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Abstract

Detecting code reuse in malicious software is compli-
cated by the lack of source code. The same circumstance
that makes code reuse detection in malicious software desir-
able, that is, the limited availability of original source code,
also contributes to the difficulty of detecting code reuse. In
this paper, we propose a method for detecting code reuse
in software, specifically malicious software, that moves be-
yond the limitations of targeting variant detection (catego-
rization of families). This method expands n-gram analysis
to target basic blocks extracted from compiled code vice en-
tire text sections. It also targets individual relationships be-
tween basic blocks found in localized code reuse, while pre-
serving the ability to detect variants and families of variants
found with generalized code reuse. We demonstrate the lim-
itations of similarity calculated without first disassembling
the instructions and show that our First Byte normalization
gives dramatic improvements in detection of code reuse. To
visualize results, our method proposes force-based cluster-
ing as a solution to rapidly detect relationships between
compiled binaries and detect relationships without complex
analysis. Our methods retain the previously demonstrated
ability of n-gram analysis to detect variants, while adding
the ability to detect code reuse in non-variant malware. We
show that our proposed filtering method reduces the num-
ber of similarity calculations and highlights only meaning-
ful relationships in our malware set.

Malicious software, or Malware, was produced at a rate
of 9M samples a quarter in year 2012 [21]. This rate is
significant and, while not yet proven, lends support to the
widely held belief that malware is created with significant
code reuse [15]. If this hypothesis is correct, the detec-
tion of code reuse in software could be used to detect new

malware as well as to provide a mechanism to narrow au-
thorship. Code reuse detection has applications outside ma-
licious software to include intellectual property protection
and vulnerability discovery [9][23][24].

Current malicious software protection hinges on detec-
tion through signature scanning. However, this method has
serious limitations [27]. One of these limitations is the vol-
ume of signatures that must be created to counter the threat
of malicious software. Code reuse detection provides a new
solution to extend the signature method. First, there is a po-
tential to reduce the number of signatures needed to detect
the millions of malicious programs found in the wild. By
examining inter-relationships found within malware, and
only malware, code that is frequently used in malware can
be targeted for signature creation to detect all of the mal-
ware to which it belongs. In addition, this technique would
force malicious code writers to proactively vary their code
and eliminate code reuse dramatically, slowing the produc-
tion of new malware.

Another application of code reuse detection in malicious
software is the ability to trace such reuse. The primary ben-
efit of the ability to trace code reuse in malware is in classi-
fication of intrusion sets. The premise of this application is,
code that is reused in a small portion of malware is likely to
have been developed by the same group. This is a key com-
ponent to attribution of malware to specific writers as well
as an indicator for classification to a particular intrusion set.
Such methods are already employed in industry; however,
they are currently conducted in a much more manual fash-
ion. The method proposed in this paper would provide a
key tool to move away from manual analysis.

The study and analysis of malicious code is hampered by
the amount of time necessary to analyze the code [5]. Meth-
ods to preventing duplicate analysis are in production [26].
However, these methods are limited to a specific tool used



in analysis or are not resilient to minor variations of code.
The method proposed in our paper provides such a solu-
tion. As we can identify code reuse in compiled malware,
we can also find the complement to code reuse detection,
the detection of previously unseen code. Analysis of code
segments could be conducted and applied to all malware to
which it belongs and new code could be quickly identified
for analysis.

Lastly, our proposed method is useful in vulnerability
discovery. Code reuse, while speeding up the development
cycle, also propagates vulnerabilities to other software
projects. Our method, just as in work [15], allows for
the detection of vulnerabilities in programs once the
vulnerability is found elsewhere. Where work [15], as
implemented, only detects the presence of code reuse.
Our method detects both the presence and location of the
vulnerability.

