
CS422 The Transport Layer.1 UC. Colorado Springs

CS4220
Computer Networks

Lecture 7 The Transport Layer

Dr. Xiaobo “Charles” Zhou
Department of Computer Science

1

CS422 The Transport Layer.2 UC. Colorado Springs

Transport Layer
Chapter 6

• Transport Service
• Elements of Transport Protocols
• Congestion Control
• Internet Protocols – UDP
• Internet Protocols – TCP
• Performance Issues
• Delay-Tolerant Networking

2

CS422 The Transport Layer.3 UC. Colorado Springs

The Transport Layer

o Responsible for delivering data
across networks with the
desired reliability or quality

Physical
Link

Network
Transport
Application

3

CS422 The Transport Layer.4 UC. Colorado Springs

Services Provided to the Upper Layers

The network, transport, and application layers.

° Goal: to provide efficient, reliable, and cost-effective service to
its users, processes in the application layer
• Transport entity: hardware and/or software within the layer

4

CS422 The Transport Layer.5 UC. Colorado Springs

HTTP
serverHTTP

client

TCP

Port 80Port 1127

Example: HTTP Uses Service of TCP

TCP

Response
GET

TCP80, 1127 GET 1127, 80 bytesResponseGETResponse

5

CS422 The Transport Layer.6 UC. Colorado Springs

TCP/IP Protocol Suite

(ICMP, ARP)

Diverse network technologies

Reliable
stream
service

User
datagram
service

Distributed
applications

HTTP SMTP RTP

TCP UDP

IP

Network

interface 1

Network

interface 3

Network

interface 2

DNS

Best-effort
connectionless
packet transfer

6

CS422 The Transport Layer.7 UC. Colorado Springs

UDP (User Datagram Protocol)

° UDP is a transport layer protocol
° Provides best-effort datagram service between two processes

in two computers across the Internet
° Port numbers distinguish various processes in the same

machine
° UDP is connectionless
° Datagram is sent immediately
° Quick, simple, but not reliable

7

CS422 The Transport Layer.8 UC. Colorado Springs

TCP (Transmission Control Protocol)

° TCP is a transport layer protocol
° Provides reliable byte stream service between two processes in

two computers across the Internet
° Sequence numbers keep track of the bytes that have been

transmitted and received
° Error detection and retransmission used to recover from

transmission errors and losses
° TCP is connection-oriented: the sender and receiver must first

establish an association and set initial sequence numbers before
data is transferred

° Connection ID is specified uniquely by

(send port #, send IP address, receive port #, receiver IP address)

8

CS422 The Transport Layer.9 UC. Colorado Springs

Internet Names & Addresses

Internet Names

° Each host a a unique name
• Independent of physical

location
• Facilitate memorization by

humans
• Domain Name
• Organization under single

administrative unit

° Host Name
• Name given to host

computer

° User Name
• Name assigned to user
• leongarcia@cs.utoronto.ca

Internet Addresses

° Each host has globally unique
logical 32 bit IP address

° Separate address for each physical
connection to a network

° Routing decision is done based on
destination IP address

° IP address has two parts:
• netid and hostid
• netid unique
• netid facilitates routing

° Dotted Decimal Notation:
int1.int2.int3.int4
128.100.10.13

How to resolve IP name to IP address Mapping?

9

CS422 The Transport Layer.10 UC. Colorado Springs

Physical Addresses

° LANs (and other networks) assign physical addresses to the
physical attachment to the network

° The network uses its own address to transfer packets or frames
to the appropriate destination

° IP address needs to be resolved to physical address at each IP
network interface

° Example: Ethernet uses 48-bit addresses
• Each Ethernet network interface card (NIC) has globally

unique Medium Access Control (MAC) or physical address
• First 24 bits identify NIC manufacturer; second 24 bits are

serial number
• 00:90:27:96:68:07 12 hex numbers

Intel

10

CS422 The Transport Layer.11 UC. Colorado Springs

Transport Layer vs. Network Layer

• Both layers provide connectionless services and
connection-oriented services, why two distinct layers?

