CS4220
Computer Networks

Lecture 3 Data Link Layer

Dr. Xiaobo Charles Zhou
Department of Computer Science

CS422 DataLinkLayer.1 UC. Colorado Springs

Data Link Layer Design Issues

+ Services Provided to the Network Layer
* Provide service interface to the network layer

+ Data Link Layer Design Issues
. Framing

. . Can error control and flow
* Error Detection and Correction yutrol be done at other

+ Dealing with transmission errors layers, e.g., the transport
layer?

Elementary Data Link Protocols

* Flow Control — Sliding Window Protocols
+ Slow receivers not swamped by fast senders

CS422 DataLinkLayer.2 UC. Colorado Springs

The Data Link Layer

+ Responsible for delivering frames of information
over a single “wirel-like” link

* Handles transmission errors and regulates the
flow of data

Application

Transport

Network
Link

Physical

What is the essential property of a single “wire-like” link?
bits are delivered in order

CS422 DataLinkLayer.3 UC. Colorado Springs

Frames

* Link layer accepts packets from the network layer,
and encapsulates them into frames that it sends
using the physical layer; reception is the opposite

process
Sending machine Receiving machine
Network
Packet Packet
Frame
Link yload f Traile Header | Payload field ‘ Trailer
Virtual data path
|
Physical L Actual data path)

Relationship between packets and frames.

CS422 DataLinkLayer.4 UC. Colorado Springs

Services Provided to Network Layer

. Unacknowledged connectionless service

. Acknowledged connectionless service; say in wireless
networks (optimization vs. requirement)

. Acknowledged connection-oriented service (no duplicate)

Host 1 Host 2 Host 1 Host 2
= & = = = = = =
4 4 4 4
3 3 3 3
T Virtual T
5 k data path J 5 5 5
1 1 1 1
Actual
data path
(a) Virtual communication. (b) Actual communication.

CS422 DataLinkLayer.5 UC. Colorado Springs

Services Provided to Network Layer (2)

Placement of the data link protocol.

Router
Data link Routing
layer process process

Data lifk
Frames Packets protocd|
here here

—
Transmission
line to a router

Unreliable communication lines

CS422 DataLinkLayer.6 UC. Colorado Springs

Framing

. Framing: to break the bit stream up into discrete frames
and compute the checksum for each frame.

CS422 DataLinkLayer.7 UC. Colorado Springs

Framing Methods

* Byte count »
* Flag bytes with byte stuffing »
* Flag bits with bit stuffing »
* Physical layer coding violations
- Use non-data symbol to indicate frame

CS422 DataLinkLayer.8 UC. Colorado Springs

Framing — Character/Byte Count

» Character/Byte count: use a field in the header to specify the
number of characters/bytes in the frame

* Problem: Simple but difficult to resynchronize after an error

Character count One character
@[s]1]2]3[4]s5]6]7][8]9o]s8]o]1]2]3]4]5]6]s]7][8]e]o]1]2]3]
Frarvne 1 Frarvne 2) Frar'ne 3 ’ Frar%e 4
5 characters 5 characters 8 characters 8 characters

Error

o[s]1]2]3]4

7]e]7]8]9]8]o0

U ¥
Y

Frame 1 Frame 2 Now a
(Wrong) character count

1[2]s]4[s]e[s]7[8][o]o]1]2]3]

CS422 DataLinkLayer.9 UC. Colorado Springs

Framing- Flag Byte with Byte Stuffing

. Flag byte starts and ends each frame (used in PPP)

» Longer, but easy to resynchronize after error.

FLAG| Header Payload field Trailer |FLAG
(a)
Original characters After stuffing
A ||FLAG|| B — | A ESC | |FLAG|| B Need to escape extra
o — ESCAPE bytes too!
A ESC B — | A ESC || ESC B

A ESC||FLAG|| B | —— | A ESC | |ESC | |ESC | |FLAG|| B

A ESC | |ESC B — | A ESC||ESC | |ESC||ESC B

(b)
(a) A frame delimited by flag bytes.
(b) Four examples of byte sequences before and after stuffing.

CS422 DataLinkLayer.10 UC. Colorado Springs

10

Framing- Flag Byte with Bit Stuffing

. Problem with flag byte and byte stuffing: not all character
codes use 8-bit characters.

. To allow a data frame with arbitrary number of bits and allow
character codes with arbitrary number of bits per character

. Flag byte: 01111110 (0X7E), which has consecutive 1s

. ESC: 0 (if 5 consecutive 1s) How to do de-stuffing?

(@ 011011111111111111110010

(b) 011011111011111011111010010

Stuffed bits

(¢) 011011111111111111110010

Bit stuffing. (a) The original data. (b) The data as they appear on the line.
(c) The data as they are stored in receiver’s memory after de-stuffing.

CS422 DataLinkLayer.11 UC. Colorado Springs

11

Example

Q: The following character encoding is used in a data link
protocol:

X: 01101111, Y: 11110011, FLAG 01111110, ESC: 11100000

Show the bit sequence transmitted in binary for the four-
character frame: XY ESC FLAG (space omitted)

(a) Flag bytes with byte stuffing
(b) Starting and ending flag bytes, with bit stuffing

CS422 DataLinkLayer.12 UC. Colorado Springs

12

Error Control

» Error control repairs frames that are received in
error

* Requires errors to be detected at the receiver
» Typically retransmit the unacknowledged frames
* Timer protects against lost acknowledgements

» Detecting errors and retransmissions are next
topics.

CS422 DataLinkLayer.13 UC. Colorado Springs

13

Error Control (2)

* What are errors?
+ Single errors vs. errors in burst
+ Advantages vs. disadvantages (if same BER)
- Many 1-bit-error blocks vs. one 100-bit-error block

* Error-Correcting Codes
* Error-Detecting Codes

* What if a whole frame vanished or a whole
packet is lost?

. Flow control: Acknowledgement, retransmission,
sequencing

CS422 DataLinkLayer.14 UC. Colorado Springs

14

Error Detection and Correction: Common Methods

* Error codes add structured redundancy to data
so errors can be either detected, or corrected.

* Error correction codes:
« Hamming codes »
* Binary convolutional codes »

* Reed-Solomon and Low-Density Parity Check codes
- Mathematically complex, widely used in real systems

* Error detection codes:
 Parity »
* Checksums »
* Cyclic redundancy codes (CRC) »

CS422 DataLinkLayer.15 UC. Colorado Springs

15

Codeword and Hamming Distance

. A n-bit codeword: a frame of m-bit data plus r-bit redundant
check bits (checksum); n=m +r

. The number of bit positions in which two codewords differ
is called the Hamming distance. Or, it can be defined as the

minimum bit flips to turn one valid codeword into any other
valid one.

