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Abstract

We have implemented a new algorithm, called the
geometric-imprints method for extracting key-features of
a given contour. Series of points on the curve are used
to find a geometric-imprint set of the contour. The algo-
rithm is based upon the assumption that an articulated
human and other figures have mostly cylindrical body-
parts. The algorithm recursively partitions the contour
based upon the cylindrical nature of human-silhouettes,
and a starting point. Similar topological contours are ex-
pected to produce similar geometric-imprints. Thus the
correspondence problem is somewhat simplified. Results
of our implementation are presented.

Key words: Geometric Feature Identification, Track-
ing of articulated objects, 2D contours, Cylindrical Body
Shapes.

Introduction

Virtual environments (VEs) are expected to understand
gestures of participants as a first step towards under-
standing the participants. Understanding the intention
of the participant is difficult as an inherent ambiguity ex-
ist. For example, a human-participant is perfectly capable
of putting on an act, and their gestures may be under-
stood by a VE to convey a completely opposite message
than what the participant intended. In fact, given the
same gestures it can be interpreted differently depending
upon the context. For example, some gestures may carry
a completely opposite meaning in different parts of the
world. However, most of the time, participants wish to
create meaningful tasks in a VE. Their body movements,
gestures, facial expressions, and speech is purposeful, and
actual intention is what it appears to be. In this case,
VEs can be extremely useful. There has been much re-
search effort in the area of understanding and recognition
of facial expression, body movements, gestures and gaze
of the participants [1, 2, 3]. Fundamental to all of this is
the analysis and estimation of motion of the participant
in a VE. For applications, where the participant does not
wish to be tethered to the devices, usually video-images
are analyzed. Krueger’s work on analyzing images for 2D
information and interaction based on the 2D contours has
been well documented [4]. When multiple camera-images

are analyzed for extrapolating the 3D information inher-
ent in the scene, the well known correspondence problem
is ever-present. Magnetic sensors, placed on several places
on the body of the human participant, can be used for de-
tecting the motion of the participant. The motion is then
used to control a synthetic human-form or an avatar of the
participant. Some solutions to drive an avatar using min-
imal sensors have been already developed [5, 6, 7, 8]. In-
teractive video-environments and wearable computers are
also the emphasis in [9]. When we use encumbering de-
vices on the participant, we actually avoid much of the
correspondence problem. The correspondence problem is
severe in camera-based applications because multiple cam-
era images are analyzed and enough information has to be
extracted from these images so that the position, motion,
and other details of the participant can be determined. In
addition, camera based systems also face the inherent am-
biguity of 2D-camera projections. This can be illustrated
by arranging fingers so that the shadow projected on the
wall can, for example, look like a goat.

Related Work

Extraction of significant points, or key-features from an
image, has been investigated in great detail [1, 2]. The idea
behind significant point extraction is that a small collec-
tion of points may provide enough information about the
intent or pose of the participant. Tracking the trajectory
of an object is the focus of research in [10]. In Multiple
Light Display, multiple beacons of light are used to ana-
lyze the motion of human participants [11]. Simple light
displays placed on the participants are tracked. It is ar-
gued that twelve points are sufficient to give an impression
of actual motion. This is interesting as it also may pro-
vide an answer to how many minimal significant points on
the human-body are sufficient to understand the motion
of the participant. The Virtual Kabuki system [12] uses
an algorithm based on applying distance transformation
for identifying significant points. The knee and elbow po-
sitions are estimated using genetic algorithms [12]. A va-
riety of contour-extraction methods have been developed
for gesture understanding [13]. The optical flow, using
the intensity of certain areas of the image, is the basis in
[14]. Immersive-video [15] application uses color averag-
ing of multiple camera-images to determine the color of
3D grid-points. Snakes [16] use minimization and spline-
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based contouring to lock onto an object of interest in the
image. Blob models [9] are used in the Pfinder system to
track 2D information.

