) with
an inference engine and a formal language to express definite
(Horn) clauses, which are very useful and common in all knowl-
edge systems. The intended meaning of a rule can be read as fol-
lows: whenever the conditions specified in the antecedent hold,
then the conditions specified in the consequent must also hold. The
Semantic Web community gradually understands the importance
of defining such clauses in a formal way within its framework so
that they are syntactically and semantically accessible and execu-
table in the same way by all software agents. The latest and most
well-known attempt to achieve this is the Semantic Web Rule
Language (SWRL - http://www.daml.org/2003/11/swrl/) that ex-
tends the OWL syntax to describe such definite clauses. To sup-
port the functionality of knowledge bases, we used the Stanford’s
Protégé Java API (http://protege.stanford.edu/) for their manage-
ment together with the Algernon-J (http://algernon-
j.sourceforge.net/) rule based inference engine that works with
frame-based KBMS (such as Protégé) and supports both backward
(if-needed) and forward chaining (if added) rules.
 Algernon embodies the Access-Limited Logic (ALL) lan-
guage, which formalizes the access limitations inherent in a net-
work structured knowledge base. An access limited logic retrieves
all assertions reachable by following an available access path; the
complexity of inference is thus independent of the size of the
knowledge base and depends only on its local connectivity poly-
nomially [20]. The construction and manipulation of the scenes is
achieved with a series of TELL statements through the Algernon
API into the Protégé core for inserting new facts about the content
of the scenes and their querying operations on them are imple-
mented with ASK statements for answering queries. The state-
ments are processed on a client-server architecture where clients
send the querying, construction and manipulation statements, the
server receives them and manages the OWL graph of the scenes
with their semantic mappings accordingly. We stress that the
knowledge-based techniques presented in this section can easily be
integrated with appropriate e.g. natural user interfaces so that end-
users do not need to write ALL statements or any line of code. For
example, in order to describe the simple model of a planet (figure
7), three TELL statements need to be executed by the server – we
express the statements with a logic programming-style syntax,
which permits the mathematical formulation of these statements
and is used by most knowledge representation languages like
ALL:
TELL: instance(Sphere, planet1) ^ name(planet1, “Planet”)
TELL: instance(Torus, rings1) ^ name(rings1, “Rings”) ^
 scale(rings1, “2 0.1 2”) ^ radius(rings1, “0.4”)
TELL: instance(Group, group1) ^ name(group1, “PlanetSystem”)^
 onCommands(group1, planet1) ^ onCommands(group1, rings1)