. Example: 10001001 and 10110001 using XOR

. Example with 4 codewords of 10 bits (n=2, k=8):

- 0000000000, 0000011111, 1111100000, and
1111111111

- Hamming distance is 5

CS422 DataLinkLayer.16 UC. Colorado Springs

16

Key ldea

o

All transmitted data blocks (“codewords”) satisfy a pattern
* If received block doesn’t satisfy pattern, it is in error
* Redundancy(r)

o

Blindspot: when channel transforms a codeword into another
codeword

All inputs to channel Channel
satisfy pattern or condition output

U Deliver user
user Channel information or
information

set error alarm

CS422 DatalLinkLayer.17

UC. Colorado Springs

17

Error Detecting Codes — Parity bit

Parity bit: to make the number of 1 bits in a
codeword even or odd (r = 1)

. Example: 10110100

Can a parity bit used to detect a single-bit error in a codeword?

Can a parity bit used to detect a double-bit error in a codeword? Triple...?

Can a parity bit used to correct a single-bit error in a codeword?

Parity bit used in ASCII code

CS422 DataLinkLayer.18

UC. Colorado Springs

18

How Good is the Single Parity Check Code?

Redundancy:

» Single parity check code adds 1 redundant bit per m
information bits: overhead =1/(m + 1)

Coverage: all error patterns with odd # of errors can
be detected

* An error pattern is a binary (m + 1)-tuple with 1s where
errors occur and 0’s elsewhere

- Of 2™1 binary (m + 1)-tuples, 2 are odd, so 50% of error
patterns can be detected

Is it possible to detect more errors if we add more
check bits?

Yes, with the right codes

CS422 DataLinkLayer.19 UC. Colorado Springs

19

What if Bit Errors Are Random?

o

Many transmission channels introduce bit errors at random,
independently of each other, and with probability p

o

Some error patterns are more probable than others:

P[10000000] = p(1 — p) = (1 — p)? [1 fp] and

P[11000000] = p(1 — p) = (1 — p)s[1 p T
-p

CS422 DataLinkLayer.20 UC. Colorado Springs

20

Error-Detecting Codes — CRC Base

Cyclic Redundancy Check (CRC) use polynomial code, which
is based on treating bit strings as representation of
polynomials with coefficients of 0 and 1 only.

A k-bit frame is regarded as the coefficient list for a
polynomial with k terms, ranging from x*k-1 to x*0. Such a
polynomial is said to be of degree k-1

Example: 110001

What is its degree?

What are its polynomial and coefficients?
Binary polynomial arithmetic is done by per-bit XOR
Example: 10011011 + 11001010

11110000 - 10100110

CS422 DataLinkLayer.21 UC. Colorado Springs
21
Binary Polynomial Arithmetic
° Binary vectors map to polynomials
(ks Bk e B2 5 01 00) D ieaXE N + xR 2+ L+ X2 + igx +
Addition:
(X" +x8+ 1)+ (x8+x5) = x"+ x6 +x6+ x5+ 1
= X" +(1+1)x8 + x5+ 1
=x"+x5+1 since 1+1 mod2=0
Multiplication:
(x+ 1D 2+x+1)=x(x2+x+1) +1(x2+ x+ 1)
=x3+ X2+ x+ (X2 + x+ 1)
=x3+1
CS422 DataLinkLayer.22 UC. Colorado Springs

22

Error-Detecting Codes — CRC Idea

Both the sender and the receiver agree upon a generator
polynomial G(x) as 1 xxx...x 1 in advance.

Given a frame of m bits (a polynomial M(x)), the idea of CRC
is to append a checksum to the end of the frame in such a
way that the polynomial represented by the checksumed
frame is divisible by G(x). When the receiver gets the
checksummed frame, it tries dividing it by G(x). If there is a
remainder, there has been a transmission error.

What kind of errors can be detected?

How the checksum is calculated?

CS422 DatalLinkLayer.23

UC. Colorado Springs

23

Error-Detecting Codes — CRC Algorithm

Let r be the degree of
G(x). Append r Os to the
low-order end of the
frame, resulting x*r M(x) .

Divide the bit string of
G(x) into the bit string of
x*r M(x), using modulo 2
division.

Subtract the reminder
from the bit string of x*r
M(x) using modulo 2
subtraction. The result is
the checksummed frame
to be transmitted, called
T(x).

T(x) is divisible by G(x)!

CS422 DataLinkLayer.24

Frame : 1101011011
Generator: 10011

What is the generator polynomial?

Message after 4 zero bits are appended: 11010110110000

11000010 10 Quotient thrown away

10011‘110101101 0
10011

10011
10011

00001
00000

00010
00000

00101
00000

01011
00000

10110
10011

0101

00000

10100
10011

0111

0

00000 Remainder
T110e

Transmitted frame: 11010110111110

Frame with 4 Os appended

24

Error-Detecting Codes — CRC Algorithm (cont.)

Q: Wr{?)tti)se ‘é?aenascr:‘l:tatlegi; String ;\Ellzrs]:;agt:l;ﬂ;rii;r; bits are appended: 11010110110000

1100001010 Quotient thrown away

If the third bit from the Ieft iS 1001 1‘ 1 (1) g : ? 1 101 0 0 0 0 Frame with 4 Os appended
inverted during 1001
transmission, how this 10011
error is detected at the 0000 1
receiver’s end? 00000

00010
00000
00101
00000
Why data link protocols almost 01011
always put the CRC in a trailer 00800
rather than in a header? : 2 :, 1 (1)
01010
Computed with simple shift/XOR goooo
circuits Lo
0111
0 (1) (1) ? g/Remainder
CS422 DataLinkLayer.25 Transmitted frame: 11010110111110
25
Error-Detecting Codes — CRC Analysis

° What kind of errors will be detected?

° Imagine that a transmission error occurs, so that instead of
T(x) arriving, T(x) + E(x) arrives. Each 1 bit in E(x)
corresponds to a bit that has been inverted
Example: 11001 (sent) ---- > 10101 (received)

If E(x) is divisible by G(x), the error will slip by! So, how we
select G(x)?!
CS422 DataLinkLayer.26 UC. Colorado Springs

26

Designing Good Polynomial Codes

Select generator polynomial so that likely error patterns are not
multiples of G(x)

Detecting Single Errors
« E(x)=x' forerrorin locationi+1
- If G(x) has more than 1 term, it cannot divide x/

Detecting Double Errors
e E(x)=x+x =xi(x+1) where j>i
- If G(x) has more than 1 term, it cannot divide x/

* If G(x) is a primitive polynomial, it cannot divide x™+1 for all
m<2rk.1 (Need to keep codeword length less than 2mk-1)

- xM5+x*M4+1 won’t divide x*k + 1 for k < 32, 768
* Primitive polynomials can be found by consulting coding

theory books
CS422 DataLinkLayer.27 UC. Colorado Springs
27
Standard Generator Polynomials
° CRC-8:
=x8+x2+x+1
ATM
° CRC-16:
=x"6+ x154+ x2 + 1 .
=(x+ 1)(X15 +x+1) Bisync
° CCITT-16:
= x16 4+ x12 4 x5 + 1
HDLC, XMODEM, V.41
° CCITT-32:
IEEE 802 (Ethernet), DoD, V.42
= x32 4+ %26 4 x23 4 x22 4 %16 4 12 4 311 4 %10 4 38 4 37 4 x5 4+ x4 + x2 + x + 1
All bursts of length 32 or less and all bursts affecting an odd number of bits
CS422 DataLinkLayer.28 UC. Colorado Springs

28

Example 2

detected?