The Scan&Track VE

We are developing an unencumbering VE, called the
Scan&Track system, based upon the video image se-
quences from multiple cameras. The block diagram of
the system is shown in Figure 1. There are two ma-
jor components of the system: (a) Correspondence, and
(b) Active Space Tracking. As shown in Figure 1, there
are four sub-systems to the correspondence system: (i)
contour extraction, (ii) significant points determination,
(ili) significant points correspondence and matching, and,
(iv) scene, color, and previous poses database. Let (S1,
S2, 83) be a triplet representing a visible point S in 3D-
space. As S1, S2, and S3 are the projection of the point
S on the three camera images, the triplet (S1,52,33) is
also called the image-imprint of S. If a 3D point is visi-
ble from multiple cameras, the location of the imprint of
the 3D point in multiple camera-images can be used to
estimate the 3D position of the point. We have imple-
mented a mechanism, called active-space tracking, which
allows us to determine the location of a point S, given its
image-imprint (S1,52,83). The details of the active-space
indexing mechanism are described elsewhere [17]. In the
Correspondence system shown in Figure 1, the contours
of the human-silhouette C1, C2, and C3 can be extracted
from three images Im1, Im2, and Im3, respectively. These
contours are used by the geometric-imprints algorithm for
significant point determination. In the following sections,
we describe the geometric-imprints algorithm.

The Geometric-Imprints Algorithm

Body postures express emotions and reveal our inner-self.
For example, the contour-drawing in Figure 2a could be
interpreted as a dance pose. Similarly, Figure 2b could
mean that the person has just been victorious. The char-
acteristics of both these poses can be captured by some
key-points on the contour, as shown in Figure 2. Our
geometric-imprints method is based on the observation
that human body parts are mostly cylindrical in nature,
especially those which are the basis of articulated mo-
tion. The geometric-imprints method extracts informa-
tion about these cylindrical shapes from a contour. In
case of Figure 2a, finger tips are the logical endings of the
cylindrical human arm, and the bend at the elbow is quite
obvious and should be detected. Similarly, we have circled
some points on the the contour of Figure 2b to also indi-
cate the geometric curve bending and the logical-ends of
cylindrical body parts.

We wish to capture the points of the cylindri-
cal endings of a 2D contour from the human-silhouette as
shown in Figure 3. Some other points may be included
depending upon the curvature of a given contour. We
consider this set of points as geometric-imprints of the
image. This is because these points and their topology fa-
cilitates determination of the pose of the participant. We
can describe the pose of Figure 2a as follows: one hand is
straight and the second hand is bent at the elbow. No-
tice that the elbow position of the second hand is not that

necessary to determine the pose in 2a. To obtain this ge-
ometric information is the goal of the geometric-imprint
algorithm. We conclude that geometric interpretation can
be useful in estimating the pose of the participant. Our
motivation for developing the geometric-imprints method
was to also reduce the complexity of the correspondence
problem. Consider 2D-contours extracted from multiple
camera-images looking at a cylindrical object. The tip
of the cylindrical object would project as a tip of a 2D-
cylindrical curve in most of these 2D-contours. This has
been shown as desired point in Figure 4. It is much easier
to correspond extremities of curves across multiple cam-
era images using the active-indexing mechanism [17], in
comparison to finding these correspondences through only
computer vision methods. Geometric-imprints are depen-
dent primarily upon the analysis of contours of an image,
thus our approach is different than other existing meth-
ods where we need to estimate the same key-feature of the
image in every frame. For example, in many approaches,
as well as our earlier efforts [12], the same joints are esti-
mated in every frame. This is certainly useful when our
display program is skeleton based where the joint infor-
mation is needed for placing a synthetic human-actor in
a desired pose. With this understanding, we now present
the geometric-imprints method.

As we will explain later also, in the geometric-
imprints algorithm, we take a different approach. As
the participant assumes different positions, the shape of
participant’s silhouette on the camera-images would also
change. Therefore we expect the geometric-imprint set
to vary, from one frame to another, depending upon the
shape of the curve in the camera-images from one moment
to another.

Cylindrical Shape

In our implementation, we first draw an arbitrary shape,
and then specify a set of points on the curve in the clock
wise direction. The geometric-imprint point is the tip of
the cylindrical shape as shown in Figure 4. Then the be-
ginning and the end points are selected as starting points
S1 and S2 as shown in Figure 4. We move point S1 in the
clock-wise (CW) and point S2 in the counter clock-wise
(CCW) direction w.r.t. the curve. The algorithm we have
implemented is based upon the triangulation of the area
[18], but there is an important difference: our goal is not
triangulation, instead we want to end up at the tip of the
cylindrical shape so that that point can be identified as a
geometric-imprint.