48
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

Figure 7: A 3D model of a planet

 As large scenes usually need to be created collaboratively by
distant users, it is essential for designers to apply rules in the form
of a trigger “Condition=>Update” in order to synchronize and
facilitate their design ensuring its validity. We present a simple
example of a forward chaining rule to demonstrate their usefulness
and application – we stress again that these rules can easily be
defined with a user interface (users do not need to write any code).
TELL: defrule add-to-planetary-system (
 (g)(instance(Group, g)=> onCommands(PlanetarySystem, g)))
which means that every group in the scene (instance of the Group
class) should belong to a group named PlanetarySystem. This rule
acts as a trigger – every time that a user creates an instance of
Group, it is inferred by the OWL reasoner that it is automatically
added to this group.
 The developed model and mechanisms can also be used to
support semantic personalization of scenes. Traditional 3D lan-
guages or platforms do not provide any mechanisms to support
this; every scene is the same for all designers and users. Our ap-
proach for the introduction of semantic personalization [10] in-
volves the creation of contextualized ontologies that synchronize
the user and designer preferences with the content of the scenes.
These contexts contain facts about new individuals to be inserted
to the scene when accessed (representing facts about preferred
objects such as backgrounds, materials, preferred navigation types
etc) and rules which not only define the application of these facts
into the scene but also describe transformations of existing objects
in the scene (e.g. scale all objects in the scene by 2x). More spe-
cifically, user profiles have been implemented in “personal” OWL
files that import the graphics ontologies so that users define their
preferred individuals to be inserted into the scene (e.g. a preferred
background) and rules that define the “personalized” manipulation
of the existing content of the accessed scenes. For example, a user
defines a rule saying that for every scene he accesses, a specific
material from his user profile should be applied on every shape in
the scene with no assigned material.
TELL: defrule add-personal-material (
 (s)(instance(Shape, s) => hasMaterial(s,PreferredMaterial1)))
which when executed by the server, it will automatically generate
a material for every shape with no assigned material (the rule will
unsuccessfully applied to shapes that already have been assigned
with an existing material). We stress that, as these changes should
not be applied for all users, the server keeps a copy of the person-
alized scene especially for this user.
 The uniform integration of domain semantics with the 3D
content opens up many more capabilities for 3D intelligent envi-
ronments. Supposing that we have already specific domain seman-
tic information in our disposal, we would like to have the chance
to automatically generate new content or synchronize the existing
one based on these semantics. For example, we may have an on-
tology about chemical molecules and we may need to visualize all
instances of this ontology describing the atoms with their bonds.
The solution we offer is to define the appropriate logical clauses,
playing the role of “semantic information visualization rules” that
perform the task of converting the semantic information into 3D
objects, transformations and animation. These “visualization
rules”, when executed, will produce e.g. a sphere for each atom
(with the necessary semantic mappings between them), lines rep-
resenting bonds between the spheres, different colors for each type
of atom and finally the necessary transformations (e.g. transla-
tions) for the produced objects (place the spheres of the atoms

based on the crystallographic information of each molecule):
TELL: defrule construct-atom-spheres (
(a) (instance(Atom, a) ^ name(a, n) =>
 instance(Sphere, s) ^ name(s, n) ^
 instance(Equivalence, e) ^
 fromInstance(e, a) ^ toInstance(e, s)))
The above statement means that for every instance of atom, we
generate a sphere into the scene and create a semantic mapping of
type “equivalence” between them.
TELL: defrule translate-atom-spheres (
(e) instance(Equivalence, e) ^ fromInstance(e, a)
 ^ toInstance(e, s) ^ crystallographicCoords(a, c) =>
 instance(Transform, t) ^
 translation(t, c) ^ onCommands(t, s))
The above statement means that we get the crystallographic coor-
dinates of every atom and we generate a transformation to every
corresponding sphere. If we need to convert the crystallographic
coordinates, we may execute additional rules or call external func-
tions to perform any complex mathematical operation. The Alger-
non inference engine allows us to call external (static or non-static)
functions in Java or define Lisp expressions that are incorporated
into the statements. We alternatively allow designers to write frag-
ments of Java code (figure 6) in order to create the individuals of
the scene and then send TELL and ASK statements together with
this code. In the same way, we can define rules to visualize the
bonds between the atoms and assign the necessary materials for
each type of atom. In each step of the execution of the rules, new
content is generated and then the existing content together with the
defined semantic mappings are used to describe new content again
until the scene is complete. The semantic driven visualization we
have applied to visualize chemical molecules is depicted in figure
8. We note that the above sets of rules may not be unique. The
users may want to define their own (personalized) rules.

Figure 8: semantic driven visualization of chemical molecules

 We can use the same approach to define rules that allow visu-
alization-aided decision making i.e. based on the graphics content
of the scenes and their applied semantics, we can make inference
to automatically take decisions (e.g. a medical diagnosis based on
the nature of the materials assigned to the objects representing
organs, tissues etc.). Based on these decisions, we can further ma-
nipulate the content (e.g. assign an interpolator to an object in
order to produce an animation based on one of its attributes – if a
tissue is damaged, then create a rotational animation on it to ob-
serve it by all angles). In general, we consider that the integration
of rules executed by inference engines on the ontological descrip-
tion of the scenes with their semantic mappings offers vast possi-
bilities to be explored in many different fields of applications.
 Until now, we have presented how TELL statements are used
for the manipulation and personalization of the scenes. Querying is
performed by sending ASK statements to the server. These state-
ments may only refer to the content of the scenes or involve their
semantics as well. Our approach incorporates the description lo-
gics of OWL into the scenes and enriches them with native seman-
tic mappings with domain knowledge so that we not only simplify
but also enhance the querying operations. The queries are applied
on the high level semantic representation of the scenes making it
easy to answer queries like “find all shapes with their materials in
a group” or “find the position of an object” independent of the
intermediate transformations of the groups that it belongs to. A