Q: How a bit loss be detected in bit stuffing? Can it always be

FLAG| Header Payload field

Trailer

FLAG

CS422 DatalLinkLayer.29

UC. Colorado Springs

29

Error Correcting Codes — An Error-correcting Code

CS422 DataLinkLayer.30

What is the hamming distance of the code?
How many error-bits at most can it correct?

How many error-bits at most can it detect?

. Given a complete list of the valid codewords, the minimum
hamming distance of any two codewords is defined as the
hamming distance of the complete code

. Example: a complete code with four legal codewords of
0000000000, 0000011111, 1111100000, 1111111111

What is the hamming distance of a code with a parity bit?

What is the relationship between the hamming distance and
the number of error-bits to be detected and corrected?

UC. Colorado Springs

30

Error Correcting Codes — Low Limiton r

. A n-bit codeword: a frame of m-bit data plus r-bit redundant
check bits (n =m +r)

. What is the lower limit on the number of bits needed to

correct single-bit errors in a n-bit codeword?
. (n+1) 2Am <= 2%n

CS422 DataLinkLayer.31 UC. Colorado Springs

31

Error Correction - Hamming code

Hamming code gives a simple way to add check bits and
correct up to a single bit error:

» Check bits are parity over subsets of the codeword

* Recomputing the parity sums (syndrome) gives the
position of the error to flip, or 0 if there is no error

Check Syndrome

bits 0101 Flip
bit 5
~_ Check
/N 1 bit results
error
A Py P2 M3 P4 M5 Mgmy Pg Mg MygMyq

1000001 —*=0010000100 1 001OF1|001001—>1000001

L) Channel L
T

Message Sent Rece|ved Message
codeword codeword

(11, 7) Hamming code adds 4 check bits and can correct 1 error

CS422 DataLinkLayer.32 UC. Colorado Springs

32

Error Correction - Hamming code (Cont)

. A n-bit codeword: a frame of m-bit data plus r-bit redundant
check bits (n=m +7r)

. Use of a Hamming code to detect a& correct a single-bit
error in a codeword

. The bits that are powers of 2 are used as check bits.
. The rest are filled up with the data bits

. Each check bit forces the parity of some collection of bits,
including itself, to be even (or odd)

. To see which check bits the data bit in position k contributes
to, rewrite k as a sum of powers of 2

. A bit is checks by just those check bits occuring in its
expansion (11=1+2+8)

. Example: a n-bit codeword containing a 7-bit data 1001000
1001000 -> 00110010000 (even-parity used)

How to correct it if 00100010000 is received instead?
How to correct it if 00110010001 is received instead?
How many check bits needed to d&c a single error in a 10-bit message

CS422 DataLinkLayer.33 UC. Colorado Springs

33

Error-Correcting Codes — Burst Errors

. What to do if errors come in burst, instead of isolated single-

bit errors?
Char. ASCII Check bits
H 1001000 00110010000
m 1101101 11101010101 length of a burst that
m 1101101 11101010101 can be corrected in a
i 1101001 01101011001
sequence of k
n 1101110 01101010110 cogewordSV
g 1100111 01111001111 :
0100000 10011000000
c 1100011 11111000011
(¢} 1101111 10101011111
d 1100100 11111001100
e 1100101) 00111000101

Order of bit transmission

Use of a Hamming code to correct burst errors.

CS422 DataLinkLayer.34 UC. Colorado Springs

34

Error Detecting Codes vs. Error Correcting Codes

. Consider a channel on which errors are isolated and the error
rate is 107-6. Let the block size (m) be 1000 bits.

How many total bits required to provide single-bit error (per
block) corrections for 1 Mbits (1076 bits) data? (extra 10000)

How many total bits required to provide the error detection +
retransmission? (extra 2001)

Why wireless networks prefer error correction while wired networks may
go for error detection and retransmission?

What kind of applications prefer error correction instead of detection?

CS422 DataLinkLayer.35 UC. Colorado Springs
35
Error Bounds — Hamming distance
Hamming distance is the minimum bit flips to turn
one valid codeword into any other valid one.
Bounds for a code with distance:
» 2d+1 — can correct d errors (e.g., 2 errors
above)
» d+1 — can detect d errors (e.g., 4 errors above)
CS422 DataLinkLayer.36 UC. Colorado Springs

36

Link layer environment (1)

Commonly implemented as NICs and OS drivers;
network layer (IP) is often OS software

Application

«—— Computer

—— Operating System

Network 1
Link
Link /‘
PHY
—

Driver

Network Interface
Card (NIC)

CS422 DatalLinkLayer.37

Cable (medium)

UC. Colorado Springs

37

Link layer environment (2)

° Link layer protocol implementations use library

functions

» See code (protocol.

h) for more details

Group Library Function Description
from_network_layer(&packet) Take a packet from network layer to send

Network | to_network_layer(&packet) Deliver a received packet to network layer

layer enable_network_layer() Let network cause “ready” events
disable_network_layer() Prevent network “ready” events

Physical | from_physical_layer(&frame) Get an incoming frame from physical layer

layer to_physical_layer(&frame) Pass an outgoing frame to physical layer
wait_for_event(&event) Wait for a packet / frame / timer event
start_timer(seq_nr) Start a countdown timer running

Events &)) f .

timers stop_timer(seq_nr) Stop a countdown timer from running
start_ack_timer() Start the ACK countdown timer
stop_ack_timer() Stop the ACK countdown timer

CS422 DataLinkLayer.38

CNSE by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

UC. Colorado Springs

38

Service Models

The service model specifies the information transfer service
layer-n provides to layer-(n+1)

The most important distinction is if the service is:

» Connection-oriented

+ Connectionless

Service model possible features:

» Arbitrary message size or structure
+ Sequencing and Reliability

* Timing and Flow control

* Multiplexing

* Privacy, integrity, and authentication

CS422 DataLinkLayer.39 UC. Colorado Springs

39

Reliability & Sequencing

o

Reliability: what transmission is reliable?