• IPC vs. machine-to-machine
• End host vs. routers

- Reliability
- Performance
- QoS
- programming convenience

The users have no real control over the network layer!

11

CS422 The Transport Layer.12 UC. Colorado Springs

Transport Service Primitives

The primitives for a simple transport service.

• Connectionless (datagram) service

• Connection-oriented (stream) service is three phase:
establishment, data transfer, and release

12

CS422 The Transport Layer.13 UC. Colorado Springs

Transport Service Primitives (2)

The nesting of TPDUs, packets, and frames.

° TPDU (transport protocol data unit): messages sent from
transport entity to transport entity.

13

CS422 The Transport Layer.14 UC. Colorado Springs

Example Internet

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)
PPP

Netid=2
Ethernet
(netid=1)

PCServer
Router

Workstation

netid hostid Physical
address

server 1 1 s
workstation 1 2 w
router 1 3 r

router 2 1 -
PC 2 2 -

*PPP does not use addresses

14

CS422 The Transport Layer.15 UC. Colorado Springs

Encapsulation

l Ethernet header contains:
l source and destination physical addresses
l network protocol type (e.g. IP)

IP
header IP Payload

Ethernet
header FCSIP

header IP Payload

15

CS422 The Transport Layer.16 UC. Colorado Springs

IP Packet from Workstation to Server

1. IP packet has (1,2) IP address for source and (1,1) IP address for
destination

2. IP table at workstation indicates (1,1) connected to same network, so
IP packet is encapsulated in Ethernet frame with addresses w and s
(by the use of ARP)

3. Ethernet frame is broadcast by workstation NIC and captured by
server NIC

4. NIC examines protocol type field and delivers packet to its IP layer

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)
PPP

Ethernet

PCServer
Router

Workstation

(1,2), (1,1) w, s

16

CS422 The Transport Layer.17 UC. Colorado Springs

IP Packet from Server to PC

(1,1) s

(1,2)

w

(2,1)

(1,3) r (2,2)

PCServer
Router

Workstation

1. IP packet has (1,1) and (2,2) as IP source and destination addresses
2. IP table at server indicates packet should be sent to router, so IP packet is

encapsulated in Ethernet frame with addresses s and r
3. Ethernet frame is broadcast by server NIC and captured by router NIC
4. NIC examines protocol type field and then delivers packet to its IP layer
5. IP layer examines IP packet destination address and determines IP packet should

be routed to (2,2)
6. Router’s table indicates (2,2) is directly connected via PPP link
7. IP packet is encapsulated in PPP frame and delivered to PC
8. PPP at PC examines protocol type field and delivers packet to PC IP layer

(1,1), (2,2) s, r

(1,1), (2,2)

17

CS422 The Transport Layer.18 UC. Colorado Springs

How the layers work together

Network interface

IP

TCP

HTTP

Network interface

IP

Network interface

IP

TCP

HTTP

Ethernet PPPRouter

(1,1) s

(2,1)

(1,3) r (2,2)
PPP

Ethernet

(a)

(b) Server PC

PCServer
Router

TCP uses node-to-node
unreliable packet transfer of IP

server IP address & PC IP address

Internet

HTTP uses process-to-process
reliable byte stream transfer of

TCP connection:
server socket: (IP Address, 80)
PC socket (IP Address, Eph. #)

18

CS422 The Transport Layer.19 UC. Colorado Springs

Encapsulation

TCP Header contains
source & destination

port numbers

IP Header contains
source and destination

IP addresses;
transport protocol type

Ethernet Header contains
source & destination MAC
addresses;
network protocol type

HTTP Request

TCP
header HTTP Request

IP
header

TCP
header HTTP Request

Ethernet
header

IP
header

TCP
header HTTP Request FCS

19

CS422 The Transport Layer.20 UC. Colorado Springs

° User clicks on http://www.nytimes.com/

° Ethereal network analyzer captures all frames observed by its
Ethernet NIC

° Sequence of frames and contents of frame can be examined in
detail down to individual bytes