In this paper, our four major contributions are as fol-
lows:

1. Code reuse detection of highly similar, localized code
within compiled binaries.

2. A simple normalization method to reduce the effects
of hash waterfalling.

3. A force-based clustering visualization solution to nav-
igate a many-to-many relationship map.

4. Filtering of commonly found code.

1 Related Research and Motivation

The automatic detection of code reuse in compiled bina-
ries has applications in malware detection, malware attribu-
tion, intellectual property protection, and bug detection. Re-
search work [15][24][11][8][25][18][17] has been geared
toward detection of malware through this reuse. How-
ever, proposed methods [15][25][11][1][17] were based
on the detection of variants (families). Proposed meth-
ods [8][4][18] were based on the detection of behavior. And
work [24] doesn’t address malware and relies on at least 40
consecutive instructions to detect similarity, which is below
the average number of instructions per basic block. While
these methods are useful, and some of the techniques are
used in our research, they are limited in that they can only
detect entire program (or multiple consecutive blocks) sim-
ilarity and behavior. None of these methods are particu-
larly well suited to detect actual code reuse as commonly
found in development. To achieve the desired contributions
in malware attribution, program executable sections are not
the unit for experiment, but the components that comprise
the logic within the program. While the detection of lo-
calized code reuse in [7] has shown to be very useful, its

technique of direct byte comparison is limited in scale. To
this end, we explore scalable similarity tests based on basic
blocks extracted from program executable sections individ-
ually, rather that the section as a whole.

We also use set membership methods [15] as a filter-
ing mechanism to reduce noise in our proposed method.
As we propose to move away from simple set membership
tests to a more complex many-to-many associative relation-
ship graph, we explore visualization of such relationships
through force based clustering. Finally, we recognize the
computational difficulty of this On? association problem
and we set forth ideas on how to reduce n to more man-
ageable value through filters that are linear in nature.

During this research, static analysis of compiled code
was examined. Our goal is to detect source code reuse in
compiled executables. Therefore, the detection of behavior
such as work [8] are not as valuable, as behavior is not in-
dicative of implementation. This is particularly true of the
system call method in work [2]. As such, we focus on meth-
ods where the source machine code is extracted directly,
processed, and compared.

We examined methods proposed in works [15][25][6].
The methods proposed in works [25][6] have several ad-
vantages. First, the work [25] provides an intermediate lan-
guage to reduce and possibly overcome compiler generated
differences from exact duplicate source. It also provides
an emulator to allow for unpacking, which is a hurdle that
must be overcome to transition the research. Lastly, the
work [6] allows for the extraction of entire algorithms for
analysis, vice basic blocks. The comparison of entire al-
gorithms is more closely aligned with code reuse detection
than basic blocks. However, each of these methods repre-
sent an end goal of detecting code reuse even when opcodes
are radically dissimilar. For this current work, we choose a
hybrid method based on n-gram analysis [1] used in mal-
ware works [13][14][15], simple normalization to improve
the accuracy of m-gram analysis, filters to reduce uninter-
esting comparisons, and force-based clustering to visualize
similarity results beyond detecting malware families.

2 Code Reuse Detection and Visualization

The work presented in this paper comprises of: retarget-
ing n-gram similarity analysis to the basic blocks extracted
from malware samples, the straight forward normalization
of basic blocks to improve similarity matching, the clus-
tering of resulting similarity graphs using push-pull force
based clustering, and the filtering of basic blocks found in
known benign software.



2.1 Similarity

The use of m-gram analysis for feature detection in
works [1][14][13][15] is attractive. Our choice of n-gram
analysis was made as it provides most promising results and
scalability when used for family detection [15]. The n-gram
extraction and feature hashing allows for a quick reimple-
mentation for exploration of both similarity and other ob-
jectives of this research. We first re-implement work [14]
as described, except the target of comparison is basic blocks
vice executable sections.

A test set of malware was created from our malware sam-
ple set obtained through Open Malware [22] by selecting
only C and C++ compiled code, which had no evidence of
being packed. While obfuscation through packing is an is-
sue for any complete analysis system, our work is confined
to detecting similarity in unobfuscated code and deobfus-
taction is outside of our scope. This list was generated from
simple signature based analysis [16]. Cumulative results of
basic block analysis are comparable to work [15] as one
would expect because basic block analysis is simply a sub-
set of executable section analysis.

Basic blocks are extracted through batch processing via
IdaPython [10]. We use IdaPython to identify and access
each basic block in the sample program. Normalization (be-
low) is completed at this step and a preprocessed dataset is
created, identifying all basic blocks found within the sam-
ple binary. This process generates an average of 281 (mean
91, max 6800 in the sample set) basic blocks, defined by
control flow changes within the compiled binary of the mal-
ware, per sample. This number is consistent with self exe-
cutable files (exe’s) within Windows XP (dII’s contain much
of the code base for executables) and is expected due to the
large number of small downloader executables within the
malware base.