» Sequencing: Are messages or information stream delivered
in order?
* duplication
o

How to provide reliable communication?
+ Examples: TCP and HDLC

CS422 DataLinkLayer.40 UC. Colorado Springs

40

Utopian Simplex Protocol

An optimistic protocol (p1) to get us started
« Assumes no errors, and receiver as fast as sender
» Considers one-way data transfer

void sender1(void) void receiver1(void)
{
frame s; {frame r
packet buffer; event type event;
while (true) { while (true) {
from network layer(&buffer); wait for event(&event);
s.info = buffer; from physical layer(&r);
to physical layer(&s); to network layer(&r.info);
}
}
Sender loops blasting frames Receiver loops eating frames

}

* That’s it, no error or flow control ...

CS422 DataLinkLayer.41 UC. Colorado Springs

41

Flow Control

° Prevents a fast sender from out-pacing a slow receiver

» If destination layer-(n+1) does not retrieve its information
fast enough, destination layer-n buffers may overflow

° Flow Control provide backpressure mechanisms that
control transfer according to availability of buffers at the
destination

° Examples: HDLC (Link Layer) and TCP (Transport Layer)

° Rare in the Link layer as NICs run at “wire speed”
Receiver can take data as fast as it can be sent

CS422 DataLinkLayer.42 UC. Colorado Springs

42

Error Control in Data Link Layer

Packets

(@) f i

ata link

Packets

Data lin

layer

Frames

layer

CS422 DatalLinkLayer.43

. Physical layer entity
Data link layer entity
. Network layer entity

Data Link operates
over wire-like,
directly-connected
systems

Frames can be
corrupted or lost,
but arrive in order

Data link performs
error-checking &
retransmission

Ensures error-free
packet transfer
between two
systems

UC. Colorado Springs

43

Elementary Data Link Protocols

order?

CS422 DataLinkLayer.44

How to make sure all frames are eventually delivered
to the network layer at the destination in the proper

+ A Simplex Stop-and-Wait Protocol

« A Simplex Protocol for a Noisy Channel

UC. Colorado Springs

44

Stop-and-Wait — Error-free channel

* We added flow control!

void sender2(void)
{
frame s;
packet buffer;
event type event;

while (true) {
from network layer(&buffer);
s.info = buffer;
to physical layer(&s);
wait for event(&event);

}

}
Sender waits to for ack after passing frame to
physical layer

CS422 DatalLinkLayer.45

Protocol (p2) ensures sender can’t outpace receiver:
* Receiver returns a dummy frame (ack) when ready
* Only one frame out at a time — called stop-and-wait

void receiver2(void)
{
framer, s;
event type event;
while (true) {
wait for event(&event);
from physical layer(&r);
to network layer(&r.info);
to physical layer(&s);

Receiver sends ack after passing frame to
network layer

UC. Colorado Springs

45

What if the Channel is Noisy?

Need for Sequence Numbers!

(a) Frame 1 lost Time-out
Time
rame \{rame rame Frame
0 1 1 2
ACK ACK
(b) ACK lost Time out
Time

rame rame
C

rame Frame
K

CS422 DataLinkLayer.46

* In cases (a) & (b) the transmitting station A acts the same way
» Butin case (b) the receiving station B accepts frame 1 twice
* Question: How is the receiver to know the second frame is also frame 1?

» Answer: Add frame sequence number in header

UC. Colorado Springs

46

What if the Channel is Noisy? (cont.)

(c) Premature Time-out

Time-out

>
A rame
0 Frame Frame rame
\ACPX‘)% 1 \KZ
B

* The transmitting station A misinterprets duplicate ACKs

Time

* Incorrectly assumes second ACK acknowledges Frame 1
* Question: How is the receiver to know second ACK is for frame 0?

* Answer: Add frame sequence number in ACK header
Q: What is the minimum # of bits required for the Seq#?

Q2: What is so-called Proactive ACK Scheme

CS422 DataLinkLayer.47 UC. Colorado Springs

47

A Simplex Protocol for a Noisy Channel

. PAR: a positive acknowledgement w/ retransmission protocol

Q1: how to avoid /* Protocol 3 (par) allows unidirectional data flow over an unreliable channel. */

packet lose? #define MAX_SEQ 1 /* must be 1 for protocol 3 */
typedef enum {frame_arrival, cksum_err, timeout} event_type;
#include "protocol.h"

Q2: how to avoid void sender3(void)

packet
duplicate? seq_nr next_frame_to_send,; /* seq number of next outgoing frame */
frame s; /* scratch variable */
; packet buffer; /* buffer for an outbound packet */
Q3: What is the event_type event;
mm'_mum # next_frame to_send = 0; /* initialize outbound sequence numbers */
of bits from_network_layer(&buffer); /* fetch first packet */
required for while (true) { o
the Seq#? s.info = buffer; /% gonstruct a frame for tranAsmlsswn */
s.seq = next_frame_to_send; /* insert sequence number in frame */
to_physical_layer(&s); /* send it on its way */
start_timer(s.seq); /* if answer takes too long, time out */
wait_for_event(&event); /* frame_arrival, cksum_err, timeout */
if (event == frame_arrival) {
from_physical_layer(&s); /* get the acknowledgement */
; if (s.ack == next_frame_to_send) {
Q4: what h?ppen _— stop_timer(s.ack); /* turn the timer off */
if ACK is from_network_layer(&buffer); /* get the next one to send */
garbled one? inc(next_frame_to_send); /* invert next_frame_to_send */
}
} i Continued -

CS422 DataLinkLayer.48 I

48

A Simplex Protocol for a Noisy Channel (ctd.)

void receiver3(void)

{
seq_nr frame_expected,;
framer, s;
event_type event;

frame expected = 0;
while (true) {

wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer(&r);
if (r.seq == frame expected) {
to_network_layer(&r.info);
inc(frame_expected);

s.ack = 1 — frame_expected,;
to_physical_layer(&s);

CS422 DatalLinkLayer.49

/* possibilities: frame_arrival, cksum_err */
/* a valid frame has arrived. */

/* go get the newly arrived frame */

/* this is what we have been waiting for. */
/* pass the data to the network layer */

/* next time expect the other sequence nr */

/* tell which frame is being acked */
/* send acknowledgement */

UC. Colorado Springs

49

Sliding Window Protocols (ARQ)

and Wait)

CS422 DataLinkLayer.50

How about two-way data frame transmission?