Network Analyzer Wireshark (formerly Ethereal)

Internet

20

http://www.nytimes.com/

CS422 The Transport Layer.21 UC. Colorado Springs

Wireshark (Ethereal) Windows

Top Pane shows
frame/packet

sequence

Middle Pane shows
encapsulation for a given

frame

Bottom Pane shows hex & text

21

CS422 The Transport Layer.22 UC. Colorado Springs

Top pane: Frame Sequence

DNS
Query

TCP
Connection

Setup HTTP
Request &
Response

22

CS422 The Transport Layer.23 UC. Colorado Springs

Middle Pane: Encapsulation

Ethernet Frame

Ethernet
Destination and

Source
Addresses

Protocol Type

23

CS422 The Transport Layer.24 UC. Colorado Springs

Middle Pane: Encapsulation

IP Packet

IP Source and
Destination
Addresses

Protocol Type

And a lot of
other stuff!

24

CS422 The Transport Layer.25 UC. Colorado Springs

Middle Pane: Encapsulation

TCP Segment

Source and
Destination Port

Numbers

HTTP
Request

GET

25

CS422 The Transport Layer.26 UC. Colorado Springs

Summary

° Encapsulation is key to layering

° IP provides for transfer of packets across diverse networks

° TCP and UDP provide universal communications services
across the Internet

° Distributed applications that use TCP and UDP can operate
over the entire Internet

° Internet names, IP addresses, port numbers, sockets,
connections, physical addresses

26

CS422 The Transport Layer.27 UC. Colorado Springs

Elements of Transport Protocols

• Addressing »
• Connection establishment »
• Connection release »
• Error control and flow control »
• Multiplexing »
• Crash recovery »

27

CS422 The Transport Layer.28 UC. Colorado Springs

Addressing

• Transport layer adds
TSAPs

• Multiple clients and
servers can run on a host
with a single network (IP)
address

• TSAPs are ports for
TCP/UDP

° TSAP (transport service access point): transport addresses of
end points (Internet: ports, ATM: AAL-SAPs).

28

CS422 The Transport Layer.29 UC. Colorado Springs

Connection Establishment (1)

o Key problem is to ensure reliability even though
packets may be lost, corrupted, delayed, and
duplicated

• Don’t treat an old or duplicate packet as new
• (Use ARQ and checksums for loss/corruption)

o Approach:
• Don’t reuse sequence numbers within twice the MSL

(Maximum Segment Lifetime)
• Three-way handshake for establishing connection

Protocols must be designed to be correct in all cases!

29

CS422 The Transport Layer.30 UC. Colorado Springs

Connection Establishment (2)

o Three-way handshake used
for initial packet

• Since no state from previous
connection

• Both hosts contribute fresh
seq. numbers

• CR = Connect Request

30

CS422 The Transport Layer.31 UC. Colorado Springs

Connection Establishment (3)

Three-way handshake protects
against odd cases:

a) Duplicate CR. Spurious ACK
does not connect

b) Duplicate CR and DATA. Same
plus DATA will be rejected
(wrong ACK).

a)

b)

X

X

X

31

CS422 The Transport Layer.32 UC. Colorado Springs

Connection Release (1)

Key problem is to ensure reliability
while releasing

Asymmetric release (when one side
breaks connection) is abrupt and
may lose data

X

32

CS422 The Transport Layer.33 UC. Colorado Springs

Connection Release (2)

Symmetric release (both sides agree to release) can’t be handled
solely by the transport layer

• Two-army problem shows pitfall of agreement

Attack? Attack?