Similarity is calculated by sliding window feature hash
across the extracted basic block. While it would be possi-
ble to store each hash, the resulting dataset would be very
large and the computation would be cumbersome. We did
not attempt this as it has already been proven in work [15]
to be very computationally expensive. However, such stor-
age would allow for similarity to be calculated via a Jaccard
index by calculating the union and intersection of each ba-
sic block’s feature hashes. Given two feature sets F,, [
extracted from basic blocks B,, By, which in turn are ex-
tracted from malware M, M}, similarity of the basic blocks
is determined via the Jaccard index: J(F,, Fy) = é?zﬂg:g .
However, as noted in work [15], storage of each n-gram
hash from each basic block is not optimal. Instead, the fea-
ture hash is stored as an index in a bit array, which cre-
ates a probabilistic data structure for which similarity can
be calculated. Simple unions and intersections are easily,
and more importantly, quickly calculated from such struc-

tures via simple bit operations. We use this circumstance
to calculate an approximate Jaccard Index as in work [15].
That is, J(Fy, Fy) =~ % where the Jaccard Index
J(F,, Fy) is approximated by taking the bit AND and the
bit OR of each bit array B;, counting the set bits with func-
tion S(), and dividing the result. It is an approximation due
to the probability of collision within each bit array. How-
ever, unlike work [15], our work only examines one byte
per instruction, guaranteeing the number of instructions per
window to be constant. The is advantageous for several rea-
sons. Representing instructions as a constant length does
not allow arbitrary long instructions to increase the prob-
ability of match my consuming more of the window than
other instructions. Long instructions consuming more win-
dow space than other instructions also flattens the structure
of the sequence of instructions by reducing number of in-
structions per window. Representing instructions with only
their first byte also reduces the number of windows exam-
ined per basic block; therefore, less windows are indexed
into our bit array, reducing potential collisions.

2.2 Normalization

When using the raw instruction method in work [15],
we found that many of the potential matches between func-
tions were obscured by operand values, particularly in the
case of memory addresses. This should be of no surprise
based on works [24][25]; however, initial results without
code normalization were more sparse than desired. An
examination of sample assembly extracted from test code
shows that fouling due to relative memory location changes
is pronounced with even small modifications to code, such
as variable insertion. However, such fouling is reduced sig-
nificantly if destination addresses can be ignored. We refer
to this normalization procedure as the First Byte method in
the rest of this paper. Conversely, the n-gram consisting of
the full instructions are referred to as the Full Byte method.

As we already used IDA [10] to extract basic blocks
from each program, we instead extracted only the First Byte
of each decoded instruction from the basic block. This
not only removes some operands from specific instructions,
particularly control flow instructions with relative offset
destinations, but also preserves the structure of the basic
block. In addition, the method greatly reduces the number
of hashes calculated in the n-gram analysis and does not ex-
clude basic blocks that don’t match simply due to operand
specifics. Figures 5 and 6 show the effect of normalization
on compiled byte code.

2.3 Clustering

We desire to determine not just if a program belonged
to a family, but identify what specific code in the malware



was related to other specific code. To achieve this goal, all
relationships must be measured and relevant relationships
recorded. Since each basic block extracted from a program
must be compared to every other, this manifests On? com-
plexity. In addition, initial experimentation shows a very
large amount of relationships generated from small num-
bers of samples.

The preprocessed basic blocks are hashed via sliding
window as in works [14] [15]. A graph is constructed with
malware samples as parents and the sample corresponding
basic blocks as children. Each basic block is compared to
every other basic block and a similarity is calculated by
dividing feature hash matches by possible matches. If the
similarity score exceeds a prescribed threshold, an edge is
created between the corresponding basic blocks. The edge
weight is the similarity score.

Clustering is accomplished via method [3] with the im-
ported algorithm [20]. The clustering is force-based rather
than flat nearest neighbor [15]. This approach retains sim-
ilarity connections between malware samples that are gen-
erally dissimilar. This produces a graph (Fig 1) that visu-
ally contributes understanding to the complex nature of the
data. Not only are variants revealed, but each relationship
is shown in the graph. The number of relationships can,
however, be large in a relatively small number of malware
samples. To reduce the number of relationships, we intro-
duce filtering.