* A One-Bit Sliding Window Protocol (Stop-

A Protocol Using Go Back N
A Protocol Using Selective Repeat

ARQ (Automatic Repeat rQquest) protocols combine error
detection, retransmission, and sequence numbering to
provide reliability & sequencing

UC. Colorado Springs

50

Sliding Window Protocols - Piggybacking

Since in the two-way transmission, data frames
and ACK frames are interleaving, why not have a
free ride of ACK upon a data delivering?

How a receiver can tell if the frame is data or ACK?

* For piggybacking, how long should the data link

layer wait for a packet onto which to piggyback
the ACK?

Metrics: Efficiency, Complexity, Buffer Requirements

CS422 DataLinkLayer.51 UC. Colorado Springs

51

Sliding Window concept (1)

o Sender maintains window of frames it can send
* Needs to buffer them for possible retransmission
* Window advances with next acknowledgements

o Receiver maintains window of frames it can
receive

* Needs to keep buffer space for arrivals
* Window advances with in-order arrivals

CS422 DataLinkLayer.52 UC. Colorado Springs

52

Sliding Window concept (2)

A sliding window advancing at the sender and
receiver
* Ex: window size is 1, with a 3-bit sequence number.

oo LT LDy Py
Yl S Sl S

What is the buffer size needed in the sender?

7 0 7 0 77)7 0 7 ' 0
DU DU T e A

Receiver -+ -+ + -+ + ’ _,’_ i
5&1)/2 5K)/2 5K7+4)(2 5K7+)(2

+ +
4 3 4 3 43 4 3

At the start First frame First frame Sender gets

is sent is received first ack

CS422 DataLinkLayer.53 UC. Colorado Springs

53

Sliding Window concept (3)

o Larger windows enable pipelining for
efficient link use
» Stop-and-wait (w=1) is inefficient for long links
* Best window (w) depends on bandwidth-delay (BD)
* Want w 2 2BD+1 to ensure high link utilization

o Pipelining leads to different choices for

errors/buffering
» We will consider Go-Back-N and Selective Repeat

UC. Colorado Springs

CS422 DataLinkLayer.54

54

A One-Bit Sliding Window Protocol (Stop and Wait)

. Window size is 1: a stop-and-wait protocol, bi-directional

/* Protocol 4 (sliding window) is bidirectional. */

#define MAX_SEQ 1

/* must be 1 for protocol 4 */

typedef enum {frame_arrival, cksum_err, timeout} event_type;

#include "protocol.h"
void protocol4 (void)

seq_nr next_frame_to_send,;
seq_nr frame_expected;
framer, s;

packet buffer;

event_type event;

next frame to send = 0;
frame expected = 0;
from_network_layer(&buffer);
s.info = buffer;

s.seq = next_frame_to_send;
s.ack = 1 — frame_expected;
to_physical_layer(&s);

start_timer(s.seq);

CS422 DatalLinkLayer.55

/* 0 or1only */

/*0or1only */

/* scratch variables */

/* current packet being sent */

/* next frame on the outbound stream */
/* frame expected next */

/* fetch a packet from the network layer */
/* prepare to send the initial frame */

/* insert sequence number into frame */
/* piggybacked ack */

/* transmit the frame */

/* start the timer running */

Continuegh-eprado springs

55

A One-Bit Sliding Window Protocol (ctd.)

while (true) {
wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer(&r);

if (r.seq == frame_expected) {
to_network_layer(&r.info);

inc(frame_expected);

}

if (r.ack == next_frame_to_send) {

stop_timer(r.ack);

from_network_layer(&buffer);
inc(next_frame_to_send);

}

s.info = buffer;
s.seq = next_frame_to_send;
s.ack = 1 — frame_expected;

/* frame_arrival, cksum_err, or timeout */
/* a frame has arrived undamaged. */
/* go get it */

/* handle inbound frame stream. */
/* pass packet to network layer */
/* invert seq number expected next */

/* handle outbound frame stream. */
/* turn the timer off */

/* fetch new pkt from network layer */
/* invert senderis sequence number */

/* construct outbound frame */
/* insert sequence number into it */
/* seq number of last received frame */

to_physical_layer(&s);
start_timer(s.seq);

/* transmit a frame */
/* start the timer running */

} Can the protocol accept out-of-order frames? Why?

CS422 DataLinkLayer.56

UC. Colorado Springs

56

A One-Bit Sliding Window Protocol (2)

A sends (0, 1, A0) A sends (0, 1, AO) B sends (0, 1, BO)
T~ B gets (0, 1, AO)* B gets (0, 1, AQ)*
/ B sends (0, 0, BO) B sends (0, 0, BO)
A gets (0, 0, BO)*

Agets (0, 1, BO)*
A sands (T ©; A1)\\> B gets (1, 0, A1)* A sends (0, 0, AO)
B sends (1, 1, B1) B gets (0, 0, AO)
Agets (1,1, By = Lie B sends (1,0, B1)
A sends (0, 1, A2) A gets (0, 0, BO)
T3 gets (0, 1, A2)* A sends (1, 0, A1) B gots (1,0, A1)
B sends (0, 0, B2 gets (1,0, *
Agets (0,0, B2y = ¢) B sends (1, 1, B1)

Asends (1,0, AS)~__ _ o (1 0 s | Agets(1,0, By
gets (1, 0, A3) Asends (1, 1, A1)
B sends (1, 1, B3) Te— B gets (1, 1, A1)
B sends (0, 1, B2)

@ Time (b)

Two scenarios for protocol 4. (a) Normal case. (b) Abnormal case
(simultaneous sending). The notation is (seq, ack, packet number).
An asterisk indicates where a network layer accepts a packet.

What is the problem with the case (b)?

CS422 DataLinkLayer.57 UC. Colorado Springs

57

Applications of Stop-and-Wait ARQ

IBM Binary Synchronous Communications protocol (Bisync):
character-oriented data link control

Xmodem: modem file transfer protocol

Trivial File Transfer Protocol (RFC 1350): simple protocol for
file transfer over UDP

CS422 DataLinkLayer.58 UC. Colorado Springs

58

A One-Bit Sliding Window Protocol — Performance 1

. Q1: consider a 50-kbps satellite channel with a 500-msec
round-trip delay. Frame size is 1000-bit. What is the best
bandwidth utilization (efficiency) of the one-bit sliding
window protocol (stop-and-wait)? (20/520)

. Q2: A channel has a bit rate of 10 kbps and a propagation
delay of 40 msec. For what range of frame sizes does 1-bit
sliding window give an bandwidth utilization (efficiency) of
at least 50%?

CS422 DataLinkLayer.59 UC. Colorado Springs

59

A One-Bit Sliding Window Protocol — Performance 2

. General model: Given: the channel capacity b bits/sec, the
frame size L bits, the round-trip propagation time R sec.
What is the time required to transmit a single frame? And
what is the line utilization? L/(L + bR)

The combination of a long transit time (high RTT), high
bandwidth, and short frame length gives bad efficiency to
the stop-and-wait protocol.