49
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

straightforward example is the following:
ASK: instance(Shape, s) ^ onCommands(PlanetarySystem, s) ^
 onCommands(t, s) ^ instance(Transformation, t)
which asks to find all shapes belonging to the group “Planetary-
System” with all their transformations. The onCommands property
is transitive so that an OWL reasoner will directly find all the
planets and satellites of the system without needing to write com-
plex queries to traverse the group hierarchy. Then, we can also
define a “coupling attribute” mapping between e.g. the position
attribute of a physics simulation ontology and the multiplication of
the returned transformation matrices to face synchronization is-
sues. In general, the results of queries can be used to update the
value of redundant attributes of instances in different ontologies,
by defining “coupling attribute” mappings between them and the
results of the queries together with a specified mathematical rela-
tion to automatically achieve the necessary synchronization.
 In order to also take into account the semantic enrichment of
the scenes for the queries, we simply involve the corresponding
semantic mappings. To answer queries such as “what is this com-
ponent which I clicked upon with my mouse?” or “what is the
functionality of this component?”, we search for “represents” or
“equivalence” mappings and “hasFunction” mappings for the ob-
ject, if they exist. We can also answer interactive queries like “fo-
cus on the component X of the scene” – actually, we create a view-
point (camera) based on its translation and center of the object.
Such interactive queries involve the execution of TELL statements
that add information (cameras, navigation type) in the scene.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a generalized model and methodology
to incorporate domain knowledge into 3D scenes in web based
environments. Our methodology raises the description of graphics
and virtual reality content to the ontologies layer of the semantic
web offering new interesting techniques to manipulate and query
the scenes. Their enrichment with domain knowledge is accom-
plished by utilizing generalized easy-to-understand ontological
mapping primitives between the graphics ontologies we have de-
veloped and any other domain-specific ontologies. We also pre-
sented the implementation of a platform based on our model and
methodology. Finally, we showed new intriguing possibilities for
knowledge-based semantic driven information visualization with
embedded decision making which can be useful for scientific
simulation environments or many other visualization applications.
 Our future work will be focused on the following issues re-
garding the further development of I3DVP applications:
- Further study of the graphics ontologies to evaluate their com-

pleteness for the description of scenes’ content and further study
of the type of semantic mappings and their ontological model
based on the analogical reasoning AI literature.

- Further study performance and synchronization issues (as those
described in [17]) of the I3DVP visualization engines in order to
fully support real-time manipulation of the scenes and imple-
mentation of an industrial strength system.

- Automatic extraction of semantics from the content of the
scenes.

REFERENCES

[1] Chaomei C., Top 10 Unsolved Information Visualization Problems,
IEEE Computer Graphics and Applications, 25(4), pp. 12-16, July-
August 2005

[2] Tangelder J. W. H., Veltkamp R. C., A Survey of Content Based 3D
Shape Retrieval Methods, Proceedings of Shape Modeling Interna-
tional, Genova, Italy, p. 145-156, June 2004

[3] Resnik P., Semantic Similarity in a Taxonomy: An Information-Based
Measure and its Application to Problems of Ambiguity in Natural
Language, Journal of Artificial Intelligence Research, vol. 11, pp. 95-
130, 1999.

[4] Cera C. D., Regli W. C., Braude I., Shapirstein Y., Foster C. V., A
Collaborative 3D Environment for Authoring Design Semantics,
IEEE Computer Graphics and Applications, Special Issue on “Com-
puter-Aided Design”, 22(3), p.42–55, 2002.