Figure 1: 96 malware samles, with 25k basic blocks, clus-
tered, location of two variants.

2.4 Filtering

Filtering is accomplished by examining known good-
ware in a similar method to the examination of malware.
The goodware undergoes the same processing as the sam-
ple malware. We first extract out the basic blocks from the
executable text section; however, we do not list each basic
block for comparison. We instead store all feature hashes
within a large bit field, creating a filter to test for set mem-
bership. Each basic block extracted from malware is then
compared to the feature hashes of the filter. If the basic
block is found to be a member of the filter, it is included in
the graph for completeness. However, it is not compared to
all basic blocks. Thus, this linear method reduces the num-
ber of similarity checks conducted given a malware set and
reduces the complexity of the associated graph.

3 Experimental Results
3.1 Equipment and Dataset

All experiments were performed on an OS X machine
(Intel 2.3 GHz 17 / 4 Core, 8 Thread / 16GB memory) using
only a single core unless otherwise noted.

We performed our experiments on a malware data set
supplied by the Open Malware Project [22]. Our test sub-
set was generated by processing our dataset in order of md5
hash and identifying the first n samples that tested positive
for C/C++ signatures via the PEiD [16] database. Our use of
this selection process ensures that the samples are random
within the domain of C/C++ malware. The Open Malware
Project dataset consists of more than SM malware samples
by MDS5 hash. We limit our analysis to C/C++, However,
works, such as Juxapp [9], show that n-gram analysis is ef-
fective across other languages.

3.2 Similarity

Sample runs of 10k basic blocks were conducted to de-
termine the effect of window size and similarity threshold
on resulting similarity matches. Similarity was measured
between 30-100% in 10% increments for both First Byte
and Full Byte methods. Figure 2 shows the results of the
effect of similarity thresholds on the number of matches
recorded when the window size is held constant at 10 bytes
in both the First Byte and Full Byte methods. In the
First Byte method, each byte represents a single instruction,
while the Full Byte method varies due to the x86 variable
opcode sizing. The Full Byte method does not intelligently
account for instruction size; however, x86 is confined to no
more than 15 bytes per instruction [12]. Therefore, the n-
grams of size 10 may not cover an entire instruction. Thus,
First Byte analysis produces more matches while covering



more instructions. This, of course, comes at the cost of
more possible collisions due to more than one instruction
being represented by a single byte.
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Figure 2: Similarity Threshold VS Matches Detected

Window size was measured between 5-500 bytes. Fig-
ure 4 shows the effect of window size on the number of
matches when the similarity threshold is varied. As ex-
pected, as n-gram size increases, the number of matches
decreases. However, the rate of decrease is higher with
Full Byte n-grams verses First Byte. Despite the number
of instructions included in First Byte n-grams being much
higher and a reduction in the number of basic blocks ana-
lyzed, there is an increase in matching with First Byte com-
pared to Full Byte. We believe this is due to the result of
n-gram fouling (below) being more pronounced in the Full
Byte analysis when compared with the First Byte.
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Figure 3: Effect of Filtering on Similarities

Without optimization, the On? nature of a many-to-
many comparison is taxing. Our first run on unoptimized
code, conducting all comparisons was 82 minutes for 25K
basic blocks. However, by observing that basic blocks that
differ drastically in size are not likely to be similar, we were
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Figure 4: Window Size vs Matches Detected

able to reduce execution for 25K blocks to 4.5 minutes by
bypassing blocks that were beyond a size threshold. In ad-
dition, filtering for know code (below), multi-threading, and
superset comparisons (below), we can compare 25K blocks
(3.8M instructions) in approximately 75 seconds.

3.3 Normalization

The effects of normalization can be seen in both the sta-
tistical analysis of numbers of matches found and the result-
ing graphs. Normalization in our method reduces each vari-
able length instruction to a single byte. It reduces the over-
all basic block length and the number of sliding windows to
compute the feature hash. Constrained at 25k basic blocks,
our method discovered 2-5x more similarities (at reasonable
thresholds) than the Full Byte method (Fig 2). Examination
of both First and Full Byte verified the actual similarity of
basic blocks and known variants (families) were still de-
tected in our method.