= total time to transmit 1 frame

NNZE

frame

tf time (L/b) tproc ack(na/b) prop(R/2)

Tprop(R/2)

Pipelining: why not allow sending more frames before ACKs back?

CS422 DataLinkLayer.60 UC. Colorado Springs

60

ARQ: Go-Back-N (1)

o Receiver only accepts/acks frames that arrive in
order:

 Discards frames that follow a missing/errored frame
» Sender times out and resends all outstanding frames

<———Timeout interval——

Error Frames discarded by data link layer

Time ——»

CS422 DataLinkLayer.61 UC. Colorado Springs

61

Go Back N (2)

. Given N-bit sequence numbers, what is the maximum number
of frames that can be outstanding in “go back N”?

MAX_SEQ = 22N - 1 while there are 2*N sequence numbers.
Should the maximum number be MAX_SEQ or MAX_SEQ + 1?

Example: n = 3; sequence numbers: 0,1, 2, ..., 7

1) The sender sends 8 frames 0 through 7

2) A piggybacked ACK for frame 7 eventually back to sender
3) The sender sends another 8 frames (0 through 7)

4) Another piggybacked ACK for frame 7 eventually back to sender

Can the sender tell if all 8 frames in second batch got
received or all got lost?

CS422 DataLinkLayer.62 UC. Colorado Springs

62

Go-Back-N (3)

o Tradeoff made for Go-Back-N:
- Simple strategy for receiver; needs only 1 frame

» Wastes link bandwidth for errors with large windows;
entire window is retransmitted

o Implemented as p5 (see code in book)

CS422 DataLinkLayer.63 UC. Colorado Springs
63
Sliding Window Protocol Using Go Back N (cont.)
/* Protocol 5 (pipelining) allows multiple outstanding frames. The sender may transmit up
to MAX_SEQ frames without waiting for an ack. In addition, unlike the previous protocols,
the network layer is not assumed to have a new packet all the time. Instead, the
network layer causes a network_layer_ready event when there is a packet to send. */
#define MAX_SEQ 7 /* should be 2°'n — 1 */
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready} event_type;
#include "protocol.h"
static boolean between(seq_nr a, seq_nr b, seq_nr c)
/* Return true if a <=b < c circularly; false otherwise. */
if ((a <=b) && (b <)) Il ((c < a) && (a <= b)) Il (b < c) && (c < a)))
return(true);
else
return(false);
}
static void send_data(seq_nr frame_nr, seq_nr frame_expected, packet buffer|])
{
/* Construct and send a data frame. */
frame s; /* scratch variable */
s.info = buffer[frame_nr]; /* insert packet into frame */
s.seq = frame_nr; /* insert sequence number into frame */
s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);/* piggyback ack */
to_physical_layer(&s); /* transmit the frame */ .
start_timer(frame_nr); /* start the timer running */ Contlnued 9
}
CS422 DataLinkLayer.64 UC. Colorado Springs

64

Sliding Window Protocol Using Go Back N (cont.)

void protocol5(void)

seqg_nr next_frame_to_send; /* MAX_SEQ > 1; used for outbound stream */
seq_nr ack_expected; /* oldest frame as yet unacknowledged */
seq_nr frame_expected; /* next frame expected on inbound stream */
frame r; /* scratch variable */

packet bufferfMAX_SEQ + 1]; /* buffers for the outbound stream */

seq_nr nbuffered; /* # output buffers currently in use */

seq_nri; /* used to index into the buffer array */

event_type event;

enable_network_layer(); /* allow network_layer_ready events */
ack_expected = 0; /* next ack expected inbound */
next_frame_to_send = 0; /* next frame going out */
frame_expected = 0; /* number of frame expected inbound */
nbuffered = 0; /* initially no packets are buffered */

Continued =2

CS422 DataLinkLayer.65 UC. Colorado Springs
65
Sliding Window Protocol Using Go Back N (cont.)
while (true) {
wait_for_event(&event); /* four possibilities: see event_type above */
switch(event) {
case network_layer_ready: /* the network layer has a packet to send */
/* Accept, save, and transmit a new frame. */
from_network_layer(&buffer[next_frame_to_send]); /* fetch new packet */
nbuffered = nbuffered + 1; /* expand the sender’s window */
send_data(next_frame_to_send, frame_expected, buffer);/* transmit the frame */
inc(next_frame_to_send); /* advance sender’s upper window edge */
break;
case frame_arrival: /* a data or control frame has arrived */
from_physical_layer(&r); /* get incoming frame from physical layer */
if (r.seq == frame_expected) {
/* Frames are accepted only in order. */
to_network_layer(&r.info); /* pass packet to network layer */
inc(frame_expected); /* advance lower edge of receiver's window */
}
Continued >
CS422 DataLinkLayer.66 UC. Colorado Springs

66

Sliding Window Protocol Using Go Back N (cont.)

/* Ack nimplies n— 1, n— 2, etc. Check for this. */

while (between(ack_expected, r.ack, next_frame_to_send)) {
/* Handle piggybacked ack. */
nbuffered = nbuffered=—1; /* one frame fewer buffered */
stop_timer(ack_expected); /* frame arrived intact; stop timer */
inc(ack_expected); /* contract sender’s window */

}

break;

case cksum_err: break; /* just ignore bad frames */

case timeout: /* trouble; retransmit all outstanding frames */
next_frame_to_send = ack_expected; /* start retransmitting here */
for (i = 1; i <= nbuffered; i++) {
send_data(next_frame_to_send, frame_expected, buffer);/* resend 1 frame */
inc(next_frame_to_send); /* prepare to send the next one */

What happens if not much reverse traffic?
) What is the maximum # of frames can be outstanding?

if (nbuffered < MAX_SEQ)
enable_network_layer();

else

}
}

CS422 DatalLinkLayer.67

disable_network_layer();

UC. Colorado Springs

67

Applications of Go-Back-N ARQ

o

HDLC (High-Level Data Link Control): bit-oriented data link
control

o

V.42 modem: error control over telephone modem links

CS422 DataLinkLayer.68 UC. Colorado Springs

68

Pipelining - Selective Repeat (1)

Receiver accepts frames anywhere in receive
window

» Cumulative ack indicates highest in-order frame

* NAK (negative ack) causes sender retransmission of a
missing frame before a timeout resends window

What NAK for'? What if it is lost?

0)
Vi /
\S, « 7 */ */ */ *_/ ~L-/ '\/ *_/ *_/ (b/
3

Why ACK1, then jump to ACK 5?

Error Frames buffered
by data link layer

CS422 DataLinkLayer.69 UC. Colorado Springs

69

A Sliding Window Protocol Using Selective Repeat

. Given N-bit sequence numbers, what is the maximum number
of frames that can be outstanding in “selective repeat”?