33

CS422 The Transport Layer.34 UC. Colorado Springs

Connection Release (3)

o Normal release sequence,
initiated by transport user
on Host 1

• DR=Disconnect Request
• Both DRs are ACKed by the

other side

34

CS422 The Transport Layer.35 UC. Colorado Springs

Connection Release (4)

Error cases are handled with timer and retransmission

Final ACK lost, Host 2
times out

Lost DR causes
retransmissions

Extreme: Many lost DRs
cause both hosts to timeout

35

CS422 The Transport Layer.36 UC. Colorado Springs

Error Control and Flow Control

o Foundation for error control is a sliding window (from
Link layer) with checksums and retransmissions

o Flow control manages buffering at sender/receiver
• Issue is that data goes to/from the network and

applications at different times
• Window tells sender available buffering at receiver
• Makes a variable-size sliding window

36

CS422 The Transport Layer.37 UC. Colorado Springs

Multiplexing

° Kinds of transport / network sharing that can occur:
• Multiplexing: connections share a network address
• Inverse multiplexing: addresses share a connection

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Multiplexing Inverse Multiplexing

37

CS422 The Transport Layer.38 UC. Colorado Springs

Congestion Control

o Two layers are responsible for congestion control:
o Transport layer, controls the offered load [here]
o Network layer, experiences congestion [previous]

o Desirable bandwidth allocation »
o Regulating the sending rate »
o Wireless issues »

38

CS422 The Transport Layer.39 UC. Colorado Springs

Desirable Bandwidth Allocation (1)

Efficient use of bandwidth gives high goodput, low delay

Delay begins to rise sharply when
congestion sets in

Goodput rises more slowly than load when
congestion sets in

39

CS422 The Transport Layer.40 UC. Colorado Springs

Desirable Bandwidth Allocation (2)

o Fair use gives bandwidth to all flows (no starvation)
• Max-min fairness gives equal shares of bottleneck

Bottleneck link

40

CS422 The Transport Layer.41 UC. Colorado Springs

Desirable Bandwidth Allocation (3)

We want bandwidth levels to converge quickly when traffic patterns
change

Flow 1 slows quickly when
Flow 2 starts

Flow 1 speeds up quickly when
Flow 2 stops

41

CS422 The Transport Layer.42 UC. Colorado Springs

Regulating the Sending Rate (1)

o Sender may need to slow
down for different reasons:

• Flow control, when the
receiver is not fast enough
[right]

• Congestion, when the
network is not fast enough
[over]

A fast network feeding a low-capacity receiver à flow control is
needed

42

CS422 The Transport Layer.43 UC. Colorado Springs

Regulating the Sending Rate (2)

Our focus is dealing with this
problem – congestion

A slow network feeding a high-capacity receiver à congestion
control is needed

43

CS422 The Transport Layer.44 UC. Colorado Springs

Regulating the Sending Rate (3)

Different congestion signals the network may use to tell the transport
endpoint to slow down (or speed up)

44

CS422 The Transport Layer.45 UC. Colorado Springs

Regulating the Sending Rate (3)

If two flows increase/decrease their bandwidth in the same way when
the network signals free/busy they will not converge to a fair
allocation

+/– percentage

+ /– constant

45

CS422 The Transport Layer.46 UC. Colorado Springs

Regulating the Sending Rate - AIMD

o The AIMD (Additive Increase Multiplicative Decrease) control
law does converge to a fair and efficient point!

• TCP uses AIMD for this reason

User 1’s bandwidth

U
se

r 2
’s

ba
nd

w
id

th

46

CS422 The Transport Layer.47 UC. Colorado Springs

The Internet Transport Protocols: UDP

• Introduction to UDP

• Remote Procedure Call

• The Real-Time Transport Protocol

47

CS422 The Transport Layer.48 UC. Colorado Springs

UDP

° Best effort datagram service

° Multiplexing enables sharing of IP datagram service

° Simple transmitter & receiver
• Connectionless: no handshaking & no connection state
• Low header overhead
• No flow control, no error control, no congestion control
• UDP datagrams can be lost or out-of-order

° Applications
• multimedia (e.g. RTP)
• network services (e.g. DNS, RIP, SNMP)