Our First Byte method is much more resistant to hash
waterfalling vice Full Byte. Figure 6 shows the effect of
simple hash waterfalling with a single variable addition in
the byte code of CRC.c. The modification adds a vari-
able to the stack, changing the relative offsets. Hash wa-
terfalling has the effect of fouling the feature hashing of
each code segment. Figure 5 shows the effect of feature
hashing using our First Byte method. Figure 6 shows the
effect of waterfalling when using full instruction machine
code. The fouling produced by variable insertion is much
more pronounced in the Full Byte method verses our First
Byte method as show in these examples. In the Full Byte
method, it is reduced to a 31% match with the insertion of a
single variable, while in the First Byte it is reduced to 73%.

The First Byte method is only affected by the addition
of the mov instruction to move the variable onto the stack.
The Full Byte method is also affected by the additional mov
instruction; however, it is also affected by the change in rel-



55 89 83 C7 C7 EB 8B 03 8A OF 89 8B 89
E8

55 89 83 C7 C7 C7 EB 8B 03 8A OF 89
8B 89 ES8

Figure 5: First Byte Waterfall Fouling, Window=5, 73%
Match.

55 89 E5 83 EC 14 C7 45 FC 00 00 00 00
C7 45 FO FF FF FF FF EB 52 8B 45 FC 03
45 08 8A 00 OF B6 CO 89 45 F4 8B 45 F4
89 04 24 E8 46 FF FF FF

55 89 E5 83 EC 24 C7 45 FC 00 00 00 0O
C7 45 F4 00 00 00 00 C7 45 EC FF FF FF
FF EB 5A 8B 24 E8 3F 45 FC 03 45 08 8A
00 OF B6 CO 8B 45 FO 89 04 FF FF FF

Figure 6: Full Byte Waterfall Fouling, Window=5, 31%
Match.

ative addressing caused by the insertion of that instruction.
As the First Byte method is resistant to changes in most rel-
ative addressing, it matches more closely. As n-gram sizes
increase, the effects of fouling become more pronounced.

3.4 Clustering

Detecting individual similarity leads to very large
datasets even with relatively small input sizes. To tackle
this problem, we borrow from force-based clustering meth-
ods developed in bioinformatics and network analysis. The
initial map defines all nodes and edges; however, positions
of nodes are not defined and the resulting network map is
obscured in the complexity of unsorted information. Force-
based clustering allows for visualization of complex net-
work maps. In our research, we explore the OpenOrd [20]
algorithm though [3]. This algorithm was chosen as it is
known to produce good results with large graphs and is rea-
sonably fast.

Our similarity comparison of 96 files with 25k basic
blocks produces a graph file that is 182k lines long. The rea-
son is that each node and edge must be recorded along with
attribute information, such as edge weight, color, and label.
This is a large amount of information and far too much to
understand without additional analysis. It would, of course,
be trivial to produce a look up system to examine one blocks
relationship with other blocks; however, the extreme num-
ber of relationships provides a dataset that those attempt-
ing manual analysis would find daunting. To examine one
sample’s relationship with others is much more complex as
each sample contains many basic blocks. Filtering would,

of course, reduce the number of relationships by removing
common, thus uninteresting, edges. However, in general,
identifying code reuse is information intensive. Clustering
techniques, even with small sample sets, revealed two vari-
ants (Fig. 1 —Artimis in upper left and Troj_gen R70H1HR
in lower right), thus we preserve family detection as in
[15][25][11][1] while adding localized detection small code
reuse.

3.5 Filtering

The development of an accurate filter has two goals. First
is to reduce the number of trivial relationships and the sec-
ond is to reduce the number of On? complex comparisons.
Filtering is accomplished much the same as methods [15] as
specific identity need not be retained, only set membership.
In this way, a large bit array is used to filter out trivial rela-
tionships. The filtering process is accomplished with linear
computation time, reducing the On? load of the similarity
comparisons. Filters are feature hash based and constructed
with the same algorithm used in similarity, except that the
filter does not track individual relationships, only member-
ship. In this way, the filter is built in linear time and the
comparisons are done in linear time. If membership is de-
termined to be true, that basic block is not processed within
the similarity engine.