Sender 0123456‘7 ‘0123456‘7 ‘0123‘4567‘0123‘4567

(a) Initial situation with a window size seven.
(b) After seven frames sent and received, but not acknowledged.

Receiver | 012345 6|7 0123456 01234567 01234567

(@) (b) (© (d)

Example: n = 3; sequence numbers: 0, 1, 2, ..., 7; window size 7

1) Sender sends 7 frames from N0.0 to No. 6

2) Receiver got all, acknowledge, and advances its window to 7, 0, ...5
3) However, the acknowledges all got lost

4) Sender times out, retransmit 0

5) Receive accepts 0 (as a new frame 0), as it is in the receiving window,
and acknowledge frames 0 to 6 as they were received

6) Happy sender sends 7, 0, 1, ---, 5. Frame 7 is correct, but 0 will be
seen as a “false duplicate” in receiver and will be discarded

CS422 DataLinkLayer.70 UC. Colorado Springs

70

A Sliding Window Protocol Using Selective Repeat

. Given N-bit sequence numbers, what is the maximum number
of frames that can be outstanding in “selective repeat”?

Sender ‘0123456‘7 ‘0123456‘7 ‘0123‘4567‘0123‘4567

Receiver ‘0123456‘7 ‘012345‘6 ‘0123‘4567 01234567

(@)

() (d

(a) Initial situation with a window size seven.

(b) After seven frames sent and received, but not acknowledged.
(c) Initial situation with a window size of four.

(d) After four frames sent and received, but not acknowledged.

The essence of the problem is after the receiver advanced its
window, the new range of valid sequence numbers
overlapped with the old one. The receiver cannot distinguish
a duplicate from a new frame. Then, what to do?

CS422 DataLinkLayer.71

UC. Colorado Springs

71

A Sliding Window Protocol Using Selective Repeat (1)

/* Protocol 6 (nonsequential receive) accepts frames out of order, but passes packets to the
network layer in order. Associated with each outstanding frame is a timer. When the timer
expires, only that frame is retransmitted, not all the outstanding frames, as in protocol 5. */

#define MAX_SEQ 7
#define NR_BUFS ((MAX SEQ + 1)/2)

/* should be 2°n — 1 */ .
What is the buffer size?

typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready, ack_timeout} event_type;

#include "protocol.h"
boolean no_nak = true;
seq_nr oldest_frame = MAX- SEQ + 1;

/* no nak has been sent yet */
/* initial value is only for the simulator */

static boolean between(seq_nr a, seq_nr b, seq_nrc) \\hat to do if no much reverse traffic?

{

/+ Same as between in protocol5, but shorter and more obscure. */
return ((a <=b) && (b <c)) Il ((c < a) && (a<=b)) Il (b < ¢) && (c < a));

}

static void send_frame(frame_kind fk, seq_nr frame_nr, seq_nr frame_expected, packet buffer[])

{

/* Construct and send a data, ack, or nak frame. */

frame s;

s.kind = fk;

/* scratch variable */

/* kind == data, ack, or nak */

if (fk == data) s.info = buffer[frame_nr % NR_BUFS];

s.seq = frame_nr;

/* only meaningful for data frames */

s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);

if (fk == nak) no_nak = false;
to_physical_layer(&s);

if (fk == data) start_timer(frame_nr % NR_BUFS);

}—P—Q~S‘° ack timerl). \\hat is this for?

CS422 DataLinkLayer.72

/* one nak per frame, please */
/* transmit the frame */ Continued =>

/* no need for separate ack frame */

UC. Colorado Springs

72

A Sliding Window Protocol Using Selective Repeat (2)

void protocol6(void)

{
seq_nr ack_expected;
seq_nr next_frame_to_send;
seq_nr frame_expected,;

/* lower edge of sender’'s window */
/* upper edge of sender’s window + 1 */
/* lower edge of receiver's window */

seq_nr too_far;

inti;

frame r;

packet out_buf[NR_BUFS];
packet in_buf[NR_BUFS];
boolean arrived[NR_BUFS];
seq_nr nbuffered;
event_type event;

/* upper edge of receiver's window + 1 */

/* index into buffer pool */

/* scratch variable */

/* buffers for the outbound stream */

/* buffers for the inbound stream */

* inbound bit map */

* how many output buffers currently used */

~ ~

enable_network_layer(); /*

ack_expected = 0;

initialize */
next ack expected on the inbound stream */

¥

next_frame_to_send = 0; /* number of next outgoing frame */
frame_expected = 0;
too_far = NR_BUFS;
nbuffered = 0; /* initially no packets are buffered */

for (i = 0; i < NR_BUFS; i++) arrived[i] = false;

Continued =2

CS422 DataLinkLayer.73 UC. Colorado Springs

73

A Sliding Window Protocol Using Selective Repeat (3)

while (true) {
wait_for_event(&event);
switch(event) {
case network_layer_ready: /* accept, save, and transmit a new frame */

nbuffered = nbuffered + 1; /* expand the window */
from_network_layer(&out buf[next_frame_to_send % NR_BUFS]); /* fetch new packet */
send_frame(data, next_frame_to_send, frame_expected, out_buf);/* transmit the frame */
inc(next_frame_to_send); /+ advance upper window edge */
break;

case frame_arrival:
from_physical_layer(&r);
if (r.kind == data) {
/* An undamaged frame has arrived. */
if ((r.seq != frame_expected) && no_nak)
send_frame(nak, 0, frame_expected, out_buf); else start_ack_timer();
if (between(frame_expected, r.seq, too_far) && (arrived[r.seq%NR_BUFS] == false)) {
/* Frames may be accepted in any order. */
arrived[r.seq % NR_BUFS] = true; /* mark buffer as full */
in_buf[r.seq % NR_BUFS] = r.info; /* insert data into buffer */
while (arrived[frame_expected % NR_BUFS]) {
/* Pass frames and advance window. */
to_network_layer(&in_buf[frame_expected % NR_BUFS]);
no_nak = true;
arrived[frame_expected % NR_BUFS] = false;
inc(frame_expected); /* advance lower edge of receiver's window */
inc(too_far); /* advance upper edge of receiver's window */
start_ack_timer(); /* to see if a separate ack is needed */
} T Whatis this for? .
} Continued -
}

CS422 DataLinkLayer.74

/* five possibilities: see event_type above */

/+ a data or control frame has arrived */
/* fetch incoming frame from physical layer */

