

Palden Lama and Xiaobo Zhou University of Colorado at Colorado Springs

Outline

- Background and Motivation
- Challenges
- Related Work
- Proposed Approach
- Performance Evaluation
- Conclusion
- Q & A

Data Center: Key Issues

- Multi-facet Challenges
 - Performance Assurance, Server Utilization, Power Consumption.
- Server utilization
 - built on the over-provisioning model.
 - dedicated servers for different applications.
 - most servers in a typical data center run at only 5-10 percent utilization
- Power consumption and Carbon footprint
 - According to the U.S. Department of Energy datacenters are the fastestgrowing energy consumers in the United States today.
 - IEA (International Energy Agency) updated a warning in 5/2009 that Information and communication technology energy use could double by 2022, and triple by 2030
 - Data centers are responsible for the tens of millions of metric tons of carbon dioxide emissions annually more than 5% of the total global emissions.

3

Virtualized Data Centers

- Virtualization
 - abstracts physical resources into virtual machines (VMs).
 - diverse OS and applications share underlying server resources.
- Consolidation
 - improves server utilization
 - reduces power consumption
- Platform for Cloud Computing
 - Flexible and Fine-grained Resource Allocation
 - On-demand, pay-per-use service

Power Management in Data Centers

- Power over-subscription
 - the sum of the possible peak power consumptions of all the servers combined is greater than the provisioned capacity
 - Power budgeting mechanism (DVS) on each server, to ensure total power stays below capacity.
- Hardware power budgeting
 - does not respect the isolation among virtual machines with different performance requirements.
- Need for a holistic view of power and performance management in data centers.

Joint Power and Performance Control

- Power oriented vs. performance oriented
 - Controlling either power or performance while achieving the other objective in best-effort manner.
 - No explicit co-ordination between power and performance.
- Effect of workload dynamics (highly dyanamic and bursty)
 - Control accuracy
 - System stability
- Percentile based performance metric
 - Most previous works focus on average performance guarantee. (not suitable for interactive applications)
 - A percentile response time introduces much stronger nonlinearity to the system, making it difficult to derive an accurate performance model.

Challenges: Workload Dynamics

- Workload Variation at multiple time scales demands self-adaptive and robust techniques for power and performance management.
- System stability should be guaranteed to avoid oscillatory behavior in system states that result in poor power and performance assurance.

Challenges: Multi-tier architecture

- Cross-tier dependencies
- Bottleneck switching
- Performance is the result of a complex interaction of workloads in a very complex underlying computer system.
- Power usage of different tiers of one application may vary with workload.

RELATED WORK

- X. Wang, M. Chen, and X. Fu. MIMO power control for high-density servers in an enclosure. IEEE Trans. On Parallel and Distributed Systems, 21(10):1412–1426, 2010.
 - MIMO control for cluster-level power control using DVFS.
 - Not applicable to virtualized servers
 - Power-oriented: no performance guarantee
- R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No "power" struggles: coordinated multi-level power management for the data center. In ASPLOS'08. ACM, 2008
 - Coordination of power controllers at various levels (Enclosure, Server & VM)
 - Power-oriented : no performance guarantee

RELATED WORK

- R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for power efficient data centers. In Proc. IEEE Int'l Conf. on Autonomic Computing (ICAC), 2007.
 - Maps workloads to best suited platforms for power efficiency
 - Primary objective: meeting service level agreement of applications.
 - Lacks explicit control on power consumption.
- Y. Wang, X. Wang, M. Chen, , and X. Zhu. Partic: Power-aware response time control for virtualized web servers. IEEE Trans. on Parallel and Distributed Systems, 21(4), 2010.
 - Two-layer control architecture
 - primary control: VM resource allocation for balancing their relative perf. level.
 - secondary control: reducing power consumption by manipulating CPU frequency.
 - Power consumption is reduced in best-effort manner.

RELATED WORK

- X. Wang and Y. Wang. Co-con: Coordinated control of power and application performance for virtualized server clusters. In Proc. IEEE Int'l Workshop on Quality of Service (IWQoS), 2009.
 - Co-ordinated two-level controller for power and performance control
 - May not adapt to workload changes.
- J. Gong and C.-Z. Xu. vPnP: Automated coordination of power and performance in virtualized datacenters. In Proc. IEEE Int'l Workshop on Quality of Service (IWQoS), 2010.
 - Allows flexible tradeoff between power and performance objectives
 - Reduces performance relative deviation by 17% compared with two layer feedback controller (as in Co-Con).
 - lacks the guarantee on stability and performance of the server system especially in the face of highly dynamic and bursty workloads.
 - performance relative deviation may degrade in case of percentile-based performance metric.