Filter construction is based on known good-ware. To
demonstrate the usefulness of filters, 100 random (non-
obfuscated) binary executables were selected from our
known clean examination system. A filter was generated
from both the First and Full Byte basic block extraction
methods over the same 10 byte window used in the base
similarity experiment. The similarity model was run again
with both the First Byte and the Full Byte methods, this
time filtering out any basic block found in the filter set. A
comparison of the reduction in can be found in Fig 3. Any
filtered basic block is added to the graph for completeness;
however, such basic blocks are not compared to other blocks
for similarity. As such, the 25k block constraint includes fil-
tered basic blocks. Examination of the unfiltered graph in
Fig 7 and the filtered graph in Fig 8 show a dramatic reduc-
tion in complexity, while retaining relevant similarity from
malware basic block n-gram analysis.

4 Our Key Contributions
4.1 Localized Similarity

Our n-gram analysis of basic blocks is successful in
detecting code reuse in malware. It is straight forward to
re-implement and resistant to minor code changes. Unlike
other methods, our method determines localized similarity



Figure 7: 25k Blocks, Unfiltered, 50172 similarites found

Figure 8: 25k Blocks, Filtered, 9828 similarities found

(small code reuse) and general similarity (family of vari-
ants) in a scalable solution. To allow our method to be
more resistant to minor code changes, we also introduce a
simple normalization method, vice more complex methods
in [24][17].

4.2 Normalization

The nature of ASM is that there is little abstraction. This
is particularly true in compiled machine language, and its
ASM representation, as there is no use of labels for code
references. Instead, hard offsets are coded into the machine
and all labels are lost. As a result, control flow changes in
the form of a call or jump have little chance of matching
from one program to the next on the same compiler, when
even the smallest change to the code is made. In addition,
the choice of registers and the use of stack references by
the compiler may change as well from program to program.
All of this provides opportunities to miss similarity between
basic blocks when using methods in work [14].

Our method intelligently examines the instruction it-
self and removes most operand specifics that would oth-
erwise prevent identification by simply truncating the byte
code of the instruction beyond the first byte. ~While
there are certainly more precise methods to normalize byte
code [25][24][19], our method is simple and very portable.
It requires no complex algorithm or reference to be imple-
mented. Given the time necessary to analyze the 200M mal-
ware samples in the wild, such a method has its advantages.

The benefits of this type of code normalization allow for
more instructions to be included within each n-gram with-
out significantly increasing the risk of a memory or register
specific reference obscuring the similarity results. In addi-
tion, as each instruction is only represented by a single byte,
each basic block is reduced in size. The resulting effect is
that analysis time is reduced by decreasing the surface area
of each basic block and increasing the area each n-gram can
safely cover within the basic block. To demonstrate the ef-
fect, we produced maps based on full opcode analysis and
compared the results with our First Byte analysis method
(Fig 7 and Fig 8).

A seemingly obvious solution to our quadratic compu-
tational complexity is to apply locally-sensitive hashing
(LSH) nearest neighbor techniques to find similarities as in
work [24]. In Saebjornsen et al 2009, a solution to detecting
code clones (code reuse, though larger than a single basic
block must be evaluated) in software was put forward. The
technique was similar in structure to our approach in that
it disassembled the subject binaries, normalized the assem-
bly, and then constructed windows to be compared. Their
process, as with ours, use linear computational time to dis-
assemble and normalize; however, they put forward a LSH
based comparison algorithm to detect similarity. LSH is



known to be O(n log n) and would seem to be a solution
to scalability. However, looking at comparison times, Sae-
bjornsen compares SM instructions in 40 instruction win-
dows, stride 10, in just over 200 minutes for a rate of 2500
window comparisons per minute (one core 2.66GHz Xeon).
Our method compares 3.8M instructions in 14 minutes for
a rate of 271K window comparisons per minute (one core
2.3GHz 7). Moving to 4 cores, out method compares 3.8M
instructions in 4.5 minutes with 10 instruction windows,
stride 1, for a rate of 844K window comparisons per minute.
Computational time of comparable datasets and comparable
computation via our method is 100x that of [24].

