CSR: Autonomous Performance and Power Control on Virtualized Servers (NSF CNS-1217979, 09/2012-08/2017) 


 Project description and goals

Modern data centers hosting popular Internet services face significant and multi-facet challenges in performance and power control. The challenges are mainly due to complex interaction of highly dynamic and heterogeneous workloads in complex virtualized computing systems. In this research project, the investigators take an organized approach to autonomic performance and power control on virtualized servers. The project designs and develops automated, agile and scalable techniques for server parameter tuning, virtual machine capacity planning, non-invasive energy-efficient performance isolation, and elastic power-aware resource provisioning. The deliverables are innovative and practical approaches and mechanisms that provide performance assurance of applications, maximize effective system throughput of data centers with resources and power budget, mitigate performance interference among heterogeneous applications, and achieve performance and power targets with flexible tradeoffs while assuring control accuracy and system stability. The research methodology integrates strengths of reinforcement learning, fast online learning neural networks, fuzzy logic control, model predictive controls and distributed and coordinated control. The project broadens impact by developing a testbed in a university prototype data center to demonstrate the orchestration of developed approaches and mechanisms for autonomous management of virtualized computing systems, middleware, and services. The success will guide autonomous resource management for sustainable computing in next-generation data centers. 

The research project is exectued in a cutting-edge lab located in the new science and engineering building. The server room is furnished with cutting-edge HP data center blade facility that has three racks of HP ProLiant BL460C G6 blade server modules and a 40 TB HP EVA storage area network with 10 Gbps Ethernet and 8 Gbps Fibre/iSCSI dual channels. It has three APC InRow RP Air-Cooled and UPS equipments for maximum 40 kWs in the n+1 redundancy design. 


Participants


Project-sponsored Publications


Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant CNS-1217979. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).