48

CS422 The Transport Layer.49 UC. Colorado Springs

UDP Datagram

° Source and destination port
numbers
• Client ports are ephemeral
• Server ports are well-known
• Max number is 65,535

° UDP length
• Total number of bytes in

datagram (including header)
• 8 bytes ≤ length ≤ 65,535

° UDP Checksum
• Optionally detects errors in

UDP datagram (and a pseudo-
header with IP addresses)

Source Port Destination Port

UDP Length UDP Checksum

Data

0 16 31

0-255
• Well-known ports

256-1023
• Less well-known ports

1024-65536
• Ephemeral client ports

49

CS422 The Transport Layer.50 UC. Colorado Springs

UDP Checksum Calculation

° UDP checksum detects for end-to-end errors
° Covers pseudo-header followed by UDP datagram
° IP addresses included to detect against mis-delivery
° IP & UDP checksums set to zero during calculation
° Pad with 1 byte of zeros if UDP length is odd

° Optional but hosts are required to enable it

0 0 0 0 0 0 0 0 Protocol = 17 UDP Length

Source IP Address

Destination IP Address

0 8 16 31

UDP pseudo-
header

50

CS422 The Transport Layer.51 UC. Colorado Springs

UDP Multiplexing

° All UDP datagrams arriving to IP address B and destination port
number n are delivered to the same process

° What UDP does not do?
• Flow control, error control & retransmission, congestion control

...

UDP

IP

1 2 n ...

UDP

IP

1 2 n ...

UDP

IP

1 2 n

A B C

51

CS422 The Transport Layer.52 UC. Colorado Springs

Remote Procedure Call (RPC)

Steps in making a remote procedure call. The stubs are shaded.

° RPC idea: make a remote procedure call look as much as
possible like a local one
• Another area of using UDP is RTP (real-time transport protocol)

52

CS422 The Transport Layer.53 UC. Colorado Springs

Real-Time Transport (1)

o RTP (Real-time Transport Protocol) provides support
for sending real-time media over UDP

• Often implemented as part of the application

53

CS422 The Transport Layer.54 UC. Colorado Springs

Real-Time Transport (2)

o RTP header contains fields to describe the type of
media and synchronize it across multiple streams

• RTCP sister protocol helps with management tasks

54

CS422 The Transport Layer.55 UC. Colorado Springs

Real-Time Transport (3)

o Buffer at receiver is used to delay packets and absorb
jitter so that streaming media is played out smoothly

Packet 8’s network delay is too large for
buffer to help

Constant rate

Variable rate

Constant rate

55

CS422 The Transport Layer.56 UC. Colorado Springs

Internet Protocols – TCP

• The TCP service model »
• The TCP segment header »
• TCP connection establishment »
• TCP connection state modeling »
• TCP sliding window »
• TCP timer management »
• TCP congestion control »

56

CS422 The Transport Layer.57 UC. Colorado Springs

The TCP Service Model (1)

o TCP provides applications with a reliable byte stream
between processes; it is the workhorse of the Internet

• Popular servers run on well-known ports

57

CS422 The Transport Layer.58 UC. Colorado Springs

The TCP Service Model (2)

Applications using TCP see only the byte stream [right]
and not the segments [left] sent as separate IP packets

Four segments, each with 512 bytes of data and
carried in an IP packet

2048 bytes of data delivered to
application in a single READ call

58

CS422 The Transport Layer.59 UC. Colorado Springs

The TCP Segment Header

TCP header includes addressing (ports), sliding window (seq. / ack.
number), flow control (window), error control (checksum) and more.

59

CS422 The Transport Layer.60 UC. Colorado Springs

TCP Connection Establishment

TCP sets up connections with the three-way handshake
• Release is symmetric, also as described before

Normal case Simultaneous connect

60

CS422 The Transport Layer.61 UC. Colorado Springs

TCP Connection State Modeling (1)

The TCP connection finite state machine has more states than
our simple example from earlier.