While it appears that the LSH method in work [24] is
much slower with experimental sized datasets, there is little
doubt that O(n log n) LSH will outperform On? in tran-
sition given no limits on memory in which to store LSH
buckets. However, the cost of moving to disk by exhausting
memory is steep as is the cost of reduced accuracy when
bounding LSH to memory. In Jang et al [15], they demon-
strate that a map reduce based cluster of 64 worker nodes,
each with 8 cores, 16 GB DRAM, 4 1TB disks and 10GbE,
can process 1.9M samples per day. By extension, the same
(or better performance given our smaller signatures) could
be expected with our proposed work. This is well within
reach of transition.

The sparse nature of our signatures and the low probabil-
ity of match can be used to further reduce computation by
combining sets of features into supersets. Each superset is
then compared to other supersets or features individually. If
the threshold for match is not met for the superset, it cannot
be met by any of its member sets. Superset comparisons
are limited by the increasing probability that false positives
will overcome computational benefits; however, increasing
the size of feature signatures reduces such probability. To
test the benefits of this concept, we incorporated a 50 sig-
nature superset into our algorithm in which every candidate
set was compared before conducting an individual compar-
ison. This simple, single stage optimization resulted in a 3x
increase in comparison speed.

4.3 Clustering

Force-based clustering allows both a macro view of
similarity through clustered groups and a micro view of
what relationships contributed to those groups. Unlike the
work [15], our approach is not clustering for general fam-
ily relationships, but looking for code reuse while main-
taining the ability to detect families. Force-based cluster-
ing allows to achieve our goal of visualizing relationships
of code reuse specifically without sacrificing variant detec-
tion. Fig 1 shows the effect of force-based clustering on
both visualizing individual instances of code reuse and the
detection of variants.

Our First Byte method calculates similarity of individual
basic blocks prior to visualizing the results via force base
clustering. The separation of visualization and similarity
calculations allow for maps to be created that are generated
with a focus in mind. While this paper focuses on the many-
to-many relationships of a general pool of malware, it is also
applicable to a detail one-to-many examination of malware.
A simple change in focus could generate maps to produce
1, 2...n order relationships focused on a particular malware
sample.

4.4 Filtering

Our work allows for the location and identification of
code reuse within malware. The isolation of implemented
functionality through basic block extraction allows for the
comparison of that data to a known filter as well as other
basic blocks. Code that is imported or inlined from widely
available sources or the compiler itself is found in both mal-
ware and everyday software. We provide a method for ex-
cluding this code though a filter. This filtering greatly re-
duces noise in the resulting similarity maps by removing un-
interesting code found in everyday software, which would
be particularly well suited to finding provenance in attribu-
tion examinations.

5 Conclusion

In this paper, we have demonstrated that code reuse de-
tection is possible within compiled code, while maintaining
the ability to detect variant families. We have provided a
normalization technique that reduces the fouling of n-gram
feature hashing with respect to relative offset changes. Our
use of basic block extraction also provides an avenue to ex-
clude analysis of uninteresting similarities in malware by
providing filters that can be used to exclude matches found
in everyday software. Finally, we show that force-based
clustering is a viable method to visualize complex results
derived from basic block n-gram analysis of malware. In
this work, we have provided an effective mechanism for
code reuse detection in mass, but a method to visualize
and cluster the relationships for that the data is meaning-
ful without complex analysis. Future work will focus on
examining improved algorithms and distributed clustering
for scalability; focused and hierarchical graphing to manage
the increased dataset size; and other methods of calculating
similarity for increased detection.

Acknowledgment

The authors would like to thank the Open Malware
Project for generously supplying the malware dataset for



this research project. The Department of Homeland Secu-
rity (DHS) sponsors the Center of Innovation at the United
States Air Force Academy, which conducts research for ed-
ucational purposes. The United States Air Force Academy
and DHS sponsored the production of portions of this ma-
terial under United States Air Force Academy agreement
number FA7000-11-2-0001. The U.S. Government is au-
thorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation
thereon. Distribution Statement A: Approved for public re-
lease; distribution is unlimited. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of The United
States Air Force Academy or the U.S. Government.

References

[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan.