Let point ¢ and d be two points in CW and CCW
direction, respectively, as shown in Figure 5. Let line(a,b)
be the starting point. The selection process is as follows: if
distance(line(b,c)) is less that the distance(line(a,d)) then
triangle(a,b,c) is colored and the new base is line(c,b) oth-
erwise triangle(a,b,d) is colored with new base as line(a,d).
The above is repeated until we have just one point left. In
this case, as shown in Figure 5, the correct point is found.
This simple algorithm is similar to that implemented for
Jjoining two curves on different CT-slices in [19]. This algo-
rithm should also work for a modulating curve as shown
in Figure 6. The algorithm works for simple cylindrical
shapes because we always advance the CW-curve or the
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CCW-curves so that they move together, thus when only
one node remains it must be the extreme point for that
cylindrical shape. The results of our implementation are
shown in Figure 7a-b. A 2D-curve is drawn by the user,
and multiple mouse-picks specify the points on this curve
in clockwise order. Figure 7a shows the desired geometric-
point of a cylinder with the yellow and red triangulation.
In the following sections, we explain the geometric-imprint
algorithm for an arbitrary curve specified by the user.

Arbitrary Curve, Dealing with Foldings, and
Splitting Algorithm

The above algorithm works for simple curves, but will
not generate a geometric-imprint for an arbitrary curve
where folding of the curves occur. For this we will need
the splitting algorithm. Figure 8 shows four points R1
and R2 on the CW-curve, and B1 and B2 on the CCW
curve. For our discussion below, we will assume that the
length (line(R1,B2)) is less than the length(line(B1,R2).
In this case, we are considering line(R1,B2) to become the
next base line as the recursion continues. The other situa-
tion, when length (line(R1,B2)) is greater than or equal to
length(line(B1,R2) is dealt with in a similar manner in our
implementation. The sign of the area of a triangle(A,B,C)
is the sign of the cross product of AB with AC. There are
two cases which we consider:

Case a: when R2 and B2 are moving along the
same direction, the sign of the area is same, and so we
simply move the base. So triangle(R1,B2,B1) is colored,
and the new base is line(R1,B2). See Figure 8a.

Case b: when folding has occurred as shown in
Figure 8b at point B1. In this case, folding has occurred
for the CCW curve. We look for the first place where the
area is positive again as the CCW winds around and comes
at point r the area again has become positive. This con-
dition is recognized and Tri(R1,B1,r) is colored as shown
in Figure 8(b). The original curve is split into two curves.
First curve with base line(R1,r), CW-1: R1—-R2—... and
CCW-1: r—s— .... The second curve with the base
line(r,B1), CCW-2: r—»q—p— ... and CW-2: B1—-B2—
... In step 2, when there is a split we recurse for both the
curves. Both curves are highlighted in Figure 8b.

In our implementation, folding is recognized by
studying the area of the triangles and their sign changes.
For example, folding is recognized as the sign of the area
of the triangle(R1,B1,B2) is opposite to that of trian-
gle(R1,B1,p). So we look for the triangle(R1,B1,r) which
has the sign same as triangle(R1,B1,p). We note that
point B1 is also a candidate for the geometric-imprint of
the curve. When folding occurs we split the curve into
two pieces and apply the above algorithm recursively to
the two split curves.

As the recursion continues it is easy to see that
the above implementation would terminate as the size of
the curve reduces with each iteration. The number of
splits depends upon the number of foldings in step 2 of the
above algorithm. Let the number of splits be k. Since all
the remaining nodes could be checked for finding vertex r
in step 2, so step 2 in the worst case in O(N). So we have an
upper bound on this algorithm of O(kN). We expect k to
be small, unless the cameras are focussed on the hair of the

participant. Note that the lower bound of the algorithm
is O(N) where N is the number of specified points on the
arbitrary curve. Any algorithm must look at each one of
the points at least once.