61

CS422 The Transport Layer.62 UC. Colorado Springs

TCP Connection State Modeling (2)

Solid line is the normal
path for a client.

Dashed line is the
normal path for a
server.

Light lines are unusual
events.

Transitions are labeled
by the cause and
action, separated by a
slash.

62

CS422 The Transport Layer.63 UC. Colorado Springs

TCP Client-Server Application

accept returns
read (blocks)

read returns

write
read (blocks)

Host A (client) Host B (server)

SYN, Seq_no = x

SYN, Seq_no = y, ACK, Ack_no = x+1

Seq_no = x+1, ACK, Ack_no = y+1

socket
bind
listen
accept (blocks)

socket
connect (blocks)

connect returns

write
read (blocks)

read returns

Request message

Reply message

t1

t2

t3

t4
t5

t6

63

CS422 The Transport Layer.64 UC. Colorado Springs

TCP Sliding Window (1)

o TCP adds flow control
to the sliding window
as before

• ACK + WIN is the
sender’s limit

64

CS422 The Transport Layer.65 UC. Colorado Springs

Nagle Algorithm

° Situation: user types 1 character at a time
• Transmitter sends TCP segment per character (41B)
• Receiver sends ACK (40B)
• Receiver echoes received character (41B)
• Transmitter ACKs echo (40 B)
• 162 bytes transmitted to transfer 1 character!

° Solution:
• TCP sends data & waits for ACK
• New characters buffered instead
• Send new characters when ACK arrives
• Algorithm adjusts to RTT

- Short RTT send frequently at low efficiency
- Long RTT send less frequently at greater efficiency

65

CS422 The Transport Layer.66 UC. Colorado Springs

Silly Window Syndrome

° Situation:
• Transmitter sends large amount of data
• Receiver buffer depleted slowly, so buffer fills
• Every time a few bytes read from buffer, a new

advertisement to transmitter is generated
• Sender immediately sends data & fills buffer
• Many small, inefficient segments are transmitted

° Solution:
• Receiver does not advertize window until window is at

least ½ of receiver buffer or maximum segment size
• Transmitter refrains from sending small segments

66

CS422 The Transport Layer.67 UC. Colorado Springs

° 232 = 4.29x109 bytes = 34.3x109 bits
• At 1 Gbps, sequence number wraparound in 34.3 seconds

(Max. Segment Lifetime = 120 seconds).

° Timestamp option: Insert 32 bit timestamp in header of each
segment

• Timestamp + sequence no → 64-bit seq. no
• Timestamp clock must:

- tick forward at least once every 231 bits
- Not complete cycle in less than one MSL
- Example: clock tick every 1 ms @ 8 Tbps wraps around

in 25 days

Sequence Number Wraparound

Where this timestamp can be filled in?

67

CS422 The Transport Layer.68 UC. Colorado Springs

Delay-BW Product & Advertised Window Size

° Suppose RTT=100 ms, R=2.4 Gbps
• # bits in pipe = 3 Mbytes

° If single TCP process occupies pipe, then required advertised
window size is

• RTT x Bit rate = 3 Mbytes
• Normal maximum window size is 65535 bytes

° Solution: Window Scale Option
• Window size up to 65535 x 214 = 1 Gbyte allowed
• Requested in SYN segment

Where the information can be filled in?

68

CS422 The Transport Layer.69 UC. Colorado Springs

TCP Congestion Control

° Advertised window size is used to ensure that receiver’s buffer will not
overflow

° However, buffers at intermediate routers between source and
destination may overflow

Router

R bpsPacket
flows from

many
sources

° Congestion occurs when total arrival rate from all packet flows
exceeds R over a sustained period of time