[5] Razdan A., Rowe J., Tocheri ., Sweitzer W., Adding Semantics to
3D Digital Libraries, 5th International Conference on Digital Librar-
ies (ICDL 2002), Singapore, pp 419-420, December 2002

[6] Peters S., Shrobe H, Using semantic networks for knowledge represen-
tation in an intelligent environment, 1st Annual IEEE International
Conference on Pervasive Computing and Communications, Ft.
Worth, TX, USA, 2003

[7] Luck, M. and R. Aylett, Applying Artificial Intelligence to Virtual
Reality: Intelligent Virtual Environments, Applied Artificial Intelli-
gence, 14(1), p. 3-32, 2000.

[8] Cavazza M., Palmer I., High level interpretation in dynamic virtual
environments, Applied Artificial Intelligence, 14(1), p.125-144, 2000

[9] Latoschik M. E., Biermann P., Wachsmuth I., High-level Semantics
Representation for Intelligent Simulative Environments, Proceedings
of the IEEE VR2005, Bonn, Germany, pp. 283-284, March 2005

[10] Tsinaraki C., Christodoulakis S., A Multimedia User Preference
Model that Supports Semantics and its Application to MPEG 7/21",
In the proceedings of the Multimedia Modeling 2006 Conference
(MMM 2006), January 2006, Beijing, China

[11] Tsinaraki C., Polydoros P., Christodoulakis S., Interoperability sup-
port for Ontology-based Video Retrieval Applications, In the Pro-
ceedings of Conference on Image and Video Retrieval (CIVR) 2004,
Dublin/Ireland, July 2004

[12] Elliott C., An Embedded Modelling Language Approach to Inter-
active 3D and Multimedia Animation, IEEE Transactions on Soft-
ware Engineering, 25(3), p. 291 – 308, May/June 1999.

[13] Brutzman D., Blais C., Harney, J., Visualizing Information Using
SVG and X3D, Chapter 3, Springer-Verlag, November 2004.

[14] Halabala, P., Semantic Metadata Creation, Proceedings of 7th Central
European Seminar on Computer Graphics CESCG 2003, Bratislava
Comenius University, pp. 15-25, 2003

[15] Clay S.R., Wilhelms J., Put: Language-Based Interactive Manipula-
tion of Objects, IEEE Computer Graphics and Applications, vol. 16,
No. 2, pp. 31-39, March 1996.

[16] Latoschik M. E., Schilling, M., Incorporating VR Databases into AI
Knowledge Representations: A Framework for Intelligent Graphics
Applications, Proceedings of the Sixth IASTED International Con-
ference on Computer Graphics and Imaging, Honolulu, Hawaii, pp.
79-84, August 2003.

[17] Schilling M., Latoschik M. E., Heumer G., Automatic Data Exchange
and Synchronization for Knowledge-Based Intelligent Virtual Envi-
ronments, Proceedings of the IEEE VR2005, Bonn, Germany, pp. 43-
50, March 2005.

[18] Gutierrez M., Vexo F., Thalmann D., Semantics-based representation
of Virtual Environments, International Journal of Computer Applica-
tions in Technology, vol.23, pp. 229-238, 2005

[19] Gutierrez M., Thalmann D., Vexo F., Semantic Virtual Environments
with Adaptive Multimodal Interfaces, 11th International Conference
on Multimedia Modelling, MMM2005, Melbourne, Australia, p. 277-
283, January 2005.

[20] Crawford J., Access-Limited Logic - A Language for Knowledge
Representation, Technical Report AI90-141, Ph.D. Thesis, Depart-
ment of Computer Science, University of Texas at Austin, 1990.

[21] Martinez J. M., Koenen R., Pereira F., MPEG-7: The Generic Multi-
media Content Description Interface, Part 1, IEEE MultiMedia, vol.
9, pp. 78-87, 2002

50
Proceedings of the IEEE Virtual Reality Conference (VR’06)
1087-8270/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