Results

In our implementation, we draw an arbitrary curve on a
window using the mouse, and specify an arbitrary number
of points on the curve by using mouse picks. S1 is the
starting point and S2 is the end point chosen on this curve.
It is expected that the user will specify the points in a clock
wise direction. The algorithm works on these selected set
of points starting from two points S1 and S2. S1 is the
starting point for the clock wise (CW) curve, and S2 is
the starting point of the counter clock-wise (CCW) curve.
The progress of implementation is shown by drawing the
triangles in yellow color when the two points of the triangle
are on the CW curve. The color is red when the two
points of the triangle are on the CCW. Since S1 and S2
are considered topologically next to each other, only one
of them, S1, is considered as a geometric-imprint point.

Results of our implementation are shown in Fig-
ures 9-12. Figure 9a shows simple human silhouettes simi-
lar to Figure 2a. We have the geometric-imprint identified.
The algorithm will also work on a closed curve in Figure
10 for the case when the hands may overlap the body.
Using the starting significant point at the head we have
been able to identify six significant points in Figures 10b-c
for the curve in Figure 10a. The implementation of this
algorithm 1s dependent upon the selection of the start-
ing point, as well as the user-specified points. Notice for
example, that only one shoulder point in Figure 10c has
been identified as the geometric-point. The implementa-
tion correctlyidentifies the other five cylindrical end-points
on this complex curve in Figures 10b and 10c. Figure 11
show the results of our implementation on extreme fold-
ing cases. In these cases, the algorithm picks many points
along the highly modulating curves to indicate extreme
folding which is occurring in both the winding river ex-
ample and the Oohm sign in Figure 11. In Figure 12, we
have used the same pose and same staring point for the
images captured from three cameras. Notice that all the
significant points, marked one to five in Figure 12, are
common in the three figures. One extra elbow-point is
also a geometric-imprint point in Figure 12f.

In our implementation we mainly show the tips
of cylindrical shapes, however, the places where folding
occurs can also be geometric-imprint point as explained
earlier. As shown in Figure 12, similar topological curves
generate a similar geometric imprint set. Once the geo-
metric imprint has been obtained it is much easier to find
correspondence. Since there are only k geometric-imprint
points out of N, it is much easier to match the geometric-
imprints on these curves. In our future implementations,
we plan to also use the matching information from pre-
vious frames to help us match the geometric-imprint of
present camera-images.

Ratio-Theory and Correspondence

The idea behind the ratio theory can be best understood
by imagining a tailor measurement. The extremities of



a contour can be related easily if we start with the di-
mensions of the participant as shown in Figure 2a and
2b. From one frame to another, the length of the body-
extremities of the participant can never change. This idea
has been implemented in our Virtual Kabuki system [12]
from frame-to-frame. We now extend the same idea to
correspond with the three images of the same pose. Let
us assume, that the geometric-imprints of two poses have
been obtained as shown in Figure 3. We now need to
correspond point A with point 1, point B with point 2,
and so on. Then the points are connected i.e. 1 to 2 to
3 and so on. In Figure 2, the curve length 1.1 between
extremity A and B is similar to the curve length 1.2 be-
tween D and E, and so on. In particular, it can be said
that the ratio L1/L.2 would approximately equal 1.3/1.4.
So the correspondence problem reduces to matching and
finding a best fit in a small search-space dependent upon
the number of geometric-imprint points on curves from
camera-mages.

Conclusions and Future Research

In this paper, we have presented the geometric-imprints
algorithm which finds the significant points based upon
the cylindrical nature of projections of articulated figures,
especially humans. We have presented an implementation
of the geometric imprints algorithm which captures the
extremities of a 2D-contour of an articulated figure. The
2D-curve can be arbitrary with multiple foldings. Results
are shown and presented. The geometric-imprints algo-
rithm is robust and finds similar geometric-imprints for
2D-contours from camera-images of the same pose. Thus,
similar topological curves are expected to produce similar
geometric imprints.

In future, we plan to automate the contour ex-
traction process. In addition, we plan to develop match-
ing algorithms which will solve the correspondence of
geometric-imprints from different camera images for the
same pose. This would allow us to identify a set of geo-
metric imprint points. An imprint point triplet (51,52,S3)
then would be used by the active-space tracking system as
shown in Figure 1. This would allow us to join the cor-
respondence and the active-space tracking components of
the Scan&Track system towards unencumbering Virtual
Environment.
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