° Buffers at multiplexer will fill and packets will be lost

69

CS422 The Transport Layer.70 UC. Colorado Springs

Phases of Congestion Behavior

1. Light traffic
• Arrival Rate << R
• Low delay
• Can accommodate more

2. Knee (congestion onset)
• Arrival rate approaches R
• Delay increases rapidly
• Throughput begins to saturate

3. Congestion collapse
• Arrival rate > R
• Large delays, packet loss
• Useful application throughput

drops significantly

Th
ro

ug
hp

ut
 (b

ps
)

D
el

ay
 (s

ec
)

R

R

Arrival
Rate

Arrival
Rate

70

CS422 The Transport Layer.71 UC. Colorado Springs

Congestion Window

° Desired operating point: just before knee
• Sources must control their sending rates so that aggregate arrival

rate is just before knee

° TCP sender maintains a congestion window (cwnd) to control
congestion at intermediate routers

° Effective window is the minimum of congestion window and advertised
window (for flow control)

° Problem: source does not know what its “fair” share of available
bandwidth should be

° Solution: adapt dynamically to available BW
• Sources probe the network by increasing cwnd
• When congestion detected, sources reduce rate
• Ideally, sources sending rate stabilizes near ideal point

71

CS422 The Transport Layer.72 UC. Colorado Springs

Congestion Window (Cont.)

° How does the TCP congestion algorithm change congestion
window dynamically according to the most up-to-date state of
the network?

° At light traffic: each segment is ACKed quickly
• Increase cwnd aggressively

° At knee: segment ACKs arrive, but more slowly
• Slow down increase in cwnd

° At congestion: segments encounter large delays (so
retransmission timeouts occur); segments are dropped in
router buffers (resulting in duplicate ACKs)
• Reduce transmission rate, then probe again

72

CS422 The Transport Layer.73 UC. Colorado Springs

TCP Congestion Control - AIMD

o TCP uses AIMD with loss signal to control congestion
• AIMD: Additive Increase Multiplicative Decrease
• Implemented as a congestion window (cwnd) for the number of

segments that may be in the network
• Uses several mechanisms that work together

Name Mechanism Purpose
ACK clock Congestion window (cwnd) Smooth out packet bursts
Slow-start Double cwnd each RTT Rapidly increase send rate to

reach roughly the right level
Additive
Increase

Increase cwnd by 1 packet
each RTT

Slowly increase send rate to
probe at about the right level

Fast
retransmit
/ recovery

Resend lost packet after 3
duplicate ACKs; send new
packet for each new ACK

Recover from a lost packet
without stopping ACK clock

73

CS422 The Transport Layer.74 UC. Colorado Springs

TCP Congestion Control: Slow Start

° Slow start: increase congestion window size by one segment
upon receiving an ACK from receiver
• initialized at £ 2 segments
• used at (re)start of data transfer
• congestion window increases exponentially

ACK

Seg

RTTs
1
2
4

8

cwnd

74

CS422 The Transport Layer.75 UC. Colorado Springs

TCP Congestion Control: Congestion Avoidance

° Algorithm progressively sets a
congestion threshold
• When cwnd > threshold,

slow down rate at which
cwnd is increased

° Increase congestion window
size by one segment per round-
trip-time (RTT)
• Each time an ACK arrives,

cwnd is increased by
1/cwnd segment

• In one RTT, cwnd segments
are sent, so total increase in
cwnd is cwnd x 1/cwnd = 1

• cwnd grows linearly with
time RTTs

1
2

4

8

cwnd

threshold

75

CS422 The Transport Layer.76 UC. Colorado Springs

TCP Congestion Control: Congestion

° Congestion is detected upon
timeout or receipt of duplicate
ACKs

° Assume current cwnd
corresponds to available
bandwidth

° Adjust congestion threshold = ½
x current cwnd

° Reset cwnd to 1

° Go back to slow-start

° Over several cycles expect to
converge to congestion
threshold equal to about ½ the
available bandwidth

C
on

ge
st

io
n

w
in

do
w

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Time-out

Threshold

76

CS422 The Transport Layer.77 UC. Colorado Springs

Fast Retransmit & Fast Recovery

° Congestion causes many segments to be
dropped

° If only a single segment is dropped, then
subsequent segments trigger duplicate ACKs
before timeout