N-gram-based detection of new malicious code. In Com-

puter Software and Applications Conference, 2004. COMP-

SAC 2004. Proceedings of the 28th Annual International,

volume 2, pages 41-42. IEEE, 2004.

M. Alazab, S. Venkataraman, and P. Watters. Towards un-

derstanding malware behaviour by the extraction of api calls.

In Second Cybercrime and Trustworthy Computing Work-

shop, pages 52-59, 2010.

[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open

source software for exploring and manipulating networks,

2009.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,

and E. Kirda. Scalable, behavior-based malware cluster-

ing. In Network and Distributed System Security Symposium

(NDSS). Citeseer, 2009.

[5] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool for
analyzing malware. In /5th Annual Conference of the Eu-
ropean Institute for Computer Antivirus Research (EICAR),
2006.

[6] U. Bayer, C. Kruegel, and E. Kirda.
unknown binaries, 2009.

[7] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch,

C. Kruegel, and S. Zanero. Identifying dormant functional-

ity in malware programs.

M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and

X. Yan. Synthesizing near-optimal malware specifications

from suspicious behaviors. In Security and Privacy (SP),

2010 IEEE Symposium on, pages 45 —60, may 2010.

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song.

Juxtapp: a scalable system for detecting code reuse among

android applications. In Detection of Intrusions and Mal-

ware, and Vulnerability Assessment, pages 62—81. Springer,

2013.

[10] Hex-Rays. Ida pro disassembler.

[11] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware

indexing using function-call graphs. In Proceedings of the
16th ACM conference on Computer and communications

2

—

[4

—_

Anubis: Analyzing

[8

—

[9

—

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]
(22]

(23]

(24]

[25]

(26]
(27]

security, CCS ’09, pages 611-620, New York, NY, USA,
2009. ACM.

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B,
and 3C, 325462-046us edition, March 2013.

J. Jang and D. Brumley. Bitshred: Fast, scalable code
reuse detection in binary code (cmu-cylab-10-006). CyLab,
page 28, 2009.

J. Jang, D. Brumley, and S. Venkataraman. Bitshred: Fast,
scalable malware triage. Cylab, Carnegie Mellon University,
Pittsburgh, PA, Technical Report CMU-Cylab-10-022,2010.
J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature
hashing malware for scalable triage and semantic analysis.
In Proceedings of the 18th ACM conference on Computer
and communications security, pages 309-320, New York,
NY, USA, 2011. ACM.

Q. Jibz, X. Snaker, and P. BOB. Peid. Available in:
http://www. peid. info/. Accessed in, 21, 2011.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vi-
gna. Polymorphic worm detection using structural informa-
tion of executables. In Recent Advances in Intrusion Detec-
tion, pages 207-226. Springer, 2006.

A. Lanzi, M. Sharif, and W. Lee. K-tracer: A system for
extracting kernel malware behavior. In Proceedings of the
16th Annual Network and Distributed System Security Sym-
posium, 2009.

Z.Lin, Z. Lin, X. Zhang, and D. Xu. Automatic reverse en-
gineering of data structures from binary execution. In Pro-
ceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS’10), 2010.

S. Martin, W. Brown, R. Klavans, and K. Boyack.
Openord: an open-source toolbox for large graph lay-
out. In IS&amp;T/SPIE Electronic Imaging, pages 786806—
786806. International Society for Optics and Photonics,
2011.

McAfee. First quarter thread report 2012, 2012.
Open-Computing. Community malicious code research and
analysis, 2009.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov.
Learning and classification of malware behavior. Detection
of Intrusions and Malware, and Vulnerability Assessment,
pages 108-125, 2008.

A. Szbjgrnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su.
Detecting code clones in binary executables. In Proceedings
of the eighteenth international symposium on Software test-
ing and analysis, pages 117-128. ACM, 2009.

D. Song, D. Brumley, H. Yin, J. Caballero, 1. Jager,
M. Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Sax-
ena. Bitblaze: A new approach to computer security via
binary analysis. Information systems security, pages 1-25,
2008.

G. Tech. Titan case study, 2012.

W. Yan and E. Wu. Toward automatic discovery of malware
signature for anti-virus cloud computing. Complex Sciences,
pages 724-728, 2009.