UC. Colorado Springs

74

A Sliding Window Protocol Using Selective Repeat (4)

if((r.kind==nak) && between(ack_expected,(r.ack+1)%(MAX_SEQ+1),next frame to send))
send_frame(data, (r.ack+1) % (MAX_SEQ + 1), frame_expected, out_buf);

while (between(ack_expected, r.ack, next_frame_to_send)) {

nbuffered = nbuffered 1; /* handle piggybacked ack */
stop_timer(ack_expected % NR_BUFS); /* frame arrived intact */
inc(ack_expected); /* advance lower edge of sender’s window */
}
break;

case cksum_err:
if (no_nak) send_frame(nak, 0, frame_expected, out_buf);/* damaged frame */
break;

case timeout:
send_frame(data, oldest_frame, frame_expected, out_buf);/* we timed out */
break; o

case ack_timeout: What is this for?
send_frame(ack,0,frame_expected, out_buf); /* ack timer expired; send ack */

}

if (nbuffered < NR_BUFS) enable_network_layer(); else disable_network_layer();
}

} What tradeoff to be made for the timer and NAK/ACK?
CS422 DataLinkLayer.75 UC. Colorado Springs
75
ACK Strategies
° To transfer a file between two computers, two

acknowledgement strategies are possible. In the first one,
the file is chopped up into packets, which are individually
acknowledged by the receiver. In the second one, the
packets are not acknowledged individually, but the entire file
is acknowledged when it arrives.
What are advantages and disadvantage of these two
strategies?

CS422 DataLinkLayer.76 UC. Colorado Springs

76

End-to-End vs. Hop-by-Hop

° A service feature can be provided by implementing a
protocol

* end-to-end across the network
* across every hop in the network

o

Example:

* Perform error control at every hop in the network or only
between the source and destination?

* Perform flow control between every hop in the network or
only between source & destination?

° We next consider the tradeoffs between the two
approaches

CS422 DataLinkLayer.77 UC. Colorado Springs

77

Which Approach Preferred

Hop-by-hop (HDLC)

Hop-by-hop cannot
ensure E2E
1 T correctness
Data Data Data Data
1 2 3 4 5
ACK/ ACK/ ACK/ ACK/ Faster recovery
NAK NAK NAK NAK
In situations with infrequent or frequent errors, which one?
Simple
End-to-end (TCP) CKNAK inside the
network

Data Data Data Data edge

CS422 DataLinkLayer.78 UC. Colorado Springs

78

More scalable if
1 2 € 4 5 complexity at the

Protocol Verification

 Finite State Machined Models

e Petri Net Models

CS422 DataLinkLayer.79 UC. Colorado Springs

79

Example 1: High-Level Data Link Control (HDLC)

° Bit-oriented data link control
Derived from IBM Synchronous Data Link Control (SDLC)

“Packet”
DL SAP DLSAP
Data link . Data link
layer “Frame” layer
CS422 DataLinkLayer.80 UC. Colorado Springs

80

High-Level Data Link Control (HDLC)

Frame format for bit-oriented protocols.

Bits 8 8 8 >0 16 8

01111110 | Address | Control | Data | Checksum 01111110

Address: multi-drop or p2p (commands)
Control field gives HDLC its functionality, w/ 3bits for Sequencing
Checksum: x*16 +x*12 + x5 + 1

What is the appropriate length for “Data” field?

CS422 DataLinkLayer.81 UC. Colorado Springs

81

High-Level Data Link Control (2)

Bits 1 3 1 3
(@l o Seq P/F Next
b)| 1 0 Type P/F Next
(c) 1 1 Type P/F Modifier

Control field of

(a) An information frame.
(b) A supervisory frame.
(c) An unnumbered frame.

CS422 DataLinkLayer.82 UC. Colorado Springs

82

Example 2: The Data Link Layer in the Internet (PPP)

+ Two situations that point-to-point communication is
primarily used

. Router-router leased line connection.
. Dial-up host-router connections.

User's home Internet provider's office
e e T i oo N o ‘
! Modems |
N i —
| I
Client process | oo

§

Dial-up
telephone line

nnnnnnn TN

|
1
|
|
|
using TCP/IP !
|
I
|
I
1
|
|

““““““““

T
g
I
g
g
I
g
g
g
8

______‘__
!
“i
i
B

1
|
1
i TCP/IP connection
1
1
|

I
using PFP Hmmu}(
Bz oo e s e e v e e] R 7Z> pugh U |
Router Routing
process
A home personal computer acting as an internet host.
CS422 DataLinkLayer.83 UC. Colorado Springs

83

PPP - Point to Point Protocol

. PPP provides three features

. A method for framing, error detection, option negotiation,
header compression, and optional reliable transmission

* Alink control protocol (LCP) for bringing lines up, testing,
negotiating, and bring them down.

* A way to negotiate network-layer options in a way that is
independent of the network layer protocol to be used; e.g.,
NCP (Network Control Protocol).

1 1 1 1or2 Variable 2o0r4 1

((
)J

Flag Address Control Flag
01111110 | 11111111 | oooooo11 | rotocol | Payload | Checksum | 1 3y,

((
2]

The PPP full frame format for unnumbered mode operation.

What is the key difference between PPP framing and HDLC framing?
Bit-oriented vs. byte-oriented (character-oriented)
Reliability option vs. no reliability option

CS422 DataLinkLayer.84 UC. Colorado Springs

84

PPP Applications

PPP used in many point-to-point applications

o

Telephone Modem Links

° Packet over SONET
 IP->PPP—-SONET
° PPP is also used over shared links such as Ethernet to provide
LCP, NCP, and authentication features
* PPP over Ethernet (RFC 2516)
» Used over DSL

CS422 DataLinkLayer.85 UC. Colorado Springs

85

Packet over SONET

o Packet over SONET is the method used to carry IP
packets over SONET optical fiber links

* Uses PPP (Point-to-Point Protocol) for framing

] IP packet
Router\ P IP
PPP PPP PPP frame
SONET t?bpetlrcal SONET [SONET payload |[SONET payload |
Y —
Protocol stacks PPP frames may be split over SONET
payloads
CS422 DataLinkLayer.86 UC. Colorado Springs

86

ADSL

* AALS5: ATM adaptation layer 5

P P DSLAM
DSL ‘
PPP /modem PPP /(Wlth router)
AAL5 AAL5
Ethernet Link T
ATM ATM et)
_Internet)
ADSL ';°°a' ADSL)
oop ——
N O T
L J L)
R Y
ISP’s office

Customer’s home

CS422 DatalLinkLayer.87

o ADSL (Asymmetric Digital Subscriber Loop), widely
used for broadband Internet over local loops
* ADSL runs from modem (customer) to DSLAM (ISP)

« IP packets are sent over PPP and AAL5/ATM (over)

UC. Colorado Springs

87

Reading

CS422 DataLinkLayer.88

e Chapter 3 of the text

UC. Colorado Springs

88