° Can avoid large decrease in cwnd as follows:
• When three duplicate ACKs arrive, retransmit

lost segment immediately
• Reset congestion threshold to ½ cwnd
• Reset cwnd to congestion threshold + 3 to

account for the three segments that triggered
duplicate ACKs

• Remain in congestion avoidance phase
• However if timeout expires, reset cwnd to 1
• In absence of timeouts, cwnd will oscillate

around optimal value

SN=1
ACK=2

ACK=2
ACK=2
ACK=2

SN=2
SN=3
SN=4
SN=5

77

CS422 The Transport Layer.78 UC. Colorado Springs

TCP Congestion Control – TCP Tahoe

o Slow start followed by additive increase (TCP Tahoe)
• Threshold is half of previous loss cwnd

Loss causes timeout; ACK clock
has stopped so slow-start again

78

CS422 The Transport Layer.79 UC. Colorado Springs

TCP Congestion Control – TCP Reno

° With fast recovery, we get the classic sawtooth (TCP Reno)
• Retransmit lost packet after 3 duplicate ACKs
• New packet for each dup. ACK until loss is repaired

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

The ACK clock doesn’t stop, so no need
to slow-start

79

CS422 The Transport Layer.80 UC. Colorado Springs

Performance Issues

o Many strategies for getting good performance
have been learned over time

• Performance problems »
• Measuring network performance »
• Host design for fast networks »
• Fast segment processing »
• Header compression »
• Protocols for “long fat” networks »

80

CS422 The Transport Layer.81 UC. Colorado Springs

Performance Problems

o Unexpected loads often interact with protocols to
cause performance problems

• Need to find the situations and improve the protocols

o Examples:
• Broadcast storm: one broadcast triggers another
• Synchronization: a building of computers all contact the

DHCP server together after a power failure
• Tiny packets: some situations can cause TCP to send

many small packets instead of few large ones

81

CS422 The Transport Layer.82 UC. Colorado Springs

Measuring Network Performance

o Measurement is the key to understanding performance
– but has its own pitfalls.

o Example pitfalls:
• Caching: fetching Web pages will give surprisingly fast

results if they are unexpectedly cached
• Timing: clocks may over/underestimate fast events
• Interference: there may be competing workloads

82

CS422 The Transport Layer.83 UC. Colorado Springs

Host Design for Fast Networks

o Poor host software can greatly slow down networks.

o Rules of thumb for fast host software:
• Host speed more important than network speed
• Reduce packet count to reduce overhead
• Minimize data touching
• Minimize context switches
• Avoiding congestion is better than recovering from it
• Avoid timeouts

83

CS422 The Transport Layer.84 UC. Colorado Springs

Header Compression

o Overhead can be very large for small packets
• 40 bytes of header for RTP/UDP/IP VoIP packet
• Problematic for slow links, especially wireless

o Header compression mitigates this problem
• Runs between Link and Network layer
• Omits fields that don’t change or change predictably

- 40 byte TCP/IP header à 3 bytes of information
• Gives simple high-layer headers and efficient links

84

CS422 The Transport Layer.85 UC. Colorado Springs

Protocols for “Long Fat” Networks (1)

o Networks with high bandwidth (“Fat”) and high delay
(“Long”) can store much information inside the network

• Requires protocols with ample buffering and few RTTs,
rather than reducing the bits on the wire

Starting to send 1 Mbit
San Diego à Boston

20ms after start 40ms after start

85

CS422 The Transport Layer.86 UC. Colorado Springs

Protocols for “Long Fat” Networks (2)

o You can buy more bandwidth but not lower delay
• Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay

86

CS422 The Transport Layer.87 UC. Colorado Springs

Homework 5

° Reading

° Project 2

° Final exam 12:40PM – 2:40PM, Wednesday, May 13, ENG 107

NO MAKE-UP!

87