PERFUME System

- Flexible tradeoffs
 - It guarantees both power and performance targets with user specified tradeoffs.
- Well-suited to virtualized environments
 - It enforces power budgeting by controlling CPU usage limits of VMs instead of throttling CPU frequency of physical server.
- Stability and control accuracy (Fuzzy MIMO Control)
 - FUMI applies Model Predictive control (MPC) technique to control CPU usage limits of various multi-tier applications hosted in virtualized servers.
 - To apply MPC technique, it generates fuzzy models that capture power and performance behavior of multi-tier applications hosted in virtualized servers.
 - It adapts the fuzzy models at run-time in response to changes in workload.
- It is able to control both average and percentile-based performance metric due to its Fuzzy modeling

PERFUME System Architecture

Testbed:

- HP ProLiant BL460C G6 blade server modules with a HP EVA storage area network.
- 10 Gbps Ethernet and 8 Gbps Fibre/iSCSI dual channels.
- Virtualized with Vmware ESX 4.1
- Hosting multi-tier application benchmark, RUBiS

FUMI Control Interface

- Fuzzy model:
 - represents an arbitrarily complex system by a combination of inter-linked subsystems with simple functional dependencies.
 - Accurately capture the non-linearity of computer systems: response time vs. resource allocation
- Optimizer:
 - Formulates MIMO control problem as a constrained optimization.

Fuzzy Modeling

Each controlled variable (power, performance) is represented by a fuzzy model
 Regression vector (current & previous power/perf

 $y(k+1) = R(\xi(k), u(k)).$ measurement).

Current resource allocations

Fuzzy model (R) is composed of a set of fuzzy rules.

 R_i : If $\xi_1(k)$ is $\Omega_{i,1}$ and .. $\xi_{\varrho}(k)$ is $\Omega_{i,\varrho}$ and $u_1(k)$ is $\Omega_{i,\varrho+1}$ and .. $u_m(k)$ is $\Omega_{i,\varrho+m}$ then

 $\underline{y_i(k+1)} = \underline{\zeta_i}(k) + \underline{\eta_i}(k) + \underline{\phi_i}.$

- Model's final output is sum of output given by each rule, weighted by its activation strength.
- Initial fuzzy model obtained by subtractive clustering and ANFIS (Artificial Neural Network Fuzzy Inference System) technique.
- At run time, wRLS method updates the fuzzy model parameters.

Control Solution

 Express MIMO Control Objective as Quadratic Programming Problem

 $\min_{\Delta \mathbf{u}} \left\{ \frac{1}{2} \Delta \mathbf{u}^T \cdot \mathbf{H} \cdot \Delta \mathbf{u} + \mathbf{f}^T \cdot \Delta \mathbf{u} \right\}$

 Linearize fuzzy model at each sampling interval, to extract state space model

$$\bar{\mathbf{x}}_{\text{lin}}(k+1) = \bar{\mathbf{A}}(k)\bar{\mathbf{x}}_{\text{lin}}(k) + \bar{\mathbf{B}}(k)\Delta\mathbf{u}(k)$$
$$\mathbf{y}_{\text{lin}}(k) = \bar{\mathbf{C}}(k)\bar{\mathbf{x}}_{\text{lin}}(k).$$

- The matrices A(k),B(k) and C(k) are constructed by freezing the parameters of the fuzzy model at a certain operating point y(k) and u(k).
- Solve using any Quadratic solver software or MATLAB.

Flexible Tradeoffs • Control accuracy for various tradeoffs. • Control accuracy for various tradeoffs. | The proper service of the proper service of the property of the

Percentile-based Response Time Guarantee

Improvement of 40% in terms of relative deviation

Conclusion

- PERFUME provides holistic and self-adaptive performance and power control in a virtualized server cluster.
- Testbed implementation demonstrates
 - precise control of power consumption of virtualized blade servers
 - effective control of throughput and percentile-based response time of multi-tier applications.
 - flexible tradeoffs
 - control accuracy and system stability

ANY QUESTIONS